rawTherapee/rtengine/improccoordinator.cc
Lawrence Lee 6787c53c9b
Show black level adjustments in file browser
File browser thumbnails for raw images start with a minimally-processed
images. These images are cached and image adjustments are applied on
top. The black level is "baked-into" the cached image. Therefore, to
reflect the black level adjustments in the thumbnail, one of two options
are required:
    1. Cache an image before the black level is applied and process the
       black level on top of this image.
    2. Recreate the base image with the new black level and cache it.
The first option yields better performance when the user changes the
black level. However, it requires other base adjustments to be applied
every time, such as the camera multipliers. The second option requires
the base image to be recreated every time the black level is changed.
This commit implements the second option. It minimizes code changes, and
therefore possible bugs. It does add a performance penalty when the
black level changes, but the black level adjustment is rarely used.
2023-07-29 17:37:13 -07:00

2975 lines
122 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <fstream>
#include <glibmm/thread.h>
#include "improccoordinator.h"
#include "array2D.h"
#include "cieimage.h"
#include "color.h"
#include "colortemp.h"
#include "curves.h"
#include "dcp.h"
#include "guidedfilter.h"
#include "iccstore.h"
#include "image8.h"
#include "imagefloat.h"
#include "improcfun.h"
#include "labimage.h"
#include "lcp.h"
#include "procparams.h"
#include "tweakoperator.h"
#include "refreshmap.h"
#include "utils.h"
#include "../rtgui/options.h"
#ifdef _OPENMP
#include <omp.h>
#endif
namespace
{
constexpr int VECTORSCOPE_SIZE = 128;
}
namespace rtengine
{
ImProcCoordinator::ImProcCoordinator() :
orig_prev(nullptr),
oprevi(nullptr),
spotprev(nullptr),
oprevl(nullptr),
nprevl(nullptr),
fattal_11_dcrop_cache(nullptr),
previmg(nullptr),
workimg(nullptr),
ncie(nullptr),
imgsrc(nullptr),
lastAwbEqual(0.),
lastAwbTempBias(0.0),
lastAwbauto(""),
monitorIntent(RI_RELATIVE),
softProof(false),
gamutCheck(false),
sharpMask(false),
sharpMaskChanged(false),
scale(10),
highDetailPreprocessComputed(false),
highDetailRawComputed(false),
allocated(false),
bwAutoR(-9000.f),
bwAutoG(-9000.f),
bwAutoB(-9000.f),
CAMMean(NAN),
hltonecurve(65536),
shtonecurve(65536),
tonecurve(65536, 0), //,1);
lumacurve(32770, 0), // lumacurve[32768] and lumacurve[32769] will be set to 32768 and 32769 later to allow linear interpolation
chroma_acurve(65536, 0),
chroma_bcurve(65536, 0),
satcurve(65536, 0),
lhskcurve(65536, 0),
clcurve(65536, 0),
conversionBuffer(1, 1),
wavclCurve(65536, 0),
clToningcurve(65536, 0),
cl2Toningcurve(65536, 0),
Noisecurve(65536, 0),
NoiseCCcurve(65536, 0),
vhist16(65536), vhist16bw(65536),
lhist16CAM(65536),
lhist16CCAM(65536),
lhist16RETI(),
lhist16LClad(65536),
histRed(256), histRedRaw(256),
histGreen(256), histGreenRaw(256),
histBlue(256), histBlueRaw(256),
histLuma(256),
histToneCurve(256),
histToneCurveBW(256),
histLCurve(256),
histCCurve(256),
histLLCurve(256),
histLCAM(256),
histCCAM(256),
histClad(256),
bcabhist(256),
histChroma(256),
histLRETI(256),
hist_lrgb_dirty(false),
hist_raw_dirty(false),
vectorscopeScale(0),
vectorscope_hc_dirty(false),
vectorscope_hs_dirty(false),
vectorscope_hc(VECTORSCOPE_SIZE, VECTORSCOPE_SIZE),
vectorscope_hs(VECTORSCOPE_SIZE, VECTORSCOPE_SIZE),
waveformScale(0),
waveform_dirty(false),
waveformRed(0, 0),
waveformGreen(0, 0),
waveformBlue(0, 0),
waveformLuma(0, 0),
CAMBrightCurveJ(), CAMBrightCurveQ(),
rCurve(),
gCurve(),
bCurve(),
ctColorCurve(),
rcurvehist(256), rcurvehistCropped(256), rbeforehist(256),
gcurvehist(256), gcurvehistCropped(256), gbeforehist(256),
bcurvehist(256), bcurvehistCropped(256), bbeforehist(256),
fw(0), fh(0), tr(0),
fullw(1), fullh(1),
pW(-1), pH(-1),
plistener(nullptr),
imageListener(nullptr),
aeListener(nullptr),
acListener(nullptr),
abwListener(nullptr),
awbListener(nullptr),
flatFieldAutoClipListener(nullptr),
bayerAutoContrastListener(nullptr),
xtransAutoContrastListener(nullptr),
pdSharpenAutoContrastListener(nullptr),
pdSharpenAutoRadiusListener(nullptr),
frameCountListener(nullptr),
imageTypeListener(nullptr),
filmNegListener(nullptr),
actListener(nullptr),
primListener(nullptr),
adnListener(nullptr),
awavListener(nullptr),
dehaListener(nullptr),
hListener(nullptr),
resultValid(false),
params(new procparams::ProcParams),
tweakOperator(nullptr),
lastOutputProfile("BADFOOD"),
lastOutputIntent(RI__COUNT),
lastOutputBPC(false),
thread(nullptr),
changeSinceLast(0),
updaterRunning(false),
nextParams(new procparams::ProcParams),
destroying(false),
utili(false),
autili(false),
butili(false),
ccutili(false),
cclutili(false),
clcutili(false),
opautili(false),
wavcontlutili(false),
colourToningSatLimit(0.f),
colourToningSatLimitOpacity(0.f),
highQualityComputed(false),
customTransformIn(nullptr),
customTransformOut(nullptr),
ipf(params.get(), true),
// Locallab
locallListener(nullptr),
lllocalcurve(65536, LUT_CLIP_OFF),
cllocalcurve(65536, LUT_CLIP_OFF),
lclocalcurve(65536, LUT_CLIP_OFF),
cclocalcurve(65536, LUT_CLIP_OFF),
rgblocalcurve(65536, LUT_CLIP_OFF),
exlocalcurve(65536, LUT_CLIP_OFF),
hltonecurveloc(65536, LUT_CLIP_OFF), //32768
shtonecurveloc(65536, LUT_CLIP_OFF),
tonecurveloc(65536, LUT_CLIP_OFF),
lightCurveloc(32770, LUT_CLIP_OFF),
lmasklocalcurve(65536, LUT_CLIP_OFF),
lmaskexplocalcurve(65536, LUT_CLIP_OFF),
lmaskSHlocalcurve(65536, LUT_CLIP_OFF),
lmaskviblocalcurve(65536, LUT_CLIP_OFF),
lmasktmlocalcurve(65536, LUT_CLIP_OFF),
lmaskretilocalcurve(65536, LUT_CLIP_OFF),
lmaskcblocalcurve(65536, LUT_CLIP_OFF),
lmaskbllocalcurve(65536, LUT_CLIP_OFF),
lmasklclocalcurve(65536, LUT_CLIP_OFF),
lmaskloglocalcurve(65536, LUT_CLIP_OFF),
lmasklocal_curve(65536, LUT_CLIP_OFF),
lmaskcielocalcurve(65536, LUT_CLIP_OFF),
cielocalcurve(65536, LUT_CLIP_OFF),
cielocalcurve2(65536, LUT_CLIP_OFF),
jzlocalcurve(65536, LUT_CLIP_OFF),
czlocalcurve(65536, LUT_CLIP_OFF),
czjzlocalcurve(65536, LUT_CLIP_OFF),
lastspotdup(false),
previewDeltaE(false),
locallColorMask(0),
locallColorMaskinv(0),
locallExpMask(0),
locallExpMaskinv(0),
locallSHMask(0),
locallSHMaskinv(0),
locallvibMask(0),
localllcMask(0),
locallcbMask(0),
locallretiMask(0),
locallsoftMask(0),
localltmMask(0),
locallblMask(0),
locallsharMask(0),
localllogMask(0),
locall_Mask(0),
locallcieMask(0),
retistrsav(nullptr)
{
}
ImProcCoordinator::~ImProcCoordinator()
{
destroying = true;
updaterThreadStart.lock();
if (updaterRunning && thread) {
thread->join();
}
mProcessing.lock();
mProcessing.unlock();
freeAll();
if (fattal_11_dcrop_cache) {
delete fattal_11_dcrop_cache;
fattal_11_dcrop_cache = nullptr;
}
std::vector<Crop*> toDel = crops;
for (size_t i = 0; i < toDel.size(); i++) {
delete toDel[i];
}
imgsrc->decreaseRef();
if (customTransformIn) {
cmsDeleteTransform(customTransformIn);
customTransformIn = nullptr;
}
if (customTransformOut) {
cmsDeleteTransform(customTransformOut);
customTransformOut = nullptr;
}
updaterThreadStart.unlock();
}
void ImProcCoordinator::assign(ImageSource* imgsrc)
{
this->imgsrc = imgsrc;
}
void ImProcCoordinator::getParams(procparams::ProcParams* dst, bool tweaked)
{
if (!tweaked && paramsBackup.operator bool()) {
*dst = *paramsBackup;
} else {
*dst = *params;
}
}
void ImProcCoordinator::backupParams()
{
if (!params) {
return;
}
if (!paramsBackup) {
paramsBackup.reset(new ProcParams());
}
*paramsBackup = *params;
}
void ImProcCoordinator::restoreParams()
{
if (!paramsBackup || !params) {
return;
}
*params = *paramsBackup;
}
DetailedCrop* ImProcCoordinator::createCrop(::EditDataProvider *editDataProvider, bool isDetailWindow)
{
return new Crop(this, editDataProvider, isDetailWindow);
}
// todo: bitmask containing desired actions, taken from changesSinceLast
void ImProcCoordinator::updatePreviewImage(int todo, bool panningRelatedChange)
{
// TODO Locallab printf
MyMutex::MyLock processingLock(mProcessing);
bool highDetailNeeded = options.prevdemo == PD_Sidecar ? true : (todo & M_HIGHQUAL);
// printf("metwb=%s \n", params->wb.method.c_str());
// Check if any detail crops need high detail. If not, take a fast path short cut
if (!highDetailNeeded) {
for (size_t i = 0; i < crops.size(); i++) {
if (crops[i]->get_skip() == 1) { // skip=1 -> full resolution
highDetailNeeded = true;
break;
}
}
}
if (((todo & ALL) == ALL) || (todo & M_MONITOR) || panningRelatedChange || (highDetailNeeded && options.prevdemo != PD_Sidecar)) {
bwAutoR = bwAutoG = bwAutoB = -9000.f;
if (todo == CROP && ipf.needsPCVignetting()) {
todo |= TRANSFORM; // Change about Crop does affect TRANSFORM
}
RAWParams rp = params->raw;
ColorManagementParams cmp = params->icm;
LCurveParams lcur = params->labCurve;
bool spotsDone = false;
if (!highDetailNeeded) {
// if below 100% magnification, take a fast path
if (rp.bayersensor.method != RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::NONE) && rp.bayersensor.method != RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::MONO)) {
rp.bayersensor.method = RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::FAST);
}
//bayerrp.all_enhance = false;
if (rp.xtranssensor.method != RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::NONE) && rp.xtranssensor.method != RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::MONO)) {
rp.xtranssensor.method = RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::FAST);
}
rp.bayersensor.ccSteps = 0;
rp.xtranssensor.ccSteps = 0;
//rp.deadPixelFilter = rp.hotPixelFilter = false;
}
if (frameCountListener) {
frameCountListener->FrameCountChanged(imgsrc->getFrameCount(), params->raw.bayersensor.imageNum);
}
// raw auto CA is bypassed if no high detail is needed, so we have to compute it when high detail is needed
if ((todo & M_PREPROC) || (!highDetailPreprocessComputed && highDetailNeeded)) {
imgsrc->setCurrentFrame(params->raw.bayersensor.imageNum);
imgsrc->preprocess(rp, params->lensProf, params->coarse);
if (flatFieldAutoClipListener && rp.ff_AutoClipControl) {
flatFieldAutoClipListener->flatFieldAutoClipValueChanged(imgsrc->getFlatFieldAutoClipValue());
}
imgsrc->getRAWHistogram(histRedRaw, histGreenRaw, histBlueRaw);
hist_raw_dirty = !(hListener && hListener->updateHistogramRaw());
highDetailPreprocessComputed = highDetailNeeded;
}
/*
Demosaic is kicked off only when
Detail considerations:
accurate detail is not displayed yet needed based on preview specifics (driven via highDetailNeeded flag)
OR
HLR considerations:
Color HLR alters rgb output of demosaic, so re-demosaic is needed when Color HLR is being turned off;
if HLR is enabled and changing method *from* Color to any other method
OR HLR gets disabled when Color method was selected
*/
// If high detail (=100%) is newly selected, do a demosaic update, since the last was just with FAST
if (imageTypeListener) {
imageTypeListener->imageTypeChanged(imgsrc->isRAW(), imgsrc->getSensorType() == ST_BAYER, imgsrc->getSensorType() == ST_FUJI_XTRANS, imgsrc->isMono(), imgsrc->isGainMapSupported());
}
bool iscolor = (params->toneCurve.method == "Color");// || params->toneCurve.method == "Coloropp");
if ((todo & M_RAW)
|| (!highDetailRawComputed && highDetailNeeded)
// || (params->toneCurve.hrenabled && params->toneCurve.method != "Color" && imgsrc->isRGBSourceModified())
// || (!params->toneCurve.hrenabled && params->toneCurve.method == "Color" && imgsrc->isRGBSourceModified())) {
|| (params->toneCurve.hrenabled && !iscolor && imgsrc->isRGBSourceModified())
|| (!params->toneCurve.hrenabled && iscolor && imgsrc->isRGBSourceModified())) {
if (settings->verbose) {
if (imgsrc->getSensorType() == ST_BAYER) {
printf("Demosaic Bayer image n.%d using method: %s\n", rp.bayersensor.imageNum + 1, rp.bayersensor.method.c_str());
} else if (imgsrc->getSensorType() == ST_FUJI_XTRANS) {
printf("Demosaic X-Trans image with using method: %s\n", rp.xtranssensor.method.c_str());
}
}
if (imgsrc->getSensorType() == ST_BAYER) {
if (params->raw.bayersensor.method != RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::PIXELSHIFT)) {
imgsrc->setBorder(params->raw.bayersensor.border);
} else {
imgsrc->setBorder(std::max(params->raw.bayersensor.border, 2));
}
} else if (imgsrc->getSensorType() == ST_FUJI_XTRANS) {
imgsrc->setBorder(params->raw.xtranssensor.border);
}
bool autoContrast = imgsrc->getSensorType() == ST_BAYER ? params->raw.bayersensor.dualDemosaicAutoContrast : params->raw.xtranssensor.dualDemosaicAutoContrast;
double contrastThreshold = imgsrc->getSensorType() == ST_BAYER ? params->raw.bayersensor.dualDemosaicContrast : params->raw.xtranssensor.dualDemosaicContrast;
imgsrc->demosaic(rp, autoContrast, contrastThreshold, params->pdsharpening.enabled);
if (imgsrc->getSensorType() == ST_BAYER && bayerAutoContrastListener && autoContrast) {
bayerAutoContrastListener->autoContrastChanged(contrastThreshold);
} else if (imgsrc->getSensorType() == ST_FUJI_XTRANS && xtransAutoContrastListener && autoContrast) {
xtransAutoContrastListener->autoContrastChanged(contrastThreshold);
}
// if a demosaic happened we should also call getimage later, so we need to set the M_INIT flag
todo |= (M_INIT | M_CSHARP);
}
if ((todo & (M_RAW | M_CSHARP)) && params->pdsharpening.enabled) {
double pdSharpencontrastThreshold = params->pdsharpening.contrast;
double pdSharpenRadius = params->pdsharpening.deconvradius;
imgsrc->captureSharpening(params->pdsharpening, sharpMask, pdSharpencontrastThreshold, pdSharpenRadius);
if (pdSharpenAutoContrastListener && params->pdsharpening.autoContrast) {
pdSharpenAutoContrastListener->autoContrastChanged(pdSharpencontrastThreshold);
}
if (pdSharpenAutoRadiusListener && params->pdsharpening.autoRadius) {
pdSharpenAutoRadiusListener->autoRadiusChanged(pdSharpenRadius);
}
}
if ((todo & M_RAW)
|| (!highDetailRawComputed && highDetailNeeded)
// || (params->toneCurve.hrenabled && params->toneCurve.method != "Color" && imgsrc->isRGBSourceModified())
// || (!params->toneCurve.hrenabled && params->toneCurve.method == "Color" && imgsrc->isRGBSourceModified())) {
|| (params->toneCurve.hrenabled && !iscolor && imgsrc->isRGBSourceModified())
|| (!params->toneCurve.hrenabled && iscolor && imgsrc->isRGBSourceModified())) {
if (highDetailNeeded) {
highDetailRawComputed = true;
} else {
highDetailRawComputed = false;
}
if (params->retinex.enabled) {
lhist16RETI(32768);
lhist16RETI.clear();
imgsrc->retinexPrepareBuffers(params->icm, params->retinex, conversionBuffer, lhist16RETI);
}
}
if (todo & (M_INIT | M_LINDENOISE | M_HDR)) {
if (params->wb.method == "autitcgreen") {
imgsrc->getrgbloc(0, 0, fh, fw, 0, 0, fh, fw, params->wb);
}
}
if ((todo & (M_RETINEX | M_INIT)) && params->retinex.enabled) {
bool dehacontlutili = false;
bool mapcontlutili = false;
bool useHsl = false;
LUTf cdcurve(65536, 0);
LUTf mapcurve(65536, 0);
imgsrc->retinexPrepareCurves(params->retinex, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, dehacontlutili, mapcontlutili, useHsl, lhist16RETI, histLRETI);
float minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax;
imgsrc->retinex(params->icm, params->retinex, params->toneCurve, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, conversionBuffer, dehacontlutili, mapcontlutili, useHsl, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, histLRETI); //enabled Retinex
if (dehaListener) {
dehaListener->minmaxChanged(maxCD, minCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax);
}
}
const bool autowb = (params->wb.method == "autold" || params->wb.method == "autitcgreen");
if (settings->verbose) {
printf("automethod=%s \n", params->wb.method.c_str());
}
if (todo & (M_INIT | M_LINDENOISE | M_HDR)) {
MyMutex::MyLock initLock(minit); // Also used in crop window
// imgsrc->HLRecovery_Global(params->toneCurve); // this handles Color HLRecovery
if (settings->verbose) {
printf("Applying white balance, color correction & sRBG conversion...\n");
}
currWB = ColorTemp(params->wb.temperature, params->wb.green, params->wb.equal, params->wb.method, params->wb.observer);
float studgood = 1000.f;
if (!params->wb.enabled) {
currWB = ColorTemp();
} else if (params->wb.method == "Camera") {
currWB = imgsrc->getWB();
lastAwbauto = ""; //reinitialize auto
} else if (autowb) {
if (params->wb.method == "autitcgreen" || lastAwbEqual != params->wb.equal || lastAwbObserver != params->wb.observer || lastAwbTempBias != params->wb.tempBias || lastAwbauto != params->wb.method) {
double rm, gm, bm;
double tempitc = 5000.f;
double greenitc = 1.;
currWBitc = imgsrc->getWB();
double tempref = currWBitc.getTemp() * (1. + params->wb.tempBias);
double greenref = currWBitc.getGreen();
if (settings->verbose && params->wb.method == "autitcgreen") {
printf("tempref=%f greref=%f\n", tempref, greenref);
}
imgsrc->getAutoWBMultipliersitc(tempref, greenref, tempitc, greenitc, studgood, 0, 0, fh, fw, 0, 0, fh, fw, rm, gm, bm, params->wb, params->icm, params->raw, params->toneCurve);
if (params->wb.method == "autitcgreen") {
params->wb.temperature = tempitc;
params->wb.green = greenitc;
currWB = ColorTemp(params->wb.temperature, params->wb.green, 1., params->wb.method, params->wb.observer);
//printf("tempitc=%f greitc=%f\n", tempitc, greenitc);
currWB.getMultipliers(rm, gm, bm);
}
if (rm != -1.) {
double bias = params->wb.tempBias;
if (params->wb.method == "autitcgreen") {
bias = 0.;
}
autoWB.update(rm, gm, bm, params->wb.equal, params->wb.observer, bias);
lastAwbEqual = params->wb.equal;
lastAwbObserver = params->wb.observer;
lastAwbTempBias = params->wb.tempBias;
lastAwbauto = params->wb.method;
} else {
lastAwbEqual = -1.;
lastAwbObserver = ColorTemp::DEFAULT_OBSERVER;
lastAwbTempBias = 0.0;
lastAwbauto = "";
autoWB.useDefaults(params->wb.equal, params->wb.observer);
}
}
currWB = autoWB;
}
double rw = 1.;
double gw = 1.;
double bw = 1.;
if (params->wb.enabled) {
currWB = currWB.convertObserver(params->wb.observer);
params->wb.temperature = static_cast<int>(currWB.getTemp());
params->wb.green = currWB.getGreen();
currWB.getMultipliers(rw, gw, bw);
imgsrc->wbMul2Camera(rw, gw, bw);
// printf("ra=%f ga=%f ba=%f\n", rw, gw, bw);
}
if (awbListener) {
if (params->wb.method == "autitcgreen") {
awbListener->WBChanged(params->wb.temperature, params->wb.green, rw, gw, bw, studgood);
} else {
awbListener->WBChanged(params->wb.temperature, params->wb.green, rw, gw, bw, -1.f);
}
}
/*
GammaValues g_a;
double pwr = 1.0 / params->icm.gampos;
double ts = params->icm.slpos;
int mode = 0;
Color::calcGamma(pwr, ts, mode, g_a); // call to calcGamma with selected gamma and slope
printf("ga[0]=%f ga[1]=%f ga[2]=%f ga[3]=%f ga[4]=%f\n", g_a[0],g_a[1],g_a[2],g_a[3],g_a[4]);
Glib::ustring datal;
datal = "lutsrgb.txt";
ofstream fou(datal, ios::out | ios::trunc);
for(int i=0; i < 212; i++) {
//printf("igamma2=%i\n", (int) 65535.f*Color::igamma2(i/212.0));
float gam = Color::igamma2(i/211.0);
int lutga = nearbyint(65535.f* gam);
// fou << 65535*(int)Color::igamma2(i/212.0) << endl;
fou << i << " " << lutga << endl;
}
fou.close();
*/
int tr = getCoarseBitMask(params->coarse);
imgsrc->getFullSize(fw, fh, tr);
// Will (re)allocate the preview's buffers
setScale(scale);
PreviewProps pp(0, 0, fw, fh, scale);
// Tells to the ImProcFunctions' tools what is the preview scale, which may lead to some simplifications
ipf.setScale(scale);
int inpaintopposed = 1;//force getimage to use inpaint-opposed if enable, only once
imgsrc->getImage(currWB, tr, orig_prev, pp, params->toneCurve, params->raw, inpaintopposed);
if ((todo & M_SPOT) && params->spot.enabled && !params->spot.entries.empty()) {
spotsDone = true;
PreviewProps pp(0, 0, fw, fh, scale);
ipf.removeSpots(orig_prev, imgsrc, params->spot.entries, pp, currWB, nullptr, tr);
}
denoiseInfoStore.valid = false;
//ColorTemp::CAT02 (orig_prev, &params) ;
// printf("orig_prevW=%d\n scale=%d",orig_prev->width, scale);
/* Issue 2785, disabled some 1:1 tools
if (todo & M_LINDENOISE) {
DirPyrDenoiseParams denoiseParams = params->dirpyrDenoise;
if (denoiseParams.enabled && (scale==1)) {
Imagefloat *calclum = NULL ;
denoiseParams.getCurves(noiseLCurve,noiseCCurve);
int nbw=6;//nb tile W
int nbh=4;//
float ch_M[nbw*nbh];
float max_r[nbw*nbh];
float max_b[nbw*nbh];
if (denoiseParams.Lmethod == "CUR") {
if (noiseLCurve)
denoiseParams.luma = 0.5f;
else
denoiseParams.luma = 0.0f;
} else if (denoiseParams.Lmethod == "SLI")
noiseLCurve.Reset();
if (noiseLCurve || noiseCCurve){//only allocate memory if enabled and scale=1
// we only need image reduced to 1/4 here
calclum = new Imagefloat ((pW+1)/2, (pH+1)/2);//for luminance denoise curve
for(int ii=0;ii<pH;ii+=2){
for(int jj=0;jj<pW;jj+=2){
calclum->r(ii>>1,jj>>1) = orig_prev->r(ii,jj);
calclum->g(ii>>1,jj>>1) = orig_prev->g(ii,jj);
calclum->b(ii>>1,jj>>1) = orig_prev->b(ii,jj);
}
}
imgsrc->convertColorSpace(calclum, params->icm, currWB);//calculate values after colorspace conversion
}
int kall=1;
ipf.RGB_denoise(kall, orig_prev, orig_prev, calclum, ch_M, max_r, max_b, imgsrc->isRAW(), denoiseParams, imgsrc->getDirPyrDenoiseExpComp(), noiseLCurve, noiseCCurve, chaut, redaut, blueaut, maxredaut, maxblueaut, nresi, highresi);
}
}
*/
if (params->filmNegative.enabled) {
// Process film negative AFTER colorspace conversion
if (params->filmNegative.colorSpace != FilmNegativeParams::ColorSpace::INPUT) {
imgsrc->convertColorSpace(orig_prev, params->icm, currWB);
}
// Perform negative inversion. If needed, upgrade filmNegative params for backwards compatibility with old profiles
if (ipf.filmNegativeProcess(orig_prev, orig_prev, params->filmNegative, params->raw, imgsrc, currWB) && filmNegListener) {
filmNegListener->filmRefValuesChanged(params->filmNegative.refInput, params->filmNegative.refOutput);
}
// Process film negative BEFORE colorspace conversion (legacy mode)
if (params->filmNegative.colorSpace == FilmNegativeParams::ColorSpace::INPUT) {
imgsrc->convertColorSpace(orig_prev, params->icm, currWB);
}
} else {
imgsrc->convertColorSpace(orig_prev, params->icm, currWB);
}
ipf.firstAnalysis(orig_prev, *params, vhist16);
}
oprevi = orig_prev;
if ((todo & M_SPOT) && !spotsDone) {
if (params->spot.enabled && !params->spot.entries.empty()) {
allocCache(spotprev);
orig_prev->copyData(spotprev);
PreviewProps pp(0, 0, fw, fh, scale);
ipf.removeSpots(spotprev, imgsrc, params->spot.entries, pp, currWB, &params->icm, tr);
} else {
if (spotprev) {
delete spotprev;
spotprev = nullptr;
}
}
}
if (spotprev) {
spotprev->copyData(orig_prev);
}
if ((todo & M_HDR) && (params->fattal.enabled || params->dehaze.enabled)) {
if (fattal_11_dcrop_cache) {
delete fattal_11_dcrop_cache;
fattal_11_dcrop_cache = nullptr;
}
ipf.dehaze(orig_prev, params->dehaze);
ipf.ToneMapFattal02(orig_prev, params->fattal, 3, 0, nullptr, 0, 0, 0);
if (oprevi != orig_prev) {
delete oprevi;
}
}
// Remove transformation if unneeded
bool needstransform = ipf.needsTransform(fw, fh, imgsrc->getRotateDegree(), imgsrc->getMetaData());
if ((needstransform || ((todo & (M_TRANSFORM | M_RGBCURVE)) && params->dirpyrequalizer.cbdlMethod == "bef" && params->dirpyrequalizer.enabled && !params->colorappearance.enabled))) {
// Forking the image
assert(oprevi);
Imagefloat *op = oprevi;
oprevi = new Imagefloat(pW, pH);
if (needstransform)
ipf.transform(op, oprevi, 0, 0, 0, 0, pW, pH, fw, fh,
imgsrc->getMetaData(), imgsrc->getRotateDegree(), false);
else {
op->copyData(oprevi);
}
}
for (int sp = 0; sp < (int)params->locallab.spots.size(); sp++) {
if(params->locallab.spots.at(sp).expsharp && params->dirpyrequalizer.cbdlMethod == "bef") {
if(params->locallab.spots.at(sp).shardamping < 1) {
params->locallab.spots.at(sp).shardamping = 1;
}
}
}
if ((todo & (M_TRANSFORM | M_RGBCURVE)) && params->dirpyrequalizer.cbdlMethod == "bef" && params->dirpyrequalizer.enabled && !params->colorappearance.enabled) {
const int W = oprevi->getWidth();
const int H = oprevi->getHeight();
LabImage labcbdl(W, H);
ipf.rgb2lab(*oprevi, labcbdl, params->icm.workingProfile);
ipf.dirpyrequalizer(&labcbdl, scale);
ipf.lab2rgb(labcbdl, *oprevi, params->icm.workingProfile);
}
if (todo & M_AUTOEXP) {
if (params->toneCurve.autoexp) {
LUTu aehist;
int aehistcompr;
imgsrc->getAutoExpHistogram(aehist, aehistcompr);
ipf.getAutoExp(aehist, aehistcompr, params->toneCurve.clip, params->toneCurve.expcomp,
params->toneCurve.brightness, params->toneCurve.contrast, params->toneCurve.black, params->toneCurve.hlcompr, params->toneCurve.hlcomprthresh);
if (aeListener)
aeListener->autoExpChanged(params->toneCurve.expcomp, params->toneCurve.brightness, params->toneCurve.contrast,
params->toneCurve.black, params->toneCurve.hlcompr, params->toneCurve.hlcomprthresh, params->toneCurve.hrenabled);
}
if (params->toneCurve.histmatching) {
if (!params->toneCurve.fromHistMatching) {
imgsrc->getAutoMatchedToneCurve(params->icm, params->raw, params->wb.observer, params->toneCurve.curve);
}
if (params->toneCurve.autoexp) {
params->toneCurve.expcomp = 0.0;
}
params->toneCurve.autoexp = false;
params->toneCurve.curveMode = ToneCurveMode::FILMLIKE;
params->toneCurve.curve2 = { 0 };
params->toneCurve.brightness = 0;
params->toneCurve.contrast = 0;
params->toneCurve.black = 0;
params->toneCurve.fromHistMatching = true;
if (aeListener) {
aeListener->autoMatchedToneCurveChanged(params->toneCurve.curveMode, params->toneCurve.curve);
}
}
// Encoding log with locallab
if (params->locallab.enabled && !params->locallab.spots.empty()) {
const int sizespot = (int)params->locallab.spots.size();
const LocallabParams::LocallabSpot defSpot;
float *sourceg = nullptr;
sourceg = new float[sizespot];
float *sourceab = nullptr;
sourceab = new float[sizespot];
float *targetg = nullptr;
targetg = new float[sizespot];
bool *log = nullptr;
log = new bool[sizespot];
bool *cie = nullptr;
cie = new bool[sizespot];
bool *autocomput = nullptr;
autocomput = new bool[sizespot];
float *blackev = nullptr;
blackev = new float[sizespot];
float *whiteev = nullptr;
whiteev = new float[sizespot];
bool *Autogr = nullptr;
Autogr = new bool[sizespot];
bool *autocie = nullptr;
autocie = new bool[sizespot];
float *locx = nullptr;
locx = new float[sizespot];
float *locy = nullptr;
locy = new float[sizespot];
float *locxL = nullptr;
locxL = new float[sizespot];
float *locyT = nullptr;
locyT = new float[sizespot];
float *centx = nullptr;
centx = new float[sizespot];
float *centy = nullptr;
centy = new float[sizespot];
for (int sp = 0; sp < sizespot; sp++) {
log[sp] = params->locallab.spots.at(sp).explog;
cie[sp] = params->locallab.spots.at(sp).expcie;
autocomput[sp] = params->locallab.spots.at(sp).autocompute;
autocie[sp] = params->locallab.spots.at(sp).Autograycie;
blackev[sp] = params->locallab.spots.at(sp).blackEv;
whiteev[sp] = params->locallab.spots.at(sp).whiteEv;
sourceg[sp] = params->locallab.spots.at(sp).sourceGray;
sourceab[sp] = params->locallab.spots.at(sp).sourceabs;
Autogr[sp] = params->locallab.spots.at(sp).Autogray;
targetg[sp] = params->locallab.spots.at(sp).targetGray;
locx[sp] = params->locallab.spots.at(sp).loc.at(0) / 2000.0;
locy[sp] = params->locallab.spots.at(sp).loc.at(2) / 2000.0;
locxL[sp] = params->locallab.spots.at(sp).loc.at(1) / 2000.0;
locyT[sp] = params->locallab.spots.at(sp).loc.at(3) / 2000.0;
centx[sp] = params->locallab.spots.at(sp).centerX / 2000.0 + 0.5;
centy[sp] = params->locallab.spots.at(sp).centerY / 2000.0 + 0.5;
const bool fullimstd = params->locallab.spots.at(sp).fullimage;//for log encoding standard
const bool fullimjz = true;//always force fullimage in log encoding Jz - always possible to put a checkbox if need
if ((log[sp] && autocomput[sp]) || (cie[sp] && autocie[sp])) {
constexpr int SCALE = 10;
int fw, fh, tr = TR_NONE;
imgsrc->getFullSize(fw, fh, tr);
PreviewProps pp(0, 0, fw, fh, SCALE);
float ysta = std::max(static_cast<float>(centy[sp] - locyT[sp]), 0.f);
float yend = std::min(static_cast<float>(centy[sp] + locy[sp]), 1.f);
float xsta = std::max(static_cast<float>(centx[sp] - locxL[sp]), 0.f);
float xend = std::min(static_cast<float>(centx[sp] + locx[sp]), 1.f);
if (fullimstd && (log[sp] && autocomput[sp])) {
ysta = 0.f;
yend = 1.f;
xsta = 0.f;
xend = 1.f;
}
if (fullimjz && (cie[sp] && autocie[sp])) {
ysta = 0.f;
yend = 1.f;
xsta = 0.f;
xend = 1.f;
}
ipf.getAutoLogloc(sp, imgsrc, sourceg, blackev, whiteev, Autogr, sourceab, fw, fh, xsta, xend, ysta, yend, SCALE);
// printf("sp=%i sg=%f sab=%f\n", sp, sourceg[sp], sourceab[sp]);
params->locallab.spots.at(sp).blackEv = blackev[sp];
params->locallab.spots.at(sp).whiteEv = whiteev[sp];
params->locallab.spots.at(sp).blackEvjz = blackev[sp];
params->locallab.spots.at(sp).whiteEvjz = whiteev[sp];
params->locallab.spots.at(sp).sourceGray = sourceg[sp];
params->locallab.spots.at(sp).sourceabs = sourceab[sp];
params->locallab.spots.at(sp).sourceGraycie = sourceg[sp];
params->locallab.spots.at(sp).sourceabscie = sourceab[sp];
float jz1 = defSpot.jz100;
if (locallListener) {
locallListener->logencodChanged(blackev[sp], whiteev[sp], sourceg[sp], sourceab[sp], targetg[sp], autocomput[sp], autocie[sp], jz1);
}
}
}
delete [] locx;
delete [] locy;
delete [] locxL;
delete [] locyT;
delete [] centx;
delete [] centy;
delete [] autocie;
delete [] Autogr;
delete [] whiteev;
delete [] blackev;
delete [] targetg;
delete [] sourceab;
delete [] sourceg;
delete [] cie;
delete [] log;
delete [] autocomput;
}
}
if ((todo & (M_AUTOEXP | M_RGBCURVE | M_CROP)) && params->locallab.enabled && !params->locallab.spots.empty()) {
ipf.rgb2lab(*oprevi, *oprevl, params->icm.workingProfile);
nprevl->CopyFrom(oprevl);
// int maxspot = 1;
//*************************************************************
// locallab
//*************************************************************
/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
* 2017 2018 Jacques Desmis <jdesmis@gmail.com>
* 2019 Pierre Cabrera <pierre.cab@gmail.com>
*/
const std::unique_ptr<LabImage> reserv(new LabImage(*oprevl, true));
const std::unique_ptr<LabImage> lastorigimp(new LabImage(*oprevl, true));
std::unique_ptr<LabImage> savenormdr;
std::unique_ptr<LabImage> savenormtm;
std::unique_ptr<LabImage> savenormreti;
float **shbuffer = nullptr;
int sca = 1;
double huere, chromare, lumare, huerefblu, chromarefblu, lumarefblu, sobelre;
float avge, meantme, stdtme, meanretie, stdretie;
//std::vector<LocallabListener::locallabRef> locallref;
std::vector<LocallabListener::locallabRetiMinMax> locallretiminmax;
huerefs.resize(params->locallab.spots.size());
huerefblurs.resize(params->locallab.spots.size());
chromarefblurs.resize(params->locallab.spots.size());
lumarefblurs.resize(params->locallab.spots.size());
chromarefs.resize(params->locallab.spots.size());
lumarefs.resize(params->locallab.spots.size());
sobelrefs.resize(params->locallab.spots.size());
avgs.resize(params->locallab.spots.size());
meantms.resize(params->locallab.spots.size());
stdtms.resize(params->locallab.spots.size());
meanretis.resize(params->locallab.spots.size());
stdretis.resize(params->locallab.spots.size());
const int sizespot = (int)params->locallab.spots.size();
float *huerefp = nullptr;
huerefp = new float[sizespot];
float *chromarefp = nullptr;
chromarefp = new float[sizespot];
float *lumarefp = nullptr;
lumarefp = new float[sizespot];
float *fabrefp = nullptr;
fabrefp = new float[sizespot];
for (int sp = 0; sp < (int)params->locallab.spots.size(); sp++) {
if (params->locallab.spots.at(sp).equiltm && params->locallab.spots.at(sp).exptonemap) {
savenormtm.reset(new LabImage(*oprevl, true));
}
if (params->locallab.spots.at(sp).equilret && params->locallab.spots.at(sp).expreti) {
savenormreti.reset(new LabImage(*oprevl, true));
}
// Set local curves of current spot to LUT
locRETgainCurve.Set(params->locallab.spots.at(sp).localTgaincurve);
locRETtransCurve.Set(params->locallab.spots.at(sp).localTtranscurve);
const bool LHutili = loclhCurve.Set(params->locallab.spots.at(sp).LHcurve);
const bool HHutili = lochhCurve.Set(params->locallab.spots.at(sp).HHcurve);
const bool CHutili = locchCurve.Set(params->locallab.spots.at(sp).CHcurve);
const bool HHutilijz = lochhCurvejz.Set(params->locallab.spots.at(sp).HHcurvejz);
const bool CHutilijz = locchCurvejz.Set(params->locallab.spots.at(sp).CHcurvejz);
const bool LHutilijz = loclhCurvejz.Set(params->locallab.spots.at(sp).LHcurvejz);
const bool lcmasutili = locccmasCurve.Set(params->locallab.spots.at(sp).CCmaskcurve);
const bool llmasutili = locllmasCurve.Set(params->locallab.spots.at(sp).LLmaskcurve);
const bool lhmasutili = lochhmasCurve.Set(params->locallab.spots.at(sp).HHmaskcurve);
const bool lhhmasutili = lochhhmasCurve.Set(params->locallab.spots.at(sp).HHhmaskcurve);
const bool llmasexputili = locllmasexpCurve.Set(params->locallab.spots.at(sp).LLmaskexpcurve);
const bool lcmasexputili = locccmasexpCurve.Set(params->locallab.spots.at(sp).CCmaskexpcurve);
const bool lhmasexputili = lochhmasexpCurve.Set(params->locallab.spots.at(sp).HHmaskexpcurve);
const bool llmasSHutili = locllmasSHCurve.Set(params->locallab.spots.at(sp).LLmaskSHcurve);
const bool lcmasSHutili = locccmasSHCurve.Set(params->locallab.spots.at(sp).CCmaskSHcurve);
const bool lhmasSHutili = lochhmasSHCurve.Set(params->locallab.spots.at(sp).HHmaskSHcurve);
const bool llmasvibutili = locllmasvibCurve.Set(params->locallab.spots.at(sp).LLmaskvibcurve);
const bool lcmasvibutili = locccmasvibCurve.Set(params->locallab.spots.at(sp).CCmaskvibcurve);
const bool lhmasvibutili = lochhmasvibCurve.Set(params->locallab.spots.at(sp).HHmaskvibcurve);
const bool llmascbutili = locllmascbCurve.Set(params->locallab.spots.at(sp).LLmaskcbcurve);
const bool lcmascbutili = locccmascbCurve.Set(params->locallab.spots.at(sp).CCmaskcbcurve);
const bool lhmascbutili = lochhmascbCurve.Set(params->locallab.spots.at(sp).HHmaskcbcurve);
const bool llmaslcutili = locllmaslcCurve.Set(params->locallab.spots.at(sp).LLmasklccurve);
const bool lcmaslcutili = locccmaslcCurve.Set(params->locallab.spots.at(sp).CCmasklccurve);
const bool lhmaslcutili = lochhmaslcCurve.Set(params->locallab.spots.at(sp).HHmasklccurve);
const bool llmasretiutili = locllmasretiCurve.Set(params->locallab.spots.at(sp).LLmaskreticurve);
const bool lcmasretiutili = locccmasretiCurve.Set(params->locallab.spots.at(sp).CCmaskreticurve);
const bool lhmasretiutili = lochhmasretiCurve.Set(params->locallab.spots.at(sp).HHmaskreticurve);
const bool llmastmutili = locllmastmCurve.Set(params->locallab.spots.at(sp).LLmasktmcurve);
const bool lcmastmutili = locccmastmCurve.Set(params->locallab.spots.at(sp).CCmasktmcurve);
const bool lhmastmutili = lochhmastmCurve.Set(params->locallab.spots.at(sp).HHmasktmcurve);
const bool llmasblutili = locllmasblCurve.Set(params->locallab.spots.at(sp).LLmaskblcurve);
const bool lcmasblutili = locccmasblCurve.Set(params->locallab.spots.at(sp).CCmaskblcurve);
const bool lhmasblutili = lochhmasblCurve.Set(params->locallab.spots.at(sp).HHmaskblcurve);
const bool llmaslogutili = locllmaslogCurve.Set(params->locallab.spots.at(sp).LLmaskcurveL);
const bool lcmaslogutili = locccmaslogCurve.Set(params->locallab.spots.at(sp).CCmaskcurveL);
const bool lhmaslogutili = lochhmaslogCurve.Set(params->locallab.spots.at(sp).HHmaskcurveL);
const bool llmascieutili = locllmascieCurve.Set(params->locallab.spots.at(sp).LLmaskciecurve);
const bool lcmascieutili = locccmascieCurve.Set(params->locallab.spots.at(sp).CCmaskciecurve);
const bool lhmascieutili = lochhmascieCurve.Set(params->locallab.spots.at(sp).HHmaskciecurve);
const bool lcmas_utili = locccmas_Curve.Set(params->locallab.spots.at(sp).CCmask_curve);
const bool llmas_utili = locllmas_Curve.Set(params->locallab.spots.at(sp).LLmask_curve);
const bool lhmas_utili = lochhmas_Curve.Set(params->locallab.spots.at(sp).HHmask_curve);
const bool lhhmas_utili = lochhhmas_Curve.Set(params->locallab.spots.at(sp).HHhmask_curve);
const bool lmasutiliblwav = loclmasCurveblwav.Set(params->locallab.spots.at(sp).LLmaskblcurvewav);
const bool lmasutilicolwav = loclmasCurvecolwav.Set(params->locallab.spots.at(sp).LLmaskcolcurvewav);
const bool locwavutili = locwavCurve.Set(params->locallab.spots.at(sp).locwavcurve);
const bool locwavutilijz = locwavCurvejz.Set(params->locallab.spots.at(sp).locwavcurvejz);
const bool loclevwavutili = loclevwavCurve.Set(params->locallab.spots.at(sp).loclevwavcurve);
const bool locconwavutili = locconwavCurve.Set(params->locallab.spots.at(sp).locconwavcurve);
const bool loccompwavutili = loccompwavCurve.Set(params->locallab.spots.at(sp).loccompwavcurve);
const bool loccomprewavutili = loccomprewavCurve.Set(params->locallab.spots.at(sp).loccomprewavcurve);
const bool locwavhueutili = locwavCurvehue.Set(params->locallab.spots.at(sp).locwavcurvehue);
const bool locwavdenutili = locwavCurveden.Set(params->locallab.spots.at(sp).locwavcurveden);
const bool locedgwavutili = locedgwavCurve.Set(params->locallab.spots.at(sp).locedgwavcurve);
const bool lmasutili_wav = loclmasCurve_wav.Set(params->locallab.spots.at(sp).LLmask_curvewav);
const bool locallutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).llcurve, lllocalcurve, sca);
const bool localclutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).clcurve, cllocalcurve, sca);
const bool locallcutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).lccurve, lclocalcurve, sca);
const bool localcutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).cccurve, cclocalcurve, sca);
const bool localrgbutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).rgbcurve, rgblocalcurve, sca);
const bool localexutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).excurve, exlocalcurve, sca);
const bool localmaskutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmaskcurve, lmasklocalcurve, sca);
const bool localmaskexputili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmaskexpcurve, lmaskexplocalcurve, sca);
const bool localmaskSHutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).LmaskSHcurve, lmaskSHlocalcurve, sca);
const bool localmaskvibutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmaskvibcurve, lmaskviblocalcurve, sca);
const bool localmasktmutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmasktmcurve, lmasktmlocalcurve, sca);
const bool localmaskretiutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmaskreticurve, lmaskretilocalcurve, sca);
const bool localmaskcbutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmaskcbcurve, lmaskcblocalcurve, sca);
const bool localmaskblutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmaskblcurve, lmaskbllocalcurve, sca);
const bool localmasklcutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmasklccurve, lmasklclocalcurve, sca);
const bool localmasklogutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).LmaskcurveL, lmaskloglocalcurve, sca);
const bool localmask_utili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmask_curve, lmasklocal_curve, sca);
const bool localmaskcieutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).Lmaskciecurve, lmaskcielocalcurve, sca);
const bool localcieutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).ciecurve, cielocalcurve, sca);
const bool localcieutili2 = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).ciecurve2, cielocalcurve2, sca);
const bool localjzutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).jzcurve, jzlocalcurve, sca);
const bool localczutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).czcurve, czlocalcurve, sca);
const bool localczjzutili = CurveFactory::diagonalCurve2Lut(params->locallab.spots.at(sp).czjzcurve, czjzlocalcurve, sca);
double ecomp = params->locallab.spots.at(sp).expcomp;
double black = params->locallab.spots.at(sp).black;
double hlcompr = params->locallab.spots.at(sp).hlcompr;
double hlcomprthresh = params->locallab.spots.at(sp).hlcomprthresh;
double shcompr = params->locallab.spots.at(sp).shcompr;
double br = params->locallab.spots.at(sp).lightness;
double cont = params->locallab.spots.at(sp).contrast;
if (black < 0. && params->locallab.spots.at(sp).expMethod == "pde") {
black *= 1.5;
}
// Reference parameters computation
if (params->locallab.spots.at(sp).spotMethod == "exc") {
ipf.calc_ref(sp, reserv.get(), reserv.get(), 0, 0, pW, pH, scale, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avge, locwavCurveden, locwavdenutili);
} else {
ipf.calc_ref(sp, nprevl, nprevl, 0, 0, pW, pH, scale, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avge, locwavCurveden, locwavdenutili);
}
meantme = 0.f;
stdtme = 0.f;
meanretie = 0.f;
stdretie = 0.f;
float fab = 1.f;
bool istm = params->locallab.spots.at(sp).equiltm && params->locallab.spots.at(sp).exptonemap;
bool isreti = params->locallab.spots.at(sp).equilret && params->locallab.spots.at(sp).expreti;
//preparation for mean and sigma on current RT-spot
float locx = 0.f;
float locy = 0.f;
float locxl = 0.f;
float locyt = 0.f;
float centx = 0.f;
float centy = 0.f;
float ysta = 0.f;
float yend = 1.f;
float xsta = 0.f;
float xend = 1.f;
if (istm || isreti) {
locx = params->locallab.spots.at(sp).loc.at(0) / 2000.0;
locy = params->locallab.spots.at(sp).loc.at(2) / 2000.0;
locxl= params->locallab.spots.at(sp).loc.at(1) / 2000.0;
locyt = params->locallab.spots.at(sp).loc.at(3) / 2000.0;
centx = params->locallab.spots.at(sp).centerX / 2000.0 + 0.5;
centy = params->locallab.spots.at(sp).centerY / 2000.0 + 0.5;
ysta = std::max(static_cast<float>(centy - locyt), 0.f);
yend = std::min(static_cast<float>(centy + locy), 1.f);
xsta = std::max(static_cast<float>(centx - locxl), 0.f);
xend = std::min(static_cast<float>(centx + locx), 1.f);
// printf("xsta=%f xend=%f ysta=%f yend=%f \n", xsta, xend, ysta, yend);
}
int ww = nprevl->W;
int hh = nprevl->H;
int xxs = xsta * ww;
int xxe = xend * ww;
int yys = ysta * hh;
int yye = yend * hh;
if (istm) { //calculate mean and sigma on full image for RT-spot use by normalize_mean_dt
ipf.mean_sig (nprevl->L, meantme, stdtme, xxs, xxe, yys, yye);
}
if (isreti) { //calculate mean and sigma on full image for RT-spot use by normalize_mean_dt
ipf.mean_sig (nprevl->L, meanretie, stdretie,xxs, xxe, yys, yye) ;
}
double huerblu = huerefblurs[sp] = huerefblu;
double chromarblu = chromarefblurs[sp] = chromarefblu;
double lumarblu = lumarefblurs[sp] = lumarefblu;
double huer = huerefs[sp] = huere;
double chromar = chromarefs[sp] = chromare;
double lumar = lumarefs[sp] = lumare ;
double sobeler = sobelrefs[sp] = sobelre;
float avg = avgs[sp] = avge;
float meantm = meantms[sp] = meantme;
float stdtm = stdtms[sp] = stdtme;
float meanreti = meanretis[sp] = meanretie;
float stdreti = stdretis[sp] = stdretie;
huerefp[sp] = huer;
chromarefp[sp] = chromar;
lumarefp[sp] = lumar;
CurveFactory::complexCurvelocal(ecomp, black / 65535., hlcompr, hlcomprthresh, shcompr, br, cont, lumar,
hltonecurveloc, shtonecurveloc, tonecurveloc, lightCurveloc, avg,
sca);
// Save Locallab mask curve references for current spot
/*
LocallabListener::locallabRef spotref;
spotref.huer = huer;
spotref.lumar = lumar;
spotref.chromar = chromar;
spotref.fab = 1.f;
locallref.push_back(spotref);
*/
// Locallab tools computation
/* Notes:
* - shbuffer is used as nullptr
*/
// Locallab mask is only showed in detailed image
float minCD;
float maxCD;
float mini;
float maxi;
float Tmean;
float Tsigma;
float Tmin;
float Tmax;
int lastsav;
float highresi = 0.f;
float nresi = 0.f;
float highresi46 =0.f;
float nresi46 = 0.f;
float Lhighresi = 0.f;
float Lnresi = 0.f;
float Lhighresi46 = 0.f;
float Lnresi46 = 0.f;
ipf.Lab_Local(3, sp, (float**)shbuffer, nprevl, nprevl, reserv.get(), savenormtm.get(), savenormreti.get(), lastorigimp.get(), fw, fh, 0, 0, pW, pH, scale, locRETgainCurve, locRETtransCurve,
lllocalcurve, locallutili,
cllocalcurve, localclutili,
lclocalcurve, locallcutili,
loclhCurve, lochhCurve, locchCurve,
lochhCurvejz, locchCurvejz, loclhCurvejz,
lmasklocalcurve, localmaskutili,
lmaskexplocalcurve, localmaskexputili,
lmaskSHlocalcurve, localmaskSHutili,
lmaskviblocalcurve, localmaskvibutili,
lmasktmlocalcurve, localmasktmutili,
lmaskretilocalcurve, localmaskretiutili,
lmaskcblocalcurve, localmaskcbutili,
lmaskbllocalcurve, localmaskblutili,
lmasklclocalcurve, localmasklcutili,
lmaskloglocalcurve, localmasklogutili,
lmasklocal_curve, localmask_utili,
lmaskcielocalcurve, localmaskcieutili,
cielocalcurve, localcieutili,
cielocalcurve2, localcieutili2,
jzlocalcurve, localjzutili,
czlocalcurve, localczutili,
czjzlocalcurve, localczjzutili,
locccmasCurve, lcmasutili, locllmasCurve, llmasutili, lochhmasCurve, lhmasutili, lochhhmasCurve, lhhmasutili, locccmasexpCurve, lcmasexputili, locllmasexpCurve, llmasexputili, lochhmasexpCurve, lhmasexputili,
locccmasSHCurve, lcmasSHutili, locllmasSHCurve, llmasSHutili, lochhmasSHCurve, lhmasSHutili,
locccmasvibCurve, lcmasvibutili, locllmasvibCurve, llmasvibutili, lochhmasvibCurve, lhmasvibutili,
locccmascbCurve, lcmascbutili, locllmascbCurve, llmascbutili, lochhmascbCurve, lhmascbutili,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili,
locccmastmCurve, lcmastmutili, locllmastmCurve, llmastmutili, lochhmastmCurve, lhmastmutili,
locccmasblCurve, lcmasblutili, locllmasblCurve, llmasblutili, lochhmasblCurve, lhmasblutili,
locccmaslcCurve, lcmaslcutili, locllmaslcCurve, llmaslcutili, lochhmaslcCurve, lhmaslcutili,
locccmaslogCurve, lcmaslogutili, locllmaslogCurve, llmaslogutili, lochhmaslogCurve, lhmaslogutili,
locccmas_Curve, lcmas_utili, locllmas_Curve, llmas_utili, lochhmas_Curve, lhmas_utili,
locccmascieCurve, lcmascieutili, locllmascieCurve, llmascieutili, lochhmascieCurve, lhmascieutili,
lochhhmas_Curve, lhhmas_utili,
loclmasCurveblwav, lmasutiliblwav,
loclmasCurvecolwav, lmasutilicolwav,
locwavCurve, locwavutili,
locwavCurvejz, locwavutilijz,
loclevwavCurve, loclevwavutili,
locconwavCurve, locconwavutili,
loccompwavCurve, loccompwavutili,
loccomprewavCurve, loccomprewavutili,
locwavCurvehue, locwavhueutili,
locwavCurveden, locwavdenutili,
locedgwavCurve, locedgwavutili,
loclmasCurve_wav, lmasutili_wav,
LHutili, HHutili, CHutili, HHutilijz, CHutilijz, LHutilijz, cclocalcurve, localcutili, rgblocalcurve, localrgbutili, localexutili, exlocalcurve, hltonecurveloc, shtonecurveloc, tonecurveloc, lightCurveloc,
huerblu, chromarblu, lumarblu, huer, chromar, lumar, sobeler, lastsav, false, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
meantm, stdtm, meanreti, stdreti, fab,
highresi, nresi, highresi46, nresi46, Lhighresi, Lnresi, Lhighresi46, Lnresi46);
fabrefp[sp] = fab;
if (istm) { //calculate mean and sigma on full image for use by normalize_mean_dt
float meanf = 0.f;
float stdf = 0.f;
ipf.mean_sig (savenormtm->L, meanf, stdf, xxs, xxe, yys, yye);
//using 2 unused variables noiselumc and softradiustm
params->locallab.spots.at(sp).noiselumc = (int) meanf;
params->locallab.spots.at(sp).softradiustm = stdf ;
}
if (isreti) { //calculate mean and sigma on full image for use by normalize_mean_dt
float meanf = 0.f;
float stdf = 0.f;
ipf.mean_sig (savenormreti->L, meanf, stdf,xxs, xxe, yys, yye );
//using 2 unused variables sensihs and sensiv
params->locallab.spots.at(sp).sensihs = (int) meanf;
params->locallab.spots.at(sp).sensiv = (int) stdf;
}
if (sp + 1u < params->locallab.spots.size()) {
// do not copy for last spot as it is not needed anymore
lastorigimp->CopyFrom(nprevl);
}
// Save Locallab Retinex min/max for current spot
LocallabListener::locallabRetiMinMax retiMinMax;
retiMinMax.cdma = maxCD;
retiMinMax.cdmin = minCD;
retiMinMax.mini = mini;
retiMinMax.maxi = maxi;
retiMinMax.Tmean = Tmean;
retiMinMax.Tsigma = Tsigma;
retiMinMax.Tmin = Tmin;
retiMinMax.Tmax = Tmax;
locallretiminmax.push_back(retiMinMax);
// Recalculate references after
if (params->locallab.spots.at(sp).spotMethod == "exc") {
ipf.calc_ref(sp, reserv.get(), reserv.get(), 0, 0, pW, pH, scale, huerefblu, chromarefblu, lumarefblu, huer, chromar, lumar, sobeler, avg, locwavCurveden, locwavdenutili);
} else {
ipf.calc_ref(sp, nprevl, nprevl, 0, 0, pW, pH, scale, huerefblu, chromarefblu, lumarefblu, huer, chromar, lumar, sobeler, avg, locwavCurveden, locwavdenutili);
}
// Update Locallab reference values according to recurs parameter
if (params->locallab.spots.at(sp).recurs) {
/*
spotref.huer = huer;
spotref.lumar = lumar;
spotref.chromar = chromar;
spotref.fab = fab;
locallref.at(sp).chromar = chromar;
locallref.at(sp).lumar = lumar;
locallref.at(sp).huer = huer;
locallref.at(sp).fab = fab;
*/
huerefp[sp] = huer;
chromarefp[sp] = chromar;
lumarefp[sp] = lumar;
fabrefp[sp] = fab;
}
// spotref.fab = fab;
// locallref.at(sp).fab = fab;
// locallref.push_back(spotref);
if (locallListener) {
// locallListener->refChanged(locallref, params->locallab.selspot);
locallListener->refChanged2(huerefp, chromarefp, lumarefp, fabrefp, params->locallab.selspot);
locallListener->minmaxChanged(locallretiminmax, params->locallab.selspot);
}
}
delete [] huerefp;
delete [] chromarefp;
delete [] lumarefp;
delete [] fabrefp;
// Transmit Locallab reference values and Locallab Retinex min/max to LocallabListener
/*
if (locallListener) {
locallListener->refChanged(locallref, params->locallab.selspot);
locallListener->minmaxChanged(locallretiminmax, params->locallab.selspot);
}
*/
ipf.lab2rgb(*nprevl, *oprevi, params->icm.workingProfile);
//*************************************************************
// end locallab
//*************************************************************
}
if ((todo & M_RGBCURVE) || (todo & M_CROP)) {
//complexCurve also calculated pre-curves histogram depending on crop
CurveFactory::complexCurve(params->toneCurve.expcomp, params->toneCurve.black / 65535.0,
params->toneCurve.hlcompr, params->toneCurve.hlcomprthresh,
params->toneCurve.shcompr, params->toneCurve.brightness, params->toneCurve.contrast,
params->toneCurve.curve, params->toneCurve.curve2,
vhist16, hltonecurve, shtonecurve, tonecurve, histToneCurve, customToneCurve1, customToneCurve2, 1);
CurveFactory::RGBCurve(params->rgbCurves.rcurve, rCurve, 1);
CurveFactory::RGBCurve(params->rgbCurves.gcurve, gCurve, 1);
CurveFactory::RGBCurve(params->rgbCurves.bcurve, bCurve, 1);
opautili = false;
if (params->colorToning.enabled) {
TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile);
double wp[3][3] = {
{wprof[0][0], wprof[0][1], wprof[0][2]},
{wprof[1][0], wprof[1][1], wprof[1][2]},
{wprof[2][0], wprof[2][1], wprof[2][2]}
};
params->colorToning.getCurves(ctColorCurve, ctOpacityCurve, wp, opautili);
CurveFactory::diagonalCurve2Lut(params->colorToning.clcurve, clToningcurve, scale == 1 ? 1 : 16);
CurveFactory::diagonalCurve2Lut(params->colorToning.cl2curve, cl2Toningcurve, scale == 1 ? 1 : 16);
}
if (params->blackwhite.enabled) {
CurveFactory::curveBW(params->blackwhite.beforeCurve, params->blackwhite.afterCurve, vhist16bw, histToneCurveBW, beforeToneCurveBW, afterToneCurveBW, 1);
}
colourToningSatLimit = float (params->colorToning.satProtectionThreshold) / 100.f * 0.7f + 0.3f;
colourToningSatLimitOpacity = 1.f - (float (params->colorToning.saturatedOpacity) / 100.f);
int satTH = 80;
int satPR = 30;
int indi = 0;
if (params->colorToning.enabled && params->colorToning.autosat && params->colorToning.method != "LabGrid") { //for colortoning evaluation of saturation settings
float moyS = 0.f;
float eqty = 0.f;
ipf.moyeqt(oprevi, moyS, eqty); //return image : mean saturation and standard dev of saturation
//printf("moy=%f ET=%f\n", moyS,eqty);
float satp = ((moyS + 1.5f * eqty) - 0.3f) / 0.7f; //1.5 sigma ==> 93% pixels with high saturation -0.3 / 0.7 convert to Hombre scale
if (satp >= 0.92f) {
satp = 0.92f; //avoid values too high (out of gamut)
}
if (satp <= 0.15f) {
satp = 0.15f; //avoid too low values
}
//satTH=(int) 100.f*satp;
//satPR=(int) 100.f*(moyS-0.85f*eqty);//-0.85 sigma==>20% pixels with low saturation
colourToningSatLimit = 100.f * satp;
satTH = (int) 100.f * satp;
colourToningSatLimitOpacity = 100.f * (moyS - 0.85f * eqty); //-0.85 sigma==>20% pixels with low saturation
satPR = (int) 100.f * (moyS - 0.85f * eqty);
}
if (actListener && params->colorToning.enabled) {
if (params->blackwhite.enabled && params->colorToning.autosat) {
actListener->autoColorTonChanged(0, satTH, satPR); //hide sliders only if autosat
indi = 0;
} else {
if (params->colorToning.autosat) {
if (params->colorToning.method == "Lab") {
indi = 1;
} else if (params->colorToning.method == "RGBCurves") {
indi = 1;
} else if (params->colorToning.method == "RGBSliders") {
indi = 1;
} else if (params->colorToning.method == "Splico") {
indi = 2;
} else if (params->colorToning.method == "Splitlr") {
indi = 2;
}
}
}
}
// if it's just crop we just need the histogram, no image updates
if (todo & M_RGBCURVE) {
//initialize rrm bbm ggm different from zero to avoid black screen in some cases
double rrm = 33.;
double ggm = 33.;
double bbm = 33.;
DCPProfileApplyState as;
DCPProfile *dcpProf = imgsrc->getDCP(params->icm, as);
ipf.rgbProc(oprevi, oprevl, nullptr, hltonecurve, shtonecurve, tonecurve, params->toneCurve.saturation,
rCurve, gCurve, bCurve, colourToningSatLimit, colourToningSatLimitOpacity, ctColorCurve, ctOpacityCurve, opautili, clToningcurve, cl2Toningcurve, customToneCurve1, customToneCurve2, beforeToneCurveBW, afterToneCurveBW, rrm, ggm, bbm, bwAutoR, bwAutoG, bwAutoB, params->toneCurve.expcomp, params->toneCurve.hlcompr, params->toneCurve.hlcomprthresh, dcpProf, as, histToneCurve);
if (params->blackwhite.enabled && params->blackwhite.autoc && abwListener) {
if (settings->verbose) {
printf("ImProcCoordinator / Auto B&W coefs: R=%.2f G=%.2f B=%.2f\n", static_cast<double>(bwAutoR), static_cast<double>(bwAutoG), static_cast<double>(bwAutoB));
}
abwListener->BWChanged((float) rrm, (float) ggm, (float) bbm);
}
if (params->colorToning.enabled && params->colorToning.autosat && actListener) {
actListener->autoColorTonChanged(indi, (int) colourToningSatLimit, (int)colourToningSatLimitOpacity); //change sliders autosat
}
// correct GUI black and white with value
}
// ipf.Lab_Tile(oprevl, oprevl, scale);
// compute L channel histogram
int x1, y1, x2, y2;
params->crop.mapToResized(pW, pH, scale, x1, x2, y1, y2);
}
// lhist16(32768);
if (todo & (M_LUMACURVE | M_CROP)) {
LUTu lhist16(32768);
lhist16.clear();
#ifdef _OPENMP
const int numThreads = min(max(pW * pH / (int)lhist16.getSize(), 1), omp_get_max_threads());
#pragma omp parallel num_threads(numThreads) if (numThreads>1)
#endif
{
LUTu lhist16thr(lhist16.getSize());
lhist16thr.clear();
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int x = 0; x < pH; x++)
for (int y = 0; y < pW; y++) {
int pos = (int)(oprevl->L[x][y]);
lhist16thr[pos]++;
}
#ifdef _OPENMP
#pragma omp critical
#endif
lhist16 += lhist16thr;
}
#ifdef _OPENMP
static_cast<void>(numThreads); // to silence cppcheck warning
#endif
CurveFactory::complexLCurve(params->labCurve.brightness, params->labCurve.contrast, params->labCurve.lcurve, lhist16, lumacurve, histLCurve, scale == 1 ? 1 : 16, utili);
}
if (todo & M_LUMACURVE) {
clcutili = CurveFactory::diagonalCurve2Lut(params->labCurve.clcurve, clcurve, scale == 1 ? 1 : 16);
CurveFactory::complexsgnCurve(autili, butili, ccutili, cclutili, params->labCurve.acurve, params->labCurve.bcurve, params->labCurve.cccurve,
params->labCurve.lccurve, chroma_acurve, chroma_bcurve, satcurve, lhskcurve, scale == 1 ? 1 : 16);
}
//scale = 1;
if ((todo & (M_LUMINANCE + M_COLOR)) || (todo & M_AUTOEXP)) {
nprevl->CopyFrom(oprevl);
histCCurve.clear();
histLCurve.clear();
if (params->colorToning.enabled && params->colorToning.method == "LabGrid") {
ipf.colorToningLabGrid(nprevl, 0, nprevl->W, 0, nprevl->H, false);
}
ipf.shadowsHighlights(nprevl, params->sh.enabled, params->sh.lab,params->sh.highlights ,params->sh.shadows, params->sh.radius, scale, params->sh.htonalwidth, params->sh.stonalwidth);
if (params->localContrast.enabled) {
// Alberto's local contrast
ipf.localContrast(nprevl, nprevl->L, params->localContrast, false, scale);
}
ipf.chromiLuminanceCurve(nullptr, pW, nprevl, nprevl, chroma_acurve, chroma_bcurve, satcurve, lhskcurve, clcurve, lumacurve, utili, autili, butili, ccutili, cclutili, clcutili, histCCurve, histLCurve);
ipf.vibrance(nprevl, params->vibrance, params->toneCurve.hrenabled, params->icm.workingProfile);
ipf.labColorCorrectionRegions(nprevl);
if ((params->colorappearance.enabled && !params->colorappearance.tonecie) || (!params->colorappearance.enabled)) {
ipf.EPDToneMap(nprevl, 0, scale);
}
if (params->dirpyrequalizer.cbdlMethod == "aft") {
if (((params->colorappearance.enabled && !settings->autocielab) || (!params->colorappearance.enabled))) {
ipf.dirpyrequalizer(nprevl, scale);
}
}
wavcontlutili = CurveFactory::diagonalCurve2Lut(params->wavelet.wavclCurve, wavclCurve, scale == 1 ? 1 : 16);
if ((params->wavelet.enabled)) {
WaveletParams WaveParams = params->wavelet;
WaveParams.getCurves(wavCLVCurve, wavdenoise, wavdenoiseh, wavblcurve, waOpacityCurveRG, waOpacityCurveSH, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL);
int kall = 0;
LabImage *unshar = nullptr;
Glib::ustring provis;
LabImage *provradius = nullptr;
bool procont = WaveParams.expcontrast;
bool prochro = WaveParams.expchroma;
bool proedge = WaveParams.expedge;
bool profin = WaveParams.expfinal;
bool proton = WaveParams.exptoning;
bool pronois = WaveParams.expnoise;
if (WaveParams.showmask) {
// WaveParams.showmask = false;
// WaveParams.expclari = true;
}
if (WaveParams.softrad > 0.f) {
provradius = new LabImage(*nprevl, true);
}
if ((WaveParams.ushamethod == "sharp" || WaveParams.ushamethod == "clari") && WaveParams.expclari && WaveParams.CLmethod != "all") {
provis = params->wavelet.CLmethod;
params->wavelet.CLmethod = "all";
ipf.ip_wavelet(nprevl, nprevl, kall, WaveParams, wavCLVCurve, wavdenoise, wavdenoiseh, wavblcurve, waOpacityCurveRG, waOpacityCurveSH, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL, wavclCurve, scale);
unshar = new LabImage(*nprevl, true);
params->wavelet.CLmethod = provis;
WaveParams.expcontrast = false;
WaveParams.expchroma = false;
WaveParams.expedge = false;
WaveParams.expfinal = false;
WaveParams.exptoning = false;
WaveParams.expnoise = false;
}
ipf.ip_wavelet(nprevl, nprevl, kall, WaveParams, wavCLVCurve, wavdenoise, wavdenoiseh, wavblcurve, waOpacityCurveRG, waOpacityCurveSH, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL, wavclCurve, scale);
if ((WaveParams.ushamethod == "sharp" || WaveParams.ushamethod == "clari") && WaveParams.expclari && WaveParams.CLmethod != "all") {
WaveParams.expcontrast = procont;
WaveParams.expchroma = prochro;
WaveParams.expedge = proedge;
WaveParams.expfinal = profin;
WaveParams.exptoning = proton;
WaveParams.expnoise = pronois;
if (WaveParams.softrad > 0.f) {
array2D<float> ble(pW, pH);
array2D<float> guid(pW, pH);
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(pW, pH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < pH; ir++)
for (int jr = 0; jr < pW; jr++) {
float X, Y, Z;
float L = provradius->L[ir][jr];
float a = provradius->a[ir][jr];
float b = provradius->b[ir][jr];
Color::Lab2XYZ(L, a, b, X, Y, Z);
guid[ir][jr] = Y / 32768.f;
float La = nprevl->L[ir][jr];
float aa = nprevl->a[ir][jr];
float ba = nprevl->b[ir][jr];
Color::Lab2XYZ(La, aa, ba, X, Y, Z);
tmpImage->r(ir, jr) = X;
tmpImage->g(ir, jr) = Y;
tmpImage->b(ir, jr) = Z;
ble[ir][jr] = Y / 32768.f;
}
double epsilmax = 0.0001;
double epsilmin = 0.00001;
double aepsil = (epsilmax - epsilmin) / 100.f;
double bepsil = epsilmin; //epsilmax - 100.f * aepsil;
double epsil = aepsil * WaveParams.softrad + bepsil;
float blur = 10.f / scale * (0.5f + 0.8f * WaveParams.softrad);
// rtengine::guidedFilter(guid, ble, ble, blur, 0.001, multiTh);
rtengine::guidedFilter(guid, ble, ble, blur, epsil, false);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < pH; ir++)
for (int jr = 0; jr < pW; jr++) {
float X = tmpImage->r(ir, jr);
float Y = 32768.f * ble[ir][jr];
float Z = tmpImage->b(ir, jr);
float L, a, b;
Color::XYZ2Lab(X, Y, Z, L, a, b);
nprevl->L[ir][jr] = L;
}
delete tmpImage;
}
}
if ((WaveParams.ushamethod == "sharp" || WaveParams.ushamethod == "clari") && WaveParams.expclari && WaveParams.CLmethod != "all") {
float mL = (float)(WaveParams.mergeL / 100.f);
float mC = (float)(WaveParams.mergeC / 100.f);
float mL0;
float mC0;
float background = 0.f;
int show = 0;
if ((WaveParams.CLmethod == "one" || WaveParams.CLmethod == "inf") && WaveParams.Backmethod == "black") {
mL0 = mC0 = 0.f;
mL = - 1.5f * mL;
mC = -mC;
background = 12000.f;
show = 0;
} else if (WaveParams.CLmethod == "sup" && WaveParams.Backmethod == "resid") {
mL0 = mL;
mC0 = mC;
background = 0.f;
show = 0;
} else {
mL0 = mL = mC0 = mC = 0.f;
background = 0.f;
show = 0;
}
float indic = 1.f;
if (WaveParams.showmask){
mL0 = mC0 = -1.f;
indic = -1.f;
mL = fabs(mL);
mC = fabs(mC);
show = 1;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int x = 0; x < pH; x++)
for (int y = 0; y < pW; y++) {
nprevl->L[x][y] = LIM((1.f + mL0) * (unshar->L[x][y]) + show * background - mL * indic * nprevl->L[x][y], 0.f, 32768.f);
nprevl->a[x][y] = (1.f + mC0) * (unshar->a[x][y]) - mC * indic * nprevl->a[x][y];
nprevl->b[x][y] = (1.f + mC0) * (unshar->b[x][y]) - mC * indic * nprevl->b[x][y];
}
delete unshar;
unshar = NULL;
/*
if (WaveParams.softrad > 0.f) {
array2D<float> ble(pW, pH);
array2D<float> guid(pW, pH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < pH; ir++)
for (int jr = 0; jr < pW; jr++) {
ble[ir][jr] = (nprevl->L[ir][jr] - provradius->L[ir][jr]) / 32768.f;
guid[ir][jr] = provradius->L[ir][jr] / 32768.f;
}
double epsilmax = 0.001;
double epsilmin = 0.0001;
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * WaveParams.softrad + bepsil;
float blur = 10.f / scale * (0.001f + 0.8f * WaveParams.softrad);
// rtengine::guidedFilter(guid, ble, ble, blur, 0.001, multiTh);
rtengine::guidedFilter(guid, ble, ble, blur, epsil, false);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < pH; ir++)
for (int jr = 0; jr < pW; jr++) {
nprevl->L[ir][jr] = provradius->L[ir][jr] + 32768.f * ble[ir][jr];
}
}
*/
if (WaveParams.softrad > 0.f) {
delete provradius;
provradius = NULL;
}
}
}
ipf.softLight(nprevl, params->softlight);
if (params->icm.workingTRC != ColorManagementParams::WorkingTrc::NONE) {
const int GW = nprevl->W;
const int GH = nprevl->H;
std::unique_ptr<LabImage> provis;
const float pres = 0.01f * params->icm.preser;
if (pres > 0.f && params->icm.wprim != ColorManagementParams::Primaries::DEFAULT) {
provis.reset(new LabImage(GW, GH));
provis->CopyFrom(nprevl);
}
std::unique_ptr<Imagefloat> tmpImage1(new Imagefloat(GW, GH));
ipf.lab2rgb(*nprevl, *tmpImage1, params->icm.workingProfile);
const float gamtone = params->icm.workingTRCGamma;
const float slotone = params->icm.workingTRCSlope;
int illum = toUnderlying(params->icm.will);
const int prim = toUnderlying(params->icm.wprim);
Glib::ustring prof = params->icm.workingProfile;
cmsHTRANSFORM dummy = nullptr;
int ill = 0;
ipf.workingtrc(tmpImage1.get(), tmpImage1.get(), GW, GH, -5, prof, 2.4, 12.92310, ill, 0, dummy, true, false, false);
ipf.workingtrc(tmpImage1.get(), tmpImage1.get(), GW, GH, 5, prof, gamtone, slotone, illum, prim, dummy, false, true, true);
ipf.rgb2lab(*tmpImage1, *nprevl, params->icm.workingProfile);
//nprevl and provis
if (provis) {
ipf.preserv(nprevl, provis.get(), GW, GH);
}
if (params->icm.fbw) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int x = 0; x < GH; x++)
for (int y = 0; y < GW; y++) {
nprevl->a[x][y] = 0.f;
nprevl->b[x][y] = 0.f;
}
}
tmpImage1.reset();
if (prim == 12) {//pass red gre blue xy in function of area dats Ciexy
float redgraphx = params->icm.labgridcieALow;
float redgraphy = params->icm.labgridcieBLow;
float blugraphx = params->icm.labgridcieAHigh;
float blugraphy = params->icm.labgridcieBHigh;
float gregraphx = params->icm.labgridcieGx;
float gregraphy = params->icm.labgridcieGy;
float redxx = 0.55f * (redgraphx + 1.f) - 0.1f;
redxx = rtengine::LIM(redxx, 0.41f, 1.f);
float redyy = 0.55f * (redgraphy + 1.f) - 0.1f;
redyy = rtengine::LIM(redyy, 0.f, 0.7f);
float bluxx = 0.55f * (blugraphx + 1.f) - 0.1f;
bluxx = rtengine::LIM(bluxx, -0.1f, 0.5f);
float bluyy = 0.55f * (blugraphy + 1.f) - 0.1f;
bluyy = rtengine::LIM(bluyy, -0.1f, 0.5f);
float grexx = 0.55f * (gregraphx + 1.f) - 0.1f;
grexx = rtengine::LIM(grexx, -0.1f, 0.4f);
float greyy = 0.55f * (gregraphy + 1.f) - 0.1f;
greyy = rtengine::LIM(greyy, 0.5f, 1.f);
if (primListener) {
primListener->primChanged (redxx, redyy, bluxx, bluyy, grexx, greyy);
}
} else {//all other cases - pass Cie xy to update graph Ciexy
float r_x = params->icm.redx;
float r_y = params->icm.redy;
float b_x = params->icm.blux;
float b_y = params->icm.bluy;
float g_x = params->icm.grex;
float g_y = params->icm.grey;
//printf("rx=%f ry=%f \n", (double) r_x, (double) r_y);
float wx = 0.33f;
float wy = 0.33f;
switch (illum) {
case 1://D41
wx = 0.37798f;
wy = 0.38123f;
break;
case 2://D50
wx = 0.3457f;
wy = 0.3585f;
break;
case 3://D55
wx = 0.3324f;
wy = 0.3474f;
break;
case 4://D60
wx = 0.3217f;
wy = 0.3377f;
break;
case 5://D65
wx = 0.3127f;
wy = 0.3290f;
break;
case 6://D80
wx = 0.2937f;
wy = 0.3092f;
break;
case 7://D120
wx = 0.2697f;
wy = 0.2808f;
break;
case 8://stdA
wx = 0.4476f;
wy = 0.4074f;
break;
case 9://2000K
wx = 0.5266f;
wy = 0.4133f;
break;
case 10://1500K
wx = 0.5857f;
wy = 0.3932f;
break;
}
if (primListener) {
primListener->iprimChanged (r_x, r_y, b_x, b_y, g_x, g_y, wx, wy);
}
}
}
if (params->colorappearance.enabled) {
// L histo and Chroma histo for ciecam
// histogram will be for Lab (Lch) values, because very difficult to do with J,Q, M, s, C
int x1, y1, x2, y2;
params->crop.mapToResized(pW, pH, scale, x1, x2, y1, y2);
lhist16CAM.clear();
lhist16CCAM.clear();
if (!params->colorappearance.datacie) {
for (int x = 0; x < pH; x++)
for (int y = 0; y < pW; y++) {
int pos = CLIP((int)(nprevl->L[x][y]));
int posc = CLIP((int)sqrt(nprevl->a[x][y] * nprevl->a[x][y] + nprevl->b[x][y] * nprevl->b[x][y]));
lhist16CAM[pos]++;
lhist16CCAM[posc]++;
}
}
CurveFactory::curveLightBrightColor(params->colorappearance.curve, params->colorappearance.curve2, params->colorappearance.curve3,
lhist16CAM, histLCAM, lhist16CCAM, histCCAM,
customColCurve1, customColCurve2, customColCurve3, 1);
const FramesMetaData* metaData = imgsrc->getMetaData();
int imgNum = 0;
if (imgsrc->isRAW()) {
if (imgsrc->getSensorType() == ST_BAYER) {
imgNum = rtengine::LIM<unsigned int>(params->raw.bayersensor.imageNum, 0, metaData->getFrameCount() - 1);
} else if (imgsrc->getSensorType() == ST_FUJI_XTRANS) {
//imgNum = rtengine::LIM<unsigned int>(params->raw.xtranssensor.imageNum, 0, metaData->getFrameCount() - 1);
}
}
float fnum = metaData->getFNumber(imgNum); // F number
float fiso = metaData->getISOSpeed(imgNum) ; // ISO
float fspeed = metaData->getShutterSpeed(imgNum) ; // Speed
double fcomp = metaData->getExpComp(imgNum); // Compensation +/-
double adap;
if (fnum < 0.3f || fiso < 5.f || fspeed < 0.00001f) { //if no exif data or wrong
adap = 2000.;
} else {
double E_V = fcomp + log2(double ((fnum * fnum) / fspeed / (fiso / 100.f)));
double kexp = 0.;
E_V += kexp * params->toneCurve.expcomp;// exposure compensation in tonecurve ==> direct EV
E_V += 0.5 * log2(params->raw.expos); // exposure raw white point ; log2 ==> linear to EV
adap = pow(2.0, E_V - 3.0); // cd / m2
// end calculation adaptation scene luminosity
}
if(params->colorappearance.catmethod == "symg") {//force absolute luminance scene to 400 in symmetric
adap = 400.;
}
float d, dj, yb;
bool execsharp = false;
if (!ncie) {
ncie = new CieImage(pW, pH);
}
if (!CAMBrightCurveJ && (params->colorappearance.algo == "JC" || params->colorappearance.algo == "JS" || params->colorappearance.algo == "ALL")) {
CAMBrightCurveJ(32768, 0);
}
if (!CAMBrightCurveQ && (params->colorappearance.algo == "QM" || params->colorappearance.algo == "ALL")) {
CAMBrightCurveQ(32768, 0);
}
// Issue 2785, only float version of ciecam02 for navigator and pan background
CAMMean = NAN;
CAMBrightCurveJ.dirty = true;
CAMBrightCurveQ.dirty = true;
ipf.ciecam_02float(ncie, float (adap), pW, 2, nprevl, params.get(), customColCurve1, customColCurve2, customColCurve3, histLCAM, histCCAM, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 0, scale, execsharp, d, dj, yb, 1);
//call listener
if ((params->colorappearance.autodegree || params->colorappearance.autodegreeout) && acListener && params->colorappearance.enabled) {
if(params->colorappearance.catmethod == "symg") {//force chromatic adaptation to 90 in symmetric
d = 0.9;
dj = 0.9;
}
acListener->autoCamChanged(100.* (double)d, 100.* (double)dj);
}
if (params->colorappearance.autoadapscen && acListener && params->colorappearance.enabled) {
acListener->adapCamChanged(adap); //real value of adapt scene, force to 400 in symmetric
}
if (params->colorappearance.autoybscen && acListener && params->colorappearance.enabled) {
if(params->colorappearance.catmethod == "symg") {//force yb scene to 18 in symmetric
yb = 18;
}
acListener->ybCamChanged((int) yb); //real value Yb scene
}
double tempsym = 5003.;
int wmodel = 0;//wmodel allows - arbitrary - choice of illuminant and temp with choice
if (params->colorappearance.wbmodel == "RawT") {
wmodel = 0;
} else if (params->colorappearance.wbmodel == "RawTCAT02") {
wmodel = 1;
} else if (params->colorappearance.wbmodel == "free") {
wmodel = 2;//force white balance in symmetric
}
if(params->colorappearance.catmethod == "symg" && wmodel == 2) {
tempsym = params->wb.temperature;//force white balance in symmetric
} else {
if (params->colorappearance.illum == "iA") {//otherwise force illuminant source
tempsym = 2856.;
} else if (params->colorappearance.illum == "i41") {
tempsym = 4100.;
} else if (params->colorappearance.illum == "i50") {
tempsym = 5003.;
} else if (params->colorappearance.illum == "i55") {
tempsym = 5503.;
} else if (params->colorappearance.illum == "i60") {
tempsym = 6000. ;
} else if (params->colorappearance.illum == "i65") {
tempsym = 6504.;
} else if (params->colorappearance.illum == "i75") {
tempsym = 7504.;
} else if (params->colorappearance.illum == "ifree") {
tempsym = params->wb.temperature;//force white balance in symmetric
}
}
if (params->colorappearance.enabled && params->colorappearance.autotempout) {
acListener->wbCamChanged(tempsym, 1.f); //real temp and tint = 1.
}
} else {
// CIECAM is disabled, we free up its image buffer to save some space
if (ncie) {
delete ncie;
}
ncie = nullptr;
if (CAMBrightCurveJ) {
CAMBrightCurveJ.reset();
}
if (CAMBrightCurveQ) {
CAMBrightCurveQ.reset();
}
}
}
// if (todo & (M_AUTOEXP | M_RGBCURVE)) {
// Update the monitor color transform if necessary
if ((todo & M_MONITOR) || (lastOutputProfile != params->icm.outputProfile) || lastOutputIntent != params->icm.outputIntent || lastOutputBPC != params->icm.outputBPC) {
lastOutputProfile = params->icm.outputProfile;
lastOutputIntent = params->icm.outputIntent;
lastOutputBPC = params->icm.outputBPC;
ipf.updateColorProfiles(monitorProfile, monitorIntent, softProof, gamutCheck);
}
}
// process crop, if needed
for (size_t i = 0; i < crops.size(); i++)
if (crops[i]->hasListener() && (panningRelatedChange || (highDetailNeeded && options.prevdemo != PD_Sidecar) || (todo & (M_MONITOR | M_RGBCURVE | M_LUMACURVE)) || crops[i]->get_skip() == 1)) {
crops[i]->update(todo); // may call ourselves
}
if (panningRelatedChange || (todo & M_MONITOR)) {
if ((todo != CROP && todo != MINUPDATE) || (todo & M_MONITOR)) {
MyMutex::MyLock prevImgLock(previmg->getMutex());
try {
// Computing the preview image, i.e. converting from WCS->Monitor color space (soft-proofing disabled) or WCS->Printer profile->Monitor color space (soft-proofing enabled)
ipf.lab2monitorRgb(nprevl, previmg);
// Computing the internal image for analysis, i.e. conversion from WCS->Output profile
delete workimg;
workimg = nullptr;
workimg = ipf.lab2rgb(nprevl, 0, 0, pW, pH, params->icm);
} catch (std::exception&) {
return;
}
}
if (!resultValid) {
resultValid = true;
if (imageListener) {
imageListener->setImage(previmg, scale, params->crop);
}
}
if (imageListener)
// TODO: The WB tool should be advertised too in order to get the AutoWB's temp and green values
{
imageListener->imageReady(params->crop);
}
hist_lrgb_dirty = vectorscope_hc_dirty = vectorscope_hs_dirty = waveform_dirty = true;
if (hListener) {
if (hListener->updateHistogram()) {
updateLRGBHistograms();
}
if (hListener->updateVectorscopeHC()) {
updateVectorscopeHC();
}
if (hListener->updateVectorscopeHS()) {
updateVectorscopeHS();
}
if (hListener->updateWaveform()) {
updateWaveforms();
}
notifyHistogramChanged();
}
}
if (orig_prev != oprevi) {
delete oprevi;
oprevi = nullptr;
}
}
void ImProcCoordinator::setTweakOperator (TweakOperator *tOperator)
{
if (tOperator) {
tweakOperator = tOperator;
}
}
void ImProcCoordinator::unsetTweakOperator (TweakOperator *tOperator)
{
if (tOperator && tOperator == tweakOperator) {
tweakOperator = nullptr;
}
}
void ImProcCoordinator::freeAll()
{
if (allocated) {
if (spotprev && spotprev != oprevi) {
delete spotprev;
}
spotprev = nullptr;
if (orig_prev != oprevi) {
delete oprevi;
}
oprevi = nullptr;
delete orig_prev;
orig_prev = nullptr;
delete oprevl;
oprevl = nullptr;
delete nprevl;
nprevl = nullptr;
if (ncie) {
delete ncie;
}
ncie = nullptr;
if (imageListener) {
imageListener->delImage(previmg);
} else {
delete previmg;
}
delete workimg;
workimg = nullptr;
}
allocated = false;
}
void ImProcCoordinator::allocCache (Imagefloat* &imgfloat)
{
if (imgfloat == nullptr) {
imgfloat = new Imagefloat(pW, pH);
} else {
imgfloat->allocate(pW, pH);
}
}
/** @brief Handles image buffer (re)allocation and trigger sizeChanged of SizeListener[s]
* If the scale change, this method will free all buffers and reallocate ones of the new size.
* It will then tell to the SizeListener that size has changed (sizeChanged)
*
* @param prevscale New Preview's scale.
*/
void ImProcCoordinator::setScale(int prevscale)
{
tr = getCoarseBitMask(params->coarse);
int nW, nH;
imgsrc->getFullSize(fw, fh, tr);
prevscale++;
do {
prevscale--;
PreviewProps pp (0, 0, fw, fh, prevscale);
imgsrc->getSize (pp, nW, nH);
} while (nH < 400 && prevscale > 1 && (nW * nH < 1000000)); // actually hardcoded values, perhaps a better choice is possible
if (nW != pW || nH != pH) {
freeAll();
pW = nW;
pH = nH;
orig_prev = new Imagefloat(pW, pH);
oprevi = orig_prev;
oprevl = new LabImage(pW, pH);
nprevl = new LabImage(pW, pH);
//ncie is only used in ImProcCoordinator::updatePreviewImage, it will be allocated on first use and deleted if not used anymore
previmg = new Image8(pW, pH);
workimg = new Image8(pW, pH);
allocated = true;
}
scale = prevscale;
resultValid = false;
fullw = fw;
fullh = fh;
if (!sizeListeners.empty())
for (size_t i = 0; i < sizeListeners.size(); i++) {
sizeListeners[i]->sizeChanged(fullw, fullh, fw, fh);
}
}
void ImProcCoordinator::notifyHistogramChanged()
{
if (hListener) {
hListener->histogramChanged(
histRed,
histGreen,
histBlue,
histLuma,
histToneCurve,
histLCurve,
histCCurve,
histLCAM,
histCCAM,
histRedRaw,
histGreenRaw,
histBlueRaw,
histChroma,
histLRETI,
vectorscopeScale,
vectorscope_hc,
vectorscope_hs,
waveformScale,
waveformRed,
waveformGreen,
waveformBlue,
waveformLuma
);
}
}
bool ImProcCoordinator::updateLRGBHistograms()
{
if (!hist_lrgb_dirty) {
return false;
}
int x1, y1, x2, y2;
params->crop.mapToResized(pW, pH, scale, x1, x2, y1, y2);
#ifdef _OPENMP
#pragma omp parallel sections
#endif
{
#ifdef _OPENMP
#pragma omp section
#endif
{
histChroma.clear();
for (int i = y1; i < y2; i++)
for (int j = x1; j < x2; j++)
{
histChroma[(int)(sqrtf(SQR(nprevl->a[i][j]) + SQR(nprevl->b[i][j])) / 188.f)]++; //188 = 48000/256
}
}
#ifdef _OPENMP
#pragma omp section
#endif
{
histLuma.clear();
for (int i = y1; i < y2; i++)
for (int j = x1; j < x2; j++)
{
histLuma[(int)(nprevl->L[i][j] / 128.f)]++;
}
}
#ifdef _OPENMP
#pragma omp section
#endif
{
histRed.clear();
histGreen.clear();
histBlue.clear();
for (int i = y1; i < y2; i++)
{
int ofs = (i * pW + x1) * 3;
for (int j = x1; j < x2; j++) {
int r = workimg->data[ofs++];
int g = workimg->data[ofs++];
int b = workimg->data[ofs++];
histRed[r]++;
histGreen[g]++;
histBlue[b]++;
}
}
}
}
hist_lrgb_dirty = false;
return true;
}
bool ImProcCoordinator::updateVectorscopeHC()
{
if (!workimg || !vectorscope_hc_dirty) {
return false;
}
int x1, y1, x2, y2;
params->crop.mapToResized(pW, pH, scale, x1, x2, y1, y2);
constexpr int size = VECTORSCOPE_SIZE;
constexpr float norm_factor = size / (128.f * 655.36f);
vectorscope_hc.fill(0);
vectorscopeScale = (x2 - x1) * (y2 - y1);
const std::unique_ptr<float[]> a(new float[vectorscopeScale]);
const std::unique_ptr<float[]> b(new float[vectorscopeScale]);
const std::unique_ptr<float[]> L(new float[vectorscopeScale]);
ipf.rgb2lab(*workimg, x1, y1, x2 - x1, y2 - y1, L.get(), a.get(), b.get(), params->icm);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
array2D<int> vectorscopeThr(size, size, ARRAY2D_CLEAR_DATA);
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int i = y1; i < y2; ++i) {
for (int j = x1, ofs_lab = (i - y1) * (x2 - x1); j < x2; ++j, ++ofs_lab) {
const int col = norm_factor * a[ofs_lab] + size / 2 + 0.5f;
const int row = norm_factor * b[ofs_lab] + size / 2 + 0.5f;
if (col >= 0 && col < size && row >= 0 && row < size) {
vectorscopeThr[row][col]++;
}
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
vectorscope_hc += vectorscopeThr;
}
}
vectorscope_hc_dirty = false;
return true;
}
bool ImProcCoordinator::updateVectorscopeHS()
{
if (!workimg || !vectorscope_hs_dirty) {
return false;
}
int x1, y1, x2, y2;
params->crop.mapToResized(pW, pH, scale, x1, x2, y1, y2);
constexpr int size = VECTORSCOPE_SIZE;
vectorscope_hs.fill(0);
vectorscopeScale = (x2 - x1) * (y2 - y1);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
array2D<int> vectorscopeThr(size, size, ARRAY2D_CLEAR_DATA);
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int i = y1; i < y2; ++i) {
int ofs = (i * pW + x1) * 3;
for (int j = x1; j < x2; ++j) {
const float red = 257.f * workimg->data[ofs++];
const float green = 257.f * workimg->data[ofs++];
const float blue = 257.f * workimg->data[ofs++];
float h, s, l;
Color::rgb2hslfloat(red, green, blue, h, s, l);
const auto sincosval = xsincosf(2.f * RT_PI_F * h);
const int col = s * sincosval.y * (size / 2) + size / 2;
const int row = s * sincosval.x * (size / 2) + size / 2;
if (col >= 0 && col < size && row >= 0 && row < size) {
vectorscopeThr[row][col]++;
}
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
vectorscope_hs += vectorscopeThr;
}
}
vectorscope_hs_dirty = false;
return true;
}
bool ImProcCoordinator::updateWaveforms()
{
if (!workimg) {
// free memory
waveformRed.free();
waveformGreen.free();
waveformBlue.free();
waveformLuma.free();
return true;
}
if (!waveform_dirty) {
return false;
}
int x1, y1, x2, y2;
params->crop.mapToResized(pW, pH, scale, x1, x2, y1, y2);
int waveform_width = waveformRed.getWidth();
if (waveform_width != x2 - x1) {
// Resize waveform arrays.
waveform_width = x2 - x1;
waveformRed(waveform_width, 256);
waveformGreen(waveform_width, 256);
waveformBlue(waveform_width, 256);
waveformLuma(waveform_width, 256);
}
// Start with zero.
waveformRed.fill(0);
waveformGreen.fill(0);
waveformBlue.fill(0);
waveformLuma.fill(0);
constexpr float luma_factor = 255.f / 32768.f;
for (int i = y1; i < y2; i++) {
int ofs = (i * pW + x1) * 3;
float* L_row = nprevl->L[i] + x1;
for (int j = 0; j < waveform_width; j++) {
waveformRed[workimg->data[ofs++]][j]++;
waveformGreen[workimg->data[ofs++]][j]++;
waveformBlue[workimg->data[ofs++]][j]++;
waveformLuma[LIM<int>(L_row[j] * luma_factor, 0, 255)][j]++;
}
}
waveformScale = y2 - y1;
waveform_dirty = false;
return true;
}
bool ImProcCoordinator::getAutoWB(double& temp, double& green, double equal, StandardObserver observer, double tempBias)
{
if (imgsrc) {
if (lastAwbEqual != equal || lastAwbObserver != observer || lastAwbTempBias != tempBias || lastAwbauto != params->wb.method) {
// Issue 2500 MyMutex::MyLock lock(minit); // Also used in crop window
double rm, gm, bm;
params->wb.method = "autold";//same result as before multiple Auto WB
// imgsrc->getAutoWBMultipliers(rm, gm, bm);
double tempitc = 5000.;
double greenitc = 1.;
float studgood = 1000.f;
double tempref, greenref;
imgsrc->getAutoWBMultipliersitc(tempref, greenref, tempitc, greenitc, studgood, 0, 0, fh, fw, 0, 0, fh, fw, rm, gm, bm, params->wb, params->icm, params->raw, params->toneCurve);
if (rm != -1) {
autoWB.update(rm, gm, bm, equal, observer, tempBias);
lastAwbEqual = equal;
lastAwbObserver = observer;
lastAwbTempBias = tempBias;
lastAwbauto = params->wb.method;
} else {
lastAwbEqual = -1.;
lastAwbObserver = ColorTemp::DEFAULT_OBSERVER;
autoWB.useDefaults(equal, observer);
lastAwbauto = "";
lastAwbTempBias = 0.0;
}
}
temp = autoWB.getTemp();
green = autoWB.getGreen();
return true;
} else {
//temp = autoWB.getTemp();
temp = -1.0;
green = -1.0;
return false;
}
}
void ImProcCoordinator::getCamWB(double& temp, double& green, StandardObserver observer)
{
if (imgsrc) {
const ColorTemp color_temp = imgsrc->getWB().convertObserver(observer);
temp = color_temp.getTemp();
green = color_temp.getGreen();
}
}
void ImProcCoordinator::getSpotWB(int x, int y, int rect, double& temp, double& tgreen)
{
ColorTemp ret;
{
MyMutex::MyLock lock(mProcessing);
std::vector<Coord2D> points, red, green, blue;
for (int i = y - rect; i <= y + rect; i++)
for (int j = x - rect; j <= x + rect; j++) {
points.push_back(Coord2D(j, i));
}
ipf.transCoord(fw, fh, points, red, green, blue);
int tr = getCoarseBitMask(params->coarse);
ret = imgsrc->getSpotWB(red, green, blue, tr, params->wb.equal, params->wb.observer);
currWB = ColorTemp(params->wb.temperature, params->wb.green, params->wb.equal, params->wb.method, params->wb.observer);
//double rr,gg,bb;
//currWB.getMultipliers(rr,gg,bb);
} // end of mutex lockong
if (ret.getTemp() > 0) {
temp = ret.getTemp();
tgreen = ret.getGreen();
} else {
temp = currWB.getTemp();
tgreen = currWB.getGreen();
}
}
void ImProcCoordinator::getAutoCrop(double ratio, int &x, int &y, int &w, int &h)
{
MyMutex::MyLock lock(mProcessing);
LensCorrection *pLCPMap = nullptr;
if (params->lensProf.useLcp() && imgsrc->getMetaData()->getFocalLen() > 0) {
const std::shared_ptr<LCPProfile> pLCPProf = LCPStore::getInstance()->getProfile(params->lensProf.lcpFile);
if (pLCPProf) pLCPMap = new LCPMapper(pLCPProf, imgsrc->getMetaData()->getFocalLen(), imgsrc->getMetaData()->getFocalLen35mm(), imgsrc->getMetaData()->getFocusDist(),
0, false, params->lensProf.useDist, fullw, fullh, params->coarse, imgsrc->getRotateDegree());
}
double fillscale = ipf.getTransformAutoFill(fullw, fullh, pLCPMap);
if (ratio > 0) {
w = fullw * fillscale;
h = w / ratio;
if (h > fullh * fillscale) {
h = fullh * fillscale;
w = h * ratio;
}
} else {
w = fullw * fillscale;
h = fullh * fillscale;
}
x = (fullw - w) / 2;
y = (fullh - h) / 2;
}
void ImProcCoordinator::setMonitorProfile(const Glib::ustring& profile, RenderingIntent intent)
{
monitorProfile = profile;
monitorIntent = intent;
}
void ImProcCoordinator::getMonitorProfile(Glib::ustring& profile, RenderingIntent& intent) const
{
profile = monitorProfile;
intent = monitorIntent;
}
void ImProcCoordinator::setSoftProofing(bool softProof, bool gamutCheck)
{
this->softProof = softProof;
this->gamutCheck = gamutCheck;
}
void ImProcCoordinator::getSoftProofing(bool &softProof, bool &gamutCheck)
{
softProof = this->softProof;
gamutCheck = this->gamutCheck;
}
ProcEvent ImProcCoordinator::setSharpMask(bool sharpMask)
{
if (this->sharpMask != sharpMask) {
sharpMaskChanged = true;
this->sharpMask = sharpMask;
return params->pdsharpening.enabled ? rtengine::EvPdShrMaskToggled : rtengine::EvShrEnabled;
} else {
sharpMaskChanged = false;
return rtengine::EvShrEnabled;
}
}
void ImProcCoordinator::saveInputICCReference(const Glib::ustring& fname, bool apply_wb)
{
MyMutex::MyLock lock(mProcessing);
int fW, fH;
std::unique_ptr<ProcParams> validParams(new ProcParams());
getParams(validParams.get());
int tr = getCoarseBitMask(validParams->coarse);
imgsrc->getFullSize(fW, fH, tr);
PreviewProps pp(0, 0, fW, fH, 1);
ProcParams ppar = *validParams;
ppar.toneCurve.hrenabled = false;
ppar.icm.inputProfile = "(none)";
Imagefloat* im = new Imagefloat(fW, fH);
imgsrc->preprocess(ppar.raw, ppar.lensProf, ppar.coarse);
double dummy = 0.0;
imgsrc->demosaic(ppar.raw, false, dummy);
ColorTemp currWB = ColorTemp(validParams->wb.temperature, validParams->wb.green, validParams->wb.equal, validParams->wb.method, validParams->wb.observer);
if (validParams->wb.method == "Camera") {
currWB = imgsrc->getWB();
} else if (validParams->wb.method == "autold") {
if (lastAwbEqual != validParams->wb.equal || lastAwbObserver != validParams->wb.observer || lastAwbTempBias != validParams->wb.tempBias) {
double rm, gm, bm;
imgsrc->getAutoWBMultipliers(rm, gm, bm);
if (rm != -1.) {
autoWB.update(rm, gm, bm, validParams->wb.equal, validParams->wb.observer, validParams->wb.tempBias);
lastAwbEqual = validParams->wb.equal;
lastAwbObserver = validParams->wb.observer;
lastAwbTempBias = validParams->wb.tempBias;
} else {
lastAwbEqual = -1.;
lastAwbObserver = ColorTemp::DEFAULT_OBSERVER;
lastAwbTempBias = 0.0;
autoWB.useDefaults(validParams->wb.equal, validParams->wb.observer);
}
}
currWB = autoWB;
}
if (!apply_wb) {
currWB = ColorTemp(); // = no white balance
}
imgsrc->getImage(currWB, tr, im, pp, ppar.toneCurve, ppar.raw, 0);
ImProcFunctions ipf(&ppar, true);
if (ipf.needsTransform(fW, fH, imgsrc->getRotateDegree(), imgsrc->getMetaData())) {
Imagefloat* trImg = new Imagefloat(fW, fH);
ipf.transform(im, trImg, 0, 0, 0, 0, fW, fH, fW, fH,
imgsrc->getMetaData(), imgsrc->getRotateDegree(), true);
delete im;
im = trImg;
}
if (validParams->crop.enabled) {
Imagefloat *tmpim = new Imagefloat(validParams->crop.w, validParams->crop.h);
int cx = validParams->crop.x;
int cy = validParams->crop.y;
int cw = validParams->crop.w;
int ch = validParams->crop.h;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = cy; i < cy + ch; i++) {
for (int j = cx; j < cx + cw; j++) {
tmpim->r(i - cy, j - cx) = im->r(i, j);
tmpim->g(i - cy, j - cx) = im->g(i, j);
tmpim->b(i - cy, j - cx) = im->b(i, j);
}
}
delete im;
im = tmpim;
}
// image may contain out of range samples, clip them to avoid wrap-arounds
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < im->getHeight(); i++) {
for (int j = 0; j < im->getWidth(); j++) {
im->r(i, j) = CLIP(im->r(i, j));
im->g(i, j) = CLIP(im->g(i, j));
im->b(i, j) = CLIP(im->b(i, j));
}
}
int imw, imh;
double tmpScale = ipf.resizeScale(validParams.get(), fW, fH, imw, imh);
if (tmpScale != 1.0) {
Imagefloat* tempImage = new Imagefloat(imw, imh);
ipf.resize(im, tempImage, tmpScale);
delete im;
im = tempImage;
}
im->setMetadata(imgsrc->getMetaData()->getRootExifData());
im->saveTIFF(fname, 16, false, true);
delete im;
if (plistener) {
plistener->setProgressState(false);
}
//im->saveJPEG (fname, 85);
}
void ImProcCoordinator::stopProcessing()
{
updaterThreadStart.lock();
if (updaterRunning && thread) {
changeSinceLast = 0;
thread->join();
}
updaterThreadStart.unlock();
}
void ImProcCoordinator::startProcessing()
{
#undef THREAD_PRIORITY_NORMAL
if (!destroying) {
if (!updaterRunning) {
updaterThreadStart.lock();
thread = nullptr;
updaterRunning = true;
updaterThreadStart.unlock();
//batchThread->yield(); //the running batch should wait other threads to avoid conflict
thread = Glib::Thread::create(sigc::mem_fun(*this, &ImProcCoordinator::process), 0, true, true, Glib::THREAD_PRIORITY_NORMAL);
}
}
}
void ImProcCoordinator::startProcessing(int changeCode)
{
paramsUpdateMutex.lock();
changeSinceLast |= changeCode;
paramsUpdateMutex.unlock();
startProcessing();
}
void ImProcCoordinator::process()
{
if (plistener) {
plistener->setProgressState(true);
}
paramsUpdateMutex.lock();
while (changeSinceLast) {
const bool panningRelatedChange =
params->toneCurve.isPanningRelatedChange(nextParams->toneCurve)
|| params->labCurve != nextParams->labCurve
|| params->locallab != nextParams->locallab
|| params->localContrast != nextParams->localContrast
|| params->rgbCurves != nextParams->rgbCurves
|| params->colorToning != nextParams->colorToning
|| params->vibrance != nextParams->vibrance
|| params->wb.isPanningRelatedChange(nextParams->wb)
|| params->colorappearance != nextParams->colorappearance
|| params->epd != nextParams->epd
|| params->fattal != nextParams->fattal
|| params->sh != nextParams->sh
|| params->toneEqualizer != nextParams->toneEqualizer
|| params->crop != nextParams->crop
|| params->coarse != nextParams->coarse
|| params->commonTrans != nextParams->commonTrans
|| params->rotate != nextParams->rotate
|| params->distortion != nextParams->distortion
|| params->lensProf != nextParams->lensProf
|| params->perspective != nextParams->perspective
|| params->gradient != nextParams->gradient
|| params->pcvignette != nextParams->pcvignette
|| params->cacorrection != nextParams->cacorrection
|| params->vignetting != nextParams->vignetting
|| params->chmixer != nextParams->chmixer
|| params->blackwhite != nextParams->blackwhite
|| params->icm != nextParams->icm
|| params->hsvequalizer != nextParams->hsvequalizer
|| params->filmSimulation != nextParams->filmSimulation
|| params->softlight != nextParams->softlight
|| params->raw != nextParams->raw
|| params->retinex != nextParams->retinex
|| params->wavelet != nextParams->wavelet
|| params->dirpyrequalizer != nextParams->dirpyrequalizer
|| params->dehaze != nextParams->dehaze
|| params->pdsharpening != nextParams->pdsharpening
|| params->filmNegative != nextParams->filmNegative
|| params->spot.enabled != nextParams->spot.enabled
|| sharpMaskChanged;
sharpMaskChanged = false;
*params = *nextParams;
int change = changeSinceLast;
changeSinceLast = 0;
if (tweakOperator) {
// TWEAKING THE PROCPARAMS FOR THE SPOT ADJUSTMENT MODE
backupParams();
tweakOperator->tweakParams(*params);
} else if (paramsBackup) {
paramsBackup.release();
}
paramsUpdateMutex.unlock();
// M_VOID means no update, and is a bit higher that the rest
if (change & (M_VOID - 1)) {
updatePreviewImage(change, panningRelatedChange);
}
paramsUpdateMutex.lock();
}
paramsUpdateMutex.unlock();
updaterRunning = false;
if (plistener) {
plistener->setProgressState(false);
}
}
ProcParams* ImProcCoordinator::beginUpdateParams()
{
paramsUpdateMutex.lock();
return nextParams.get();
}
void ImProcCoordinator::endUpdateParams(ProcEvent change)
{
int action = RefreshMapper::getInstance()->getAction(change);
endUpdateParams(action);
}
void ImProcCoordinator::endUpdateParams(int changeFlags)
{
changeSinceLast |= changeFlags;
paramsUpdateMutex.unlock();
startProcessing();
}
bool ImProcCoordinator::getHighQualComputed()
{
// this function may only be called from detail windows
if (!highQualityComputed) {
if (options.prevdemo == PD_Sidecar) {
// we already have high quality preview
setHighQualComputed();
} else {
for (size_t i = 0; i < crops.size() - 1; ++i) { // -1, because last entry is the freshly created detail window
if (crops[i]->get_skip() == 1) { // there is at least one crop with skip == 1 => we already have high quality preview
setHighQualComputed();
break;
}
}
}
}
return highQualityComputed;
}
void ImProcCoordinator::setHighQualComputed()
{
highQualityComputed = true;
}
void ImProcCoordinator::requestUpdateWaveform()
{
if (!hListener) {
return;
}
bool updated = updateWaveforms();
if (updated) {
notifyHistogramChanged();
}
}
void ImProcCoordinator::requestUpdateHistogram()
{
if (!hListener) {
return;
}
bool updated = updateLRGBHistograms();
if (updated) {
notifyHistogramChanged();
}
}
void ImProcCoordinator::requestUpdateHistogramRaw()
{
if (!hListener) {
return;
}
// Don't need to actually update histogram because it is always
// up-to-date.
if (hist_raw_dirty) {
hist_raw_dirty = false;
notifyHistogramChanged();
}
}
void ImProcCoordinator::requestUpdateVectorscopeHC()
{
if (!hListener) {
return;
}
bool updated = updateVectorscopeHC();
if (updated) {
notifyHistogramChanged();
}
}
void ImProcCoordinator::requestUpdateVectorscopeHS()
{
if (!hListener) {
return;
}
bool updated = updateVectorscopeHS();
if (updated) {
notifyHistogramChanged();
}
}
}