rawTherapee/rtengine/simpleprocess.cc
Lawrence Lee 6787c53c9b
Show black level adjustments in file browser
File browser thumbnails for raw images start with a minimally-processed
images. These images are cached and image adjustments are applied on
top. The black level is "baked-into" the cached image. Therefore, to
reflect the black level adjustments in the thumbnail, one of two options
are required:
    1. Cache an image before the black level is applied and process the
       black level on top of this image.
    2. Recreate the base image with the new black level and cache it.
The first option yields better performance when the user changes the
black level. However, it requires other base adjustments to be applied
every time, such as the camera multipliers. The second option requires
the base image to be recreated every time the black level is changed.
This commit implements the second option. It minimizes code changes, and
therefore possible bugs. It does add a performance penalty when the
black level changes, but the black level adjustment is rarely used.
2023-07-29 17:37:13 -07:00

2155 lines
90 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <glibmm/thread.h>
#include <glibmm/ustring.h>
#include "cieimage.h"
#include "clutstore.h"
#include "color.h"
#include "colortemp.h"
#include "curves.h"
#include "dcp.h"
#include "guidedfilter.h"
#include "iccstore.h"
#include "imagefloat.h"
#include "imagesource.h"
#include "improcfun.h"
#include "labimage.h"
#include "mytime.h"
#include "processingjob.h"
#include "procparams.h"
#include "rawimagesource.h"
#include "rtengine.h"
#include "utils.h"
#include "../rtgui/multilangmgr.h"
#include "../rtgui/options.h"
#undef THREAD_PRIORITY_NORMAL
namespace rtengine
{
namespace
{
template <typename T>
void adjust_radius(const T &default_param, double scale_factor, T &param)
{
const double delta = (param - default_param) * scale_factor;
param = default_param + delta;
}
class ImageProcessor
{
public:
ImageProcessor(
ProcessingJob* pjob,
int& errorCode,
ProgressListener* pl,
bool flush
) :
job(static_cast<ProcessingJobImpl*>(pjob)),
errorCode(errorCode),
pl(pl),
flush(flush),
// internal state
initialImage(nullptr),
imgsrc(nullptr),
fw(0),
fh(0),
tr(0),
pp(0, 0, 0, 0, 0),
calclum(nullptr),
autoNR(0.f),
autoNRmax(0.f),
tilesize(0),
overlap(0),
ch_M(nullptr),
max_r(nullptr),
max_b(nullptr),
min_b(nullptr),
min_r(nullptr),
lumL(nullptr),
chromC(nullptr),
ry(nullptr),
sk(nullptr),
pcsk(nullptr),
expcomp(0.0),
bright(0),
contr(0),
black(0),
hlcompr(0),
hlcomprthresh(0),
baseImg(nullptr),
labView(nullptr),
ctColorCurve(),
autili(false),
butili(false)
{
}
Imagefloat *operator()()
{
if (!job->fast) {
return normal_pipeline();
} else {
return fast_pipeline();
}
}
private:
Imagefloat *normal_pipeline()
{
if (!stage_init()) {
return nullptr;
}
stage_denoise();
stage_transform();
return stage_finish();
}
Imagefloat *fast_pipeline()
{
if (!job->pparams.resize.enabled) {
return normal_pipeline();
}
pl = nullptr;
if (!stage_init()) {
return nullptr;
}
stage_transform();
stage_early_resize();
stage_denoise();
return stage_finish();
}
bool stage_init()
{
errorCode = 0;
if (pl) {
pl->setProgressStr("PROGRESSBAR_PROCESSING");
pl->setProgress(0.0);
}
initialImage = job->initialImage;
if (!initialImage) {
initialImage = InitialImage::load(job->fname, job->isRaw, &errorCode);
if (errorCode) {
delete job;
return false; //return nullptr;
}
}
procparams::ProcParams& params = job->pparams;
// acquire image from imagesource
imgsrc = initialImage->getImageSource();
tr = getCoarseBitMask(params.coarse);
if (imgsrc->getSensorType() == ST_BAYER) {
if (params.raw.bayersensor.method != RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::PIXELSHIFT)) {
imgsrc->setBorder(params.raw.bayersensor.border);
} else {
imgsrc->setBorder(std::max(params.raw.bayersensor.border, 2));
}
} else if (imgsrc->getSensorType() == ST_FUJI_XTRANS) {
imgsrc->setBorder(params.raw.xtranssensor.border);
}
imgsrc->getFullSize(fw, fh, tr);
// check the crop params
if (params.crop.x > fw || params.crop.y > fh) {
// the crop is completely out of the image, so we disable the crop
params.crop.enabled = false;
// and we set the values to the defaults
params.crop.x = 0;
params.crop.y = 0;
params.crop.w = fw;
params.crop.h = fh;
} else {
if (params.crop.x < 0) {
params.crop.x = 0;
}
if (params.crop.y < 0) {
params.crop.y = 0;
}
if ((params.crop.x + params.crop.w) > fw) {
// crop overflow in the width dimension ; we trim it
params.crop.w = fw - params.crop.x;
}
if ((params.crop.y + params.crop.h) > fh) {
// crop overflow in the height dimension ; we trim it
params.crop.h = fh - params.crop.y;
}
}
// MyTime t1,t2;
// t1.set();
ipf_p.reset(new ImProcFunctions(&params, true));
ImProcFunctions &ipf = * (ipf_p.get());
imgsrc->setCurrentFrame(params.raw.bayersensor.imageNum);
imgsrc->preprocess(params.raw, params.lensProf, params.coarse, params.dirpyrDenoise.enabled);
if (pl) {
pl->setProgress(0.20);
}
bool autoContrast = imgsrc->getSensorType() == ST_BAYER ? params.raw.bayersensor.dualDemosaicAutoContrast : params.raw.xtranssensor.dualDemosaicAutoContrast;
double contrastThreshold = imgsrc->getSensorType() == ST_BAYER ? params.raw.bayersensor.dualDemosaicContrast : params.raw.xtranssensor.dualDemosaicContrast;
imgsrc->demosaic (params.raw, autoContrast, contrastThreshold, params.pdsharpening.enabled && pl);
if (params.pdsharpening.enabled) {
imgsrc->captureSharpening(params.pdsharpening, false, params.pdsharpening.contrast, params.pdsharpening.deconvradius);
}
if (pl) {
pl->setProgress(0.30);
}
pp = PreviewProps(0, 0, fw, fh, 1);
if (params.retinex.enabled) { //enabled Retinex
LUTf cdcurve(65536, 0);
LUTf mapcurve(65536, 0);
RetinextransmissionCurve dehatransmissionCurve;
RetinexgaintransmissionCurve dehagaintransmissionCurve;
bool dehacontlutili = false;
bool mapcontlutili = false;
bool useHsl = false;
multi_array2D<float, 4> conversionBuffer(1, 1);
imgsrc->retinexPrepareBuffers(params.icm, params.retinex, conversionBuffer, dummy);
imgsrc->retinexPrepareCurves(params.retinex, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, dehacontlutili, mapcontlutili, useHsl, dummy, dummy);
float minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax;
imgsrc->retinex(params.icm, params.retinex, params.toneCurve, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, conversionBuffer, dehacontlutili, mapcontlutili, useHsl, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, dummy);
}
if (pl) {
pl->setProgress(0.40);
}
// imgsrc->HLRecovery_Global(params.toneCurve);
if (pl) {
pl->setProgress(0.45);
}
// set the color temperature
currWB = ColorTemp(params.wb.temperature, params.wb.green, params.wb.equal, params.wb.method, params.wb.observer);
if (!params.wb.enabled) {
currWB = ColorTemp();
} else if (params.wb.method == "Camera") {
currWB = imgsrc->getWB();
} else if (params.wb.method == "autold") {
double rm, gm, bm;
imgsrc->getAutoWBMultipliers(rm, gm, bm);
currWB.update(rm, gm, bm, params.wb.equal, params.wb.observer, params.wb.tempBias);
}
calclum = nullptr ;
params.dirpyrDenoise.getCurves(noiseLCurve, noiseCCurve);
autoNR = (float) settings->nrauto;//
autoNRmax = (float) settings->nrautomax;//
if (settings->leveldnti == 0) {
tilesize = 1024;
overlap = 128;
}
if (settings->leveldnti == 1) {
tilesize = 768;
overlap = 96;
}
// const int tilesize = 768;
// const int overlap = 96;
int numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip;
ipf.Tile_calc(tilesize, overlap, 2, fw, fh, numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip);
int nbtl = numtiles_W * numtiles_H;
if ((settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "AUT") || (settings->leveldnautsimpl == 0 && params.dirpyrDenoise.C2method == "AUTO")) {
nbtl = 9;
}
ch_M = new float [nbtl];//allocate memory
max_r = new float [nbtl];
max_b = new float [nbtl];
min_b = new float [9];
min_r = new float [9];
lumL = new float [nbtl];
chromC = new float [nbtl];
ry = new float [nbtl];
sk = new float [nbtl];
pcsk = new float [nbtl];
// printf("expert=%d\n",settings->leveldnautsimpl);
if (settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "PON") {
MyTime t1pone, t2pone;
t1pone.set();
int crW = 100; // settings->leveldnv == 0
int crH = 100; // settings->leveldnv == 0
if (settings->leveldnv == 1) {
crW = 250;
crH = 250;
}
if (settings->leveldnv == 2) {
crW = int (tileWskip / 2);
crH = int (tileHskip / 2);
}
// if(settings->leveldnv ==2) {crW=int(tileWskip/2);crH=int(1.15f*(tileWskip/2));}//adapted to scale of preview
if (settings->leveldnv == 3) {
crW = tileWskip - 10;
crH = tileHskip - 10;
}
float lowdenoise = 1.f;
int levaut = settings->leveldnaut;
if (levaut == 1) { //Standard
lowdenoise = 0.7f;
}
// int crW=tileWskip-10;//crop noise width
// int crH=tileHskip-10;//crop noise height
// Imagefloat *origCropPart;//init auto noise
// origCropPart = new Imagefloat (crW, crH);//allocate memory
if (params.dirpyrDenoise.enabled) {//evaluate Noise
LUTf gamcurve(65536, 0);
float gam, gamthresh, gamslope;
ipf.RGB_denoise_infoGamCurve(params.dirpyrDenoise, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
Imagefloat *origCropPart;//init auto noise
origCropPart = new Imagefloat(crW, crH); //allocate memory
Imagefloat *provicalc = new Imagefloat((crW + 1) / 2, (crH + 1) / 2); //for denoise curves
int skipP = 1;
#ifdef _OPENMP
#pragma omp for schedule(dynamic) collapse(2) nowait
#endif
for (int wcr = 0; wcr < numtiles_W; wcr++) {
for (int hcr = 0; hcr < numtiles_H; hcr++) {
int beg_tileW = wcr * tileWskip + tileWskip / 2.f - crW / 2.f;
int beg_tileH = hcr * tileHskip + tileHskip / 2.f - crH / 2.f;
PreviewProps ppP(beg_tileW, beg_tileH, crW, crH, skipP);
imgsrc->getImage(currWB, tr, origCropPart, ppP, params.toneCurve, params.raw, 0);
//baseImg->getStdImage(currWB, tr, origCropPart, ppP, true, params.toneCurve);
// we only need image reduced to 1/4 here
for (int ii = 0; ii < crH; ii += 2) {
for (int jj = 0; jj < crW; jj += 2) {
provicalc->r(ii >> 1, jj >> 1) = origCropPart->r(ii, jj);
provicalc->g(ii >> 1, jj >> 1) = origCropPart->g(ii, jj);
provicalc->b(ii >> 1, jj >> 1) = origCropPart->b(ii, jj);
}
}
imgsrc->convertColorSpace(provicalc, params.icm, currWB); //for denoise luminance curve
float maxr = 0.f;
float maxb = 0.f;
float pondcorrec = 1.0f;
float chaut, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc;
int Nb;
chaut = 0.f;
redaut = 0.f;
blueaut = 0.f;
maxredaut = 0.f;
maxblueaut = 0.f;
chromina = 0.f;
sigma = 0.f;
ipf.RGB_denoise_info(origCropPart, provicalc, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope, params.dirpyrDenoise, imgsrc->getDirPyrDenoiseExpComp(), chaut, Nb, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc);
float multip = 1.f;
float adjustr = 1.f;
if (params.icm.workingProfile == "ProPhoto") {
adjustr = 1.f; //
} else if (params.icm.workingProfile == "Adobe RGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.workingProfile == "sRGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.workingProfile == "WideGamut") {
adjustr = 1.f / 1.1f;
} else if (params.icm.workingProfile == "Rec2020") {
adjustr = 1.f / 1.1f;
} else if (params.icm.workingProfile == "Beta RGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.workingProfile == "BestRGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.workingProfile == "BruceRGB") {
adjustr = 1.f / 1.2f;
}
if (!imgsrc->isRAW()) {
multip = 2.f; //take into account gamma for TIF / JPG approximate value...not good for gamma=1
}
float maxmax = max(maxredaut, maxblueaut);
float delta;
int mode = 2;
int lissage = settings->leveldnliss;
ipf.calcautodn_info(chaut, delta, Nb, levaut, maxmax, lumema, chromina, mode, lissage, redyel, skinc, nsknc);
// printf("PROCESS cha=%f red=%f bl=%f redM=%f bluM=%f chrom=%f sigm=%f lum=%f sigL=%f\n",chaut,redaut,blueaut, maxredaut, maxblueaut, chromina, sigma, lumema, sigma_L);
if (maxredaut > maxblueaut) {
maxr = (delta) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
if (minblueaut <= minredaut && minblueaut < chaut) {
maxb = (-chaut + minblueaut) / (autoNRmax * multip * adjustr * lowdenoise);
}
} else {
maxb = (delta) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
if (minredaut <= minblueaut && minredaut < chaut) {
maxr = (-chaut + minredaut) / (autoNRmax * multip * adjustr * lowdenoise);
}
}//maxb mxr - empirical evaluation red / blue
ch_M[hcr * numtiles_W + wcr] = pondcorrec * chaut / (autoNR * multip * adjustr * lowdenoise);
max_r[hcr * numtiles_W + wcr] = pondcorrec * maxr;
max_b[hcr * numtiles_W + wcr] = pondcorrec * maxb;
lumL[hcr * numtiles_W + wcr] = lumema;
chromC[hcr * numtiles_W + wcr] = chromina;
ry[hcr * numtiles_W + wcr] = redyel;
sk[hcr * numtiles_W + wcr] = skinc;
pcsk[hcr * numtiles_W + wcr] = nsknc;
}
}
delete provicalc;
delete origCropPart;
}
int liss = settings->leveldnliss; //smooth result around mean
if (liss == 2 || liss == 3) {
// I smooth only mean and not delta (max)
float nchm = 0.f;
float koef = 0.4f; //between 0.1 to 0.9
if (liss == 3) {
koef = 0.0f; //quasi auto for mean Ch
}
for (int wcr = 0; wcr < numtiles_W; wcr++) {
for (int hcr = 0; hcr < numtiles_H; hcr++) {
nchm += ch_M[hcr * numtiles_W + wcr];
}
}
nchm /= (numtiles_H * numtiles_W);
for (int wcr = 0; wcr < numtiles_W; wcr++) {
for (int hcr = 0; hcr < numtiles_H; hcr++) {
ch_M[hcr * numtiles_W + wcr] = nchm + (ch_M[hcr * numtiles_W + wcr] - nchm) * koef;
}
}
}
if (liss == 3) { //same as auto but with much cells
float MaxR = 0.f;
float MaxB = 0.f;
float MaxRMoy = 0.f;
float MaxBMoy = 0.f;
for (int k = 0; k < nbtl; k++) {
MaxBMoy += max_b[k];
MaxRMoy += max_r[k];
if (max_r[k] > MaxR) {
MaxR = max_r[k];
}
if (max_b[k] > MaxB) {
MaxB = max_b[k];
}
}
MaxBMoy /= nbtl;
MaxRMoy /= nbtl;
for (int k = 0; k < nbtl; k++) {
if (MaxR > MaxB) {
max_r[k] = MaxRMoy + (MaxR - MaxRMoy) * 0.66f; //#std Dev
//max_b[k]=MinB;
max_b[k] = MaxBMoy + (MaxB - MaxBMoy) * 0.66f;
} else {
max_b[k] = MaxBMoy + (MaxB - MaxBMoy) * 0.66f;
//max_r[k]=MinR;
max_r[k] = MaxRMoy + (MaxR - MaxRMoy) * 0.66f;
}
}
}
if (settings->verbose) {
t2pone.set();
printf("Info denoise ponderated performed in %d usec:\n", t2pone.etime(t1pone));
}
}
}
if ((settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "AUT") || (settings->leveldnautsimpl == 0 && params.dirpyrDenoise.C2method == "AUTO")) {
MyTime t1aue, t2aue;
t1aue.set();
int crW, crH;
if (settings->leveldnv == 0) {
crW = 100;
crH = 100;
}
if (settings->leveldnv == 1) {
crW = 250;
crH = 250;
}
if (settings->leveldnv == 2) {
crW = int (tileWskip / 2);
crH = int (tileHskip / 2);
}
// if(settings->leveldnv ==2) {crW=int(tileWskip/2);crH=int(1.15f*(tileWskip/2));}//adapted to scale of preview
if (settings->leveldnv == 3) {
crW = tileWskip - 10;
crH = tileHskip - 10;
}
float lowdenoise = 1.f;
int levaut = settings->leveldnaut;
if (levaut == 1) { //Standard
lowdenoise = 0.7f;
}
if (params.dirpyrDenoise.enabled) {//evaluate Noise
LUTf gamcurve(65536, 0);
float gam, gamthresh, gamslope;
ipf.RGB_denoise_infoGamCurve(params.dirpyrDenoise, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope);
int Nb[9];
int coordW[3];//coordinate of part of image to measure noise
int coordH[3];
int begW = 50;
int begH = 50;
coordW[0] = begW;
coordW[1] = fw / 2 - crW / 2;
coordW[2] = fw - crW - begW;
coordH[0] = begH;
coordH[1] = fh / 2 - crH / 2;
coordH[2] = fh - crH - begH;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
Imagefloat *origCropPart;//init auto noise
origCropPart = new Imagefloat(crW, crH); //allocate memory
Imagefloat *provicalc = new Imagefloat((crW + 1) / 2, (crH + 1) / 2); //for denoise curves
#ifdef _OPENMP
#pragma omp for schedule(dynamic) collapse(2) nowait
#endif
for (int wcr = 0; wcr <= 2; wcr++) {
for (int hcr = 0; hcr <= 2; hcr++) {
PreviewProps ppP(coordW[wcr], coordH[hcr], crW, crH, 1);
imgsrc->getImage(currWB, tr, origCropPart, ppP, params.toneCurve, params.raw, 0);
//baseImg->getStdImage(currWB, tr, origCropPart, ppP, true, params.toneCurve);
// we only need image reduced to 1/4 here
for (int ii = 0; ii < crH; ii += 2) {
for (int jj = 0; jj < crW; jj += 2) {
provicalc->r(ii >> 1, jj >> 1) = origCropPart->r(ii, jj);
provicalc->g(ii >> 1, jj >> 1) = origCropPart->g(ii, jj);
provicalc->b(ii >> 1, jj >> 1) = origCropPart->b(ii, jj);
}
}
imgsrc->convertColorSpace(provicalc, params.icm, currWB); //for denoise luminance curve
int nb = 0;
float chaut = 0.f, redaut = 0.f, blueaut = 0.f, maxredaut = 0.f, maxblueaut = 0.f, minredaut = 0.f, minblueaut = 0.f, chromina = 0.f, sigma = 0.f, lumema = 0.f, sigma_L = 0.f, redyel = 0.f, skinc = 0.f, nsknc = 0.f;
ipf.RGB_denoise_info(origCropPart, provicalc, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope, params.dirpyrDenoise, imgsrc->getDirPyrDenoiseExpComp(), chaut, nb, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc);
Nb[hcr * 3 + wcr] = nb;
ch_M[hcr * 3 + wcr] = chaut;
max_r[hcr * 3 + wcr] = maxredaut;
max_b[hcr * 3 + wcr] = maxblueaut;
min_r[hcr * 3 + wcr] = minredaut;
min_b[hcr * 3 + wcr] = minblueaut;
lumL[hcr * 3 + wcr] = lumema;
chromC[hcr * 3 + wcr] = chromina;
ry[hcr * 3 + wcr] = redyel;
sk[hcr * 3 + wcr] = skinc;
pcsk[hcr * 3 + wcr] = nsknc;
}
}
delete provicalc;
delete origCropPart;
}
float chM = 0.f;
float MaxR = 0.f;
float MaxB = 0.f;
float MinR = 100000000.f;
float MinB = 100000000.f;
float maxr = 0.f;
float maxb = 0.f;
float multip = 1.f;
float adjustr = 1.f;
float Max_R[9] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
float Max_B[9] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
float Min_R[9];
float Min_B[9];
float MaxRMoy = 0.f;
float MaxBMoy = 0.f;
float MinRMoy = 0.f;
float MinBMoy = 0.f;
if (params.icm.workingProfile == "ProPhoto") {
adjustr = 1.f;
} else if (params.icm.workingProfile == "Adobe RGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.workingProfile == "sRGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.workingProfile == "WideGamut") {
adjustr = 1.f / 1.1f;
} else if (params.icm.workingProfile == "Rec2020") {
adjustr = 1.f / 1.1f;
} else if (params.icm.workingProfile == "Beta RGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.workingProfile == "BestRGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.workingProfile == "BruceRGB") {
adjustr = 1.f / 1.2f;
}
if (!imgsrc->isRAW()) {
multip = 2.f; //take into account gamma for TIF / JPG approximate value...not good for gamma=1
}
float delta[9];
int mode = 1;
int lissage = settings->leveldnliss;
for (int k = 0; k < 9; k++) {
float maxmax = max(max_r[k], max_b[k]);
ipf.calcautodn_info(ch_M[k], delta[k], Nb[k], levaut, maxmax, lumL[k], chromC[k], mode, lissage, ry[k], sk[k], pcsk[k]);
// printf("ch_M=%f delta=%f\n",ch_M[k], delta[k]);
}
for (int k = 0; k < 9; k++) {
if (max_r[k] > max_b[k]) {
//printf("R delta=%f koef=%f\n",delta[k],autoNRmax*multip*adjustr*lowdenoise);
Max_R[k] = (delta[k]) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
Min_B[k] = - (ch_M[k] - min_b[k]) / (autoNRmax * multip * adjustr * lowdenoise);
Max_B[k] = 0.f;
Min_R[k] = 0.f;
} else {
//printf("B delta=%f koef=%f\n",delta[k],autoNRmax*multip*adjustr*lowdenoise);
Max_B[k] = (delta[k]) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
Min_R[k] = - (ch_M[k] - min_r[k]) / (autoNRmax * multip * adjustr * lowdenoise);
Min_B[k] = 0.f;
Max_R[k] = 0.f;
}
}
for (int k = 0; k < 9; k++) {
// printf("ch_M= %f Max_R=%f Max_B=%f min_r=%f min_b=%f\n",ch_M[k],Max_R[k], Max_B[k],Min_R[k], Min_B[k]);
chM += ch_M[k];
MaxBMoy += Max_B[k];
MaxRMoy += Max_R[k];
MinRMoy += Min_R[k];
MinBMoy += Min_B[k];
if (Max_R[k] > MaxR) {
MaxR = Max_R[k];
}
if (Max_B[k] > MaxB) {
MaxB = Max_B[k];
}
if (Min_R[k] < MinR) {
MinR = Min_R[k];
}
if (Min_B[k] < MinB) {
MinB = Min_B[k];
}
}
chM /= 9;
MaxBMoy /= 9;
MaxRMoy /= 9;
MinBMoy /= 9;
MinRMoy /= 9;
if (MaxR > MaxB) {
maxr = MaxRMoy + (MaxR - MaxRMoy) * 0.66f; //#std Dev
// maxb=MinB;
maxb = MinBMoy + (MinB - MinBMoy) * 0.66f;
} else {
maxb = MaxBMoy + (MaxB - MaxBMoy) * 0.66f;
// maxr=MinR;
maxr = MinRMoy + (MinR - MinRMoy) * 0.66f;
}
// printf("SIMPL cha=%f red=%f bl=%f \n",chM,maxr,maxb);
params.dirpyrDenoise.chroma = chM / (autoNR * multip * adjustr);
params.dirpyrDenoise.redchro = maxr;
params.dirpyrDenoise.bluechro = maxb;
}
if (settings->verbose) {
t2aue.set();
printf("Info denoise auto performed in %d usec:\n", t2aue.etime(t1aue));
}
//end evaluate noise
}
baseImg = new Imagefloat(fw, fh);
imgsrc->getImage(currWB, tr, baseImg, pp, params.toneCurve, params.raw, 1);
if (pl) {
pl->setProgress(0.50);
}
// LUTf Noisecurve (65536,0);
//!!!// auto exposure!!!
expcomp = params.toneCurve.expcomp;
bright = params.toneCurve.brightness;
contr = params.toneCurve.contrast;
black = params.toneCurve.black;
hlcompr = params.toneCurve.hlcompr;
hlcomprthresh = params.toneCurve.hlcomprthresh;
if (params.toneCurve.autoexp) {
LUTu aehist;
int aehistcompr;
imgsrc->getAutoExpHistogram(aehist, aehistcompr);
ipf.getAutoExp(aehist, aehistcompr, params.toneCurve.clip, expcomp, bright, contr, black, hlcompr, hlcomprthresh);
}
if (params.toneCurve.histmatching) {
if (!params.toneCurve.fromHistMatching) {
imgsrc->getAutoMatchedToneCurve(params.icm, params.raw, params.wb.observer, params.toneCurve.curve);
}
if (params.toneCurve.autoexp) {
params.toneCurve.expcomp = 0.0;
}
params.toneCurve.autoexp = false;
params.toneCurve.curveMode = ToneCurveMode::FILMLIKE;
params.toneCurve.curve2 = { 0 };
params.toneCurve.brightness = 0;
params.toneCurve.contrast = 0;
params.toneCurve.black = 0;
}
// Spot Removal
if (params.spot.enabled && !params.spot.entries.empty ()) {
ipf.removeSpots (baseImg, imgsrc, params.spot.entries, pp, currWB, nullptr, tr);
}
// at this stage, we can flush the raw data to free up quite an important amount of memory
// commented out because it makes the application crash when batch processing...
// TODO: find a better place to flush rawData and rawRGB
if (flush) {
imgsrc->flush();
}
return true;
}
void stage_denoise()
{
const procparams::ProcParams& params = job->pparams;
DirPyrDenoiseParams denoiseParams = params.dirpyrDenoise; // make a copy because we cheat here
if (denoiseParams.Lmethod == "CUR") {
if (noiseLCurve) {
denoiseParams.luma = 0.5f;
} else {
denoiseParams.luma = 0.0f;
}
} else if (denoiseParams.Lmethod == "SLI") {
noiseLCurve.Reset();
}
if (denoiseParams.enabled && (noiseLCurve || noiseCCurve)) {
// we only need image reduced to 1/4 here
calclum = new Imagefloat((fw + 1) / 2, (fh + 1) / 2); //for luminance denoise curve
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ii = 0; ii < fh; ii += 2) {
for (int jj = 0; jj < fw; jj += 2) {
calclum->r(ii >> 1, jj >> 1) = baseImg->r(ii, jj);
calclum->g(ii >> 1, jj >> 1) = baseImg->g(ii, jj);
calclum->b(ii >> 1, jj >> 1) = baseImg->b(ii, jj);
}
}
imgsrc->convertColorSpace(calclum, params.icm, currWB);
}
if (denoiseParams.enabled) {
ImProcFunctions &ipf = * (ipf_p.get());
float nresi, highresi;
int kall = 2;
ipf.RGB_denoise(kall, baseImg, baseImg, calclum, ch_M, max_r, max_b, imgsrc->isRAW(), denoiseParams, imgsrc->getDirPyrDenoiseExpComp(), noiseLCurve, noiseCCurve, nresi, highresi);
}
// delete calclum;
delete [] ch_M;
delete [] max_r;
delete [] max_b;
delete [] min_r;
delete [] min_b;
delete [] lumL;
delete [] chromC;
delete [] ry;
delete [] sk;
delete [] pcsk;
}
void stage_transform()
{
const procparams::ProcParams& params = job->pparams;
//ImProcFunctions ipf (&params, true);
ImProcFunctions &ipf = * (ipf_p.get());
if (params.filmNegative.enabled) {
// Process film negative AFTER colorspace conversion if camera space is NOT selected
if (params.filmNegative.colorSpace != FilmNegativeParams::ColorSpace::INPUT) {
imgsrc->convertColorSpace(baseImg, params.icm, currWB);
}
FilmNegativeParams copy = params.filmNegative;
ipf.filmNegativeProcess(baseImg, baseImg, copy, params.raw, imgsrc, currWB);
// ... otherwise, process film negative BEFORE colorspace conversion
if (params.filmNegative.colorSpace == FilmNegativeParams::ColorSpace::INPUT) {
imgsrc->convertColorSpace(baseImg, params.icm, currWB);
}
} else {
imgsrc->convertColorSpace(baseImg, params.icm, currWB);
}
// perform first analysis
hist16(65536);
ipf.firstAnalysis(baseImg, params, hist16);
ipf.dehaze(baseImg, params.dehaze);
ipf.ToneMapFattal02(baseImg, params.fattal, 3, 0, nullptr, 0, 0, 0);
// perform transform (excepted resizing)
if (ipf.needsTransform(fw, fh, imgsrc->getRotateDegree(), imgsrc->getMetaData())) {
Imagefloat* trImg = nullptr;
if (ipf.needsLuminanceOnly()) {
trImg = baseImg;
} else {
trImg = new Imagefloat(fw, fh);
}
ipf.transform(baseImg, trImg, 0, 0, 0, 0, fw, fh, fw, fh,
imgsrc->getMetaData(), imgsrc->getRotateDegree(), true, true);
if (trImg != baseImg) {
delete baseImg;
baseImg = trImg;
}
}
}
Imagefloat *stage_finish()
{
procparams::ProcParams& params = job->pparams;
//ImProcFunctions ipf (&params, true);
ImProcFunctions &ipf = * (ipf_p.get());
for (int sp = 0; sp < (int)params.locallab.spots.size(); sp++) {
if(params.locallab.spots.at(sp).expsharp && params.dirpyrequalizer.cbdlMethod == "bef") {
if(params.locallab.spots.at(sp).shardamping < 1) {
params.locallab.spots.at(sp).shardamping = 1;
}
}
}
if (params.dirpyrequalizer.cbdlMethod == "bef" && params.dirpyrequalizer.enabled && !params.colorappearance.enabled) {
const int W = baseImg->getWidth();
const int H = baseImg->getHeight();
LabImage labcbdl(W, H);
ipf.rgb2lab(*baseImg, labcbdl, params.icm.workingProfile);
ipf.dirpyrequalizer(&labcbdl, 1);
ipf.lab2rgb(labcbdl, *baseImg, params.icm.workingProfile);
}
// RGB processing
labView = new LabImage(fw, fh);
if (params.locallab.enabled && params.locallab.spots.size() > 0) {
ipf.rgb2lab(*baseImg, *labView, params.icm.workingProfile);
MyTime t1, t2;
t1.set();
const std::unique_ptr<LabImage> reservView(new LabImage(*labView, true));
const std::unique_ptr<LabImage> lastorigView(new LabImage(*labView, true));
std::unique_ptr<LabImage> savenormtmView;
std::unique_ptr<LabImage> savenormretiView;
LocretigainCurve locRETgainCurve;
LocretitransCurve locRETtransCurve;
LocLHCurve loclhCurve;
LocHHCurve lochhCurve;
LocCHCurve locchCurve;
LocHHCurve lochhCurvejz;
LocCHCurve locchCurvejz;
LocLHCurve loclhCurvejz;
LocCCmaskCurve locccmasCurve;
LocLLmaskCurve locllmasCurve;
LocHHmaskCurve lochhmasCurve;
LocHHmaskCurve lochhhmasCurve;
LocCCmaskCurve locccmasexpCurve;
LocLLmaskCurve locllmasexpCurve;
LocHHmaskCurve lochhmasexpCurve;
LocCCmaskCurve locccmasSHCurve;
LocLLmaskCurve locllmasSHCurve;
LocHHmaskCurve lochhmasSHCurve;
LocCCmaskCurve locccmasvibCurve;
LocLLmaskCurve locllmasvibCurve;
LocHHmaskCurve lochhmasvibCurve;
LocCCmaskCurve locccmaslcCurve;
LocLLmaskCurve locllmaslcCurve;
LocHHmaskCurve lochhmaslcCurve;
LocCCmaskCurve locccmascbCurve;
LocLLmaskCurve locllmascbCurve;
LocHHmaskCurve lochhmascbCurve;
LocCCmaskCurve locccmasretiCurve;
LocLLmaskCurve locllmasretiCurve;
LocHHmaskCurve lochhmasretiCurve;
LocCCmaskCurve locccmastmCurve;
LocLLmaskCurve locllmastmCurve;
LocHHmaskCurve lochhmastmCurve;
LocCCmaskCurve locccmasblCurve;
LocLLmaskCurve locllmasblCurve;
LocHHmaskCurve lochhmasblCurve;
LocCCmaskCurve locccmaslogCurve;
LocLLmaskCurve locllmaslogCurve;
LocHHmaskCurve lochhmaslogCurve;
LocCCmaskCurve locccmascieCurve;
LocLLmaskCurve locllmascieCurve;
LocHHmaskCurve lochhmascieCurve;
LocCCmaskCurve locccmas_Curve;
LocLLmaskCurve locllmas_Curve;
LocHHmaskCurve lochhmas_Curve;
LocHHmaskCurve lochhhmas_Curve;
LocwavCurve loclmasCurveblwav;
LocwavCurve loclmasCurvecolwav;
LocwavCurve loclmasCurve_wav;
LocwavCurve locwavCurve;
LocwavCurve locwavCurvejz;
LocwavCurve loclevwavCurve;
LocwavCurve locconwavCurve;
LocwavCurve loccompwavCurve;
LocwavCurve loccomprewavCurve;
LocwavCurve locedgwavCurve;
LocwavCurve locwavCurvehue;
LocwavCurve locwavCurveden;
LUTf lllocalcurve(65536, LUT_CLIP_OFF);
LUTf lclocalcurve(65536, LUT_CLIP_OFF);
LUTf cllocalcurve(65536, LUT_CLIP_OFF);
LUTf cclocalcurve(65536, LUT_CLIP_OFF);
LUTf rgblocalcurve(65536, LUT_CLIP_OFF);
LUTf hltonecurveloc(65536, LUT_CLIP_OFF);
LUTf shtonecurveloc(65536, LUT_CLIP_OFF);
LUTf tonecurveloc(65536, LUT_CLIP_OFF);
LUTf lightCurveloc(32770, LUT_CLIP_OFF);
LUTf exlocalcurve(65536, LUT_CLIP_OFF);
LUTf lmasklocalcurve(65536, LUT_CLIP_OFF);
LUTf lmaskexplocalcurve(65536, LUT_CLIP_OFF);
LUTf lmaskSHlocalcurve(65536, LUT_CLIP_OFF);
LUTf lmaskviblocalcurve(65536, LUT_CLIP_OFF);
LUTf lmasktmlocalcurve(65536, LUT_CLIP_OFF);
LUTf lmaskretilocalcurve(65536, LUT_CLIP_OFF);
LUTf lmaskcblocalcurve(65536, LUT_CLIP_OFF);
LUTf lmaskbllocalcurve(65536, LUT_CLIP_OFF);
LUTf lmasklclocalcurve(65536, LUT_CLIP_OFF);
LUTf lmaskloglocalcurve(65536, LUT_CLIP_OFF);
LUTf lmasklocal_curve(65536, LUT_CLIP_OFF);
LUTf lmaskcielocalcurve(65536, LUT_CLIP_OFF);
LUTf cielocalcurve(65536, LUT_CLIP_OFF);
LUTf cielocalcurve2(65536, LUT_CLIP_OFF);
LUTf jzlocalcurve(65536, LUT_CLIP_OFF);
LUTf czlocalcurve(65536, LUT_CLIP_OFF);
LUTf czjzlocalcurve(65536, LUT_CLIP_OFF);
array2D<float> shbuffer;
for (size_t sp = 0; sp < params.locallab.spots.size(); sp++) {
if (params.locallab.spots.at(sp).inverssha) {
shbuffer(fw, fh);
break;
}
}
for (size_t sp = 0; sp < params.locallab.spots.size(); sp++) {
// Set local curves of current spot to LUT
locRETgainCurve.Set(params.locallab.spots.at(sp).localTgaincurve);
locRETtransCurve.Set(params.locallab.spots.at(sp).localTtranscurve);
const bool LHutili = loclhCurve.Set(params.locallab.spots.at(sp).LHcurve);
const bool HHutili = lochhCurve.Set(params.locallab.spots.at(sp).HHcurve);
const bool CHutili = locchCurve.Set(params.locallab.spots.at(sp).CHcurve);
const bool HHutilijz = lochhCurvejz.Set(params.locallab.spots.at(sp).HHcurvejz);
const bool CHutilijz = locchCurvejz.Set(params.locallab.spots.at(sp).CHcurvejz);
const bool LHutilijz = loclhCurvejz.Set(params.locallab.spots.at(sp).LHcurvejz);
const bool lcmasutili = locccmasCurve.Set(params.locallab.spots.at(sp).CCmaskcurve);
const bool llmasutili = locllmasCurve.Set(params.locallab.spots.at(sp).LLmaskcurve);
const bool lhmasutili = lochhmasCurve.Set(params.locallab.spots.at(sp).HHmaskcurve);
const bool lhhmasutili = lochhhmasCurve.Set(params.locallab.spots.at(sp).HHhmaskcurve);
const bool lcmasexputili = locccmasexpCurve.Set(params.locallab.spots.at(sp).CCmaskexpcurve);
const bool llmasexputili = locllmasexpCurve.Set(params.locallab.spots.at(sp).LLmaskexpcurve);
const bool lhmasexputili = lochhmasexpCurve.Set(params.locallab.spots.at(sp).HHmaskexpcurve);
const bool lcmasSHutili = locccmasSHCurve.Set(params.locallab.spots.at(sp).CCmaskSHcurve);
const bool llmasSHutili = locllmasSHCurve.Set(params.locallab.spots.at(sp).LLmaskSHcurve);
const bool lhmasSHutili = lochhmasSHCurve.Set(params.locallab.spots.at(sp).HHmaskSHcurve);
const bool lcmasvibutili = locccmasvibCurve.Set(params.locallab.spots.at(sp).CCmaskvibcurve);
const bool llmasvibutili = locllmasvibCurve.Set(params.locallab.spots.at(sp).LLmaskvibcurve);
const bool lhmasvibutili = lochhmasvibCurve.Set(params.locallab.spots.at(sp).HHmaskvibcurve);
const bool lcmascbutili = locccmascbCurve.Set(params.locallab.spots.at(sp).CCmaskcbcurve);
const bool llmascbutili = locllmascbCurve.Set(params.locallab.spots.at(sp).LLmaskcbcurve);
const bool lhmascbutili = lochhmascbCurve.Set(params.locallab.spots.at(sp).HHmaskcbcurve);
const bool lcmasretiutili = locccmasretiCurve.Set(params.locallab.spots.at(sp).CCmaskreticurve);
const bool llmasretiutili = locllmasretiCurve.Set(params.locallab.spots.at(sp).LLmaskreticurve);
const bool lhmasretiutili = lochhmasretiCurve.Set(params.locallab.spots.at(sp).HHmaskreticurve);
const bool lcmastmutili = locccmastmCurve.Set(params.locallab.spots.at(sp).CCmasktmcurve);
const bool lhmaslcutili = lochhmaslcCurve.Set(params.locallab.spots.at(sp).HHmasklccurve);
const bool llmastmutili = locllmastmCurve.Set(params.locallab.spots.at(sp).LLmasktmcurve);
const bool lhmastmutili = lochhmastmCurve.Set(params.locallab.spots.at(sp).HHmasktmcurve);
const bool lcmasblutili = locccmasblCurve.Set(params.locallab.spots.at(sp).CCmaskblcurve);
const bool llmasblutili = locllmasblCurve.Set(params.locallab.spots.at(sp).LLmaskblcurve);
const bool lhmasblutili = lochhmasblCurve.Set(params.locallab.spots.at(sp).HHmaskblcurve);
const bool lcmaslogutili = locccmaslogCurve.Set(params.locallab.spots.at(sp).CCmaskcurveL);
const bool llmaslogutili = locllmaslogCurve.Set(params.locallab.spots.at(sp).LLmaskcurveL);
const bool lhmaslogutili = lochhmaslogCurve.Set(params.locallab.spots.at(sp).HHmaskcurveL);
const bool lcmascieutili = locccmascieCurve.Set(params.locallab.spots.at(sp).CCmaskciecurve);
const bool llmascieutili = locllmascieCurve.Set(params.locallab.spots.at(sp).LLmaskciecurve);
const bool lhmascieutili = lochhmascieCurve.Set(params.locallab.spots.at(sp).HHmaskciecurve);
const bool lcmas_utili = locccmas_Curve.Set(params.locallab.spots.at(sp).CCmask_curve);
const bool llmas_utili = locllmas_Curve.Set(params.locallab.spots.at(sp).LLmask_curve);
const bool lhmas_utili = lochhmas_Curve.Set(params.locallab.spots.at(sp).HHmask_curve);
const bool lhhmas_utili = lochhhmas_Curve.Set(params.locallab.spots.at(sp).HHhmask_curve);
const bool lmasutiliblwav = loclmasCurveblwav.Set(params.locallab.spots.at(sp).LLmaskblcurvewav);
const bool lmasutilicolwav = loclmasCurvecolwav.Set(params.locallab.spots.at(sp).LLmaskcolcurvewav);
const bool lcmaslcutili = locccmaslcCurve.Set(params.locallab.spots.at(sp).CCmasklccurve);
const bool llmaslcutili = locllmaslcCurve.Set(params.locallab.spots.at(sp).LLmasklccurve);
const bool lmasutili_wav = loclmasCurve_wav.Set(params.locallab.spots.at(sp).LLmask_curvewav);
const bool locwavutili = locwavCurve.Set(params.locallab.spots.at(sp).locwavcurve);
const bool locwavutilijz = locwavCurvejz.Set(params.locallab.spots.at(sp).locwavcurvejz);
const bool locwavhueutili = locwavCurvehue.Set(params.locallab.spots.at(sp).locwavcurvehue);
const bool locwavdenutili = locwavCurveden.Set(params.locallab.spots.at(sp).locwavcurveden);
const bool loclevwavutili = loclevwavCurve.Set(params.locallab.spots.at(sp).loclevwavcurve);
const bool locconwavutili = locconwavCurve.Set(params.locallab.spots.at(sp).locconwavcurve);
const bool loccompwavutili = loccompwavCurve.Set(params.locallab.spots.at(sp).loccompwavcurve);
const bool loccomprewavutili = loccomprewavCurve.Set(params.locallab.spots.at(sp).loccomprewavcurve);
const bool locedgwavutili = locedgwavCurve.Set(params.locallab.spots.at(sp).locedgwavcurve);
const bool locallutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).llcurve, lllocalcurve, 1);
const bool localclutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).clcurve, cllocalcurve, 1);
const bool locallcutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).lccurve, lclocalcurve, 1);
const bool localcutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).cccurve, cclocalcurve, 1);
const bool localrgbutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).rgbcurve, rgblocalcurve, 1);
const bool localexutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).excurve, exlocalcurve, 1);
const bool localmaskutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmaskcurve, lmasklocalcurve, 1);
const bool localmaskexputili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmaskexpcurve, lmaskexplocalcurve, 1);
const bool localmaskSHutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).LmaskSHcurve, lmaskSHlocalcurve, 1);
const bool localmaskvibutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmaskvibcurve, lmaskviblocalcurve, 1);
const bool localmasktmutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmasktmcurve, lmasktmlocalcurve, 1);
const bool localmaskretiutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmaskreticurve, lmaskretilocalcurve, 1);
const bool localmaskcbutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmaskcbcurve, lmaskcblocalcurve, 1);
const bool localmaskblutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmaskblcurve, lmaskbllocalcurve, 1);
const bool localmasklcutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmasklccurve, lmasklclocalcurve, 1);
const bool localmasklogutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).LmaskcurveL, lmaskloglocalcurve, 1);
const bool localmask_utili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmask_curve, lmasklocal_curve, 1);
const bool localmaskcieutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).Lmaskciecurve, lmaskcielocalcurve, 1);
const bool localcieutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).ciecurve, cielocalcurve, 1);
const bool localcieutili2 = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).ciecurve2, cielocalcurve2, 1);
const bool localjzutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).jzcurve, jzlocalcurve, 1);
const bool localczutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).czcurve, czlocalcurve, 1);
const bool localczjzutili = CurveFactory::diagonalCurve2Lut(params.locallab.spots.at(sp).czjzcurve, czjzlocalcurve, 1);
//provisory
double ecomp = params.locallab.spots.at(sp).expcomp;
double lblack = params.locallab.spots.at(sp).black;
double lhlcompr = params.locallab.spots.at(sp).hlcompr;
double lhlcomprthresh = params.locallab.spots.at(sp).hlcomprthresh;
double shcompr = params.locallab.spots.at(sp).shcompr;
double br = params.locallab.spots.at(sp).lightness;
double cont = params.locallab.spots.at(sp).contrast;
if (lblack < 0. && params.locallab.spots.at(sp).expMethod == "pde" ) {
lblack *= 1.5;
}
// Reference parameters computation
double huere, chromare, lumare, huerefblu, chromarefblu, lumarefblu, sobelre;
int lastsav;
float avge;
float meantme;
float stdtme;
float meanretie;
float stdretie;
float fab = 1.f;
if (params.locallab.spots.at(sp).spotMethod == "exc") {
ipf.calc_ref(sp, reservView.get(), reservView.get(), 0, 0, fw, fh, 1, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avge, locwavCurveden, locwavdenutili);
} else {
ipf.calc_ref(sp, labView, labView, 0, 0, fw, fh, 1, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avge, locwavCurveden, locwavdenutili);
}
CurveFactory::complexCurvelocal(ecomp, lblack / 65535., lhlcompr, lhlcomprthresh, shcompr, br, cont, lumare,
hltonecurveloc, shtonecurveloc, tonecurveloc, lightCurveloc, avge,
1);
float minCD;
float maxCD;
float mini;
float maxi;
float Tmean;
float Tsigma;
float Tmin;
float Tmax;
float highresi = 0.f;
float nresi = 0.f;
float highresi46 =0.f;
float nresi46 = 0.f;
float Lhighresi = 0.f;
float Lnresi = 0.f;
float Lhighresi46 = 0.f;
float Lnresi46 = 0.f;
// No Locallab mask is shown in exported picture
ipf.Lab_Local(2, sp, shbuffer, labView, labView, reservView.get(), savenormtmView.get(), savenormretiView.get(), lastorigView.get(), fw, fh, 0, 0, fw, fh, 1, locRETgainCurve, locRETtransCurve,
lllocalcurve, locallutili,
cllocalcurve, localclutili,
lclocalcurve, locallcutili,
loclhCurve, lochhCurve, locchCurve,
lochhCurvejz, locchCurvejz,loclhCurvejz,
lmasklocalcurve, localmaskutili,
lmaskexplocalcurve, localmaskexputili,
lmaskSHlocalcurve, localmaskSHutili,
lmaskviblocalcurve, localmaskvibutili,
lmasktmlocalcurve, localmasktmutili,
lmaskretilocalcurve, localmaskretiutili,
lmaskcblocalcurve, localmaskcbutili,
lmaskbllocalcurve, localmaskblutili,
lmasklclocalcurve, localmasklcutili,
lmaskloglocalcurve, localmasklogutili,
lmasklocal_curve, localmask_utili,
lmaskcielocalcurve, localmaskcieutili,
cielocalcurve, localcieutili,
cielocalcurve2, localcieutili2,
jzlocalcurve, localjzutili,
czlocalcurve, localczutili,
czjzlocalcurve, localczjzutili,
locccmasCurve, lcmasutili, locllmasCurve, llmasutili, lochhmasCurve, lhmasutili, lochhhmasCurve, lhhmasutili, locccmasexpCurve, lcmasexputili, locllmasexpCurve, llmasexputili, lochhmasexpCurve, lhmasexputili,
locccmasSHCurve, lcmasSHutili, locllmasSHCurve, llmasSHutili, lochhmasSHCurve, lhmasSHutili,
locccmasvibCurve, lcmasvibutili, locllmasvibCurve, llmasvibutili, lochhmasvibCurve, lhmasvibutili,
locccmascbCurve, lcmascbutili, locllmascbCurve, llmascbutili, lochhmascbCurve, lhmascbutili,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili,
locccmastmCurve, lcmastmutili, locllmastmCurve, llmastmutili, lochhmastmCurve, lhmastmutili,
locccmasblCurve, lcmasblutili, locllmasblCurve, llmasblutili, lochhmasblCurve, lhmasblutili,
locccmaslcCurve, lcmaslcutili, locllmaslcCurve, llmaslcutili, lochhmaslcCurve, lhmaslcutili,
locccmaslogCurve, lcmaslogutili, locllmaslogCurve, llmaslogutili, lochhmaslogCurve, lhmaslogutili,
locccmas_Curve, lcmas_utili, locllmas_Curve, llmas_utili, lochhmas_Curve, lhmas_utili,
locccmascieCurve, lcmascieutili, locllmascieCurve, llmascieutili, lochhmascieCurve, lhmascieutili,
lochhhmas_Curve, lhhmas_utili,
loclmasCurveblwav,lmasutiliblwav,
loclmasCurvecolwav,lmasutilicolwav,
locwavCurve, locwavutili,
locwavCurvejz, locwavutilijz,
loclevwavCurve, loclevwavutili,
locconwavCurve, locconwavutili,
loccompwavCurve, loccompwavutili,
loccomprewavCurve, loccomprewavutili,
locwavCurvehue, locwavhueutili,
locwavCurveden, locwavdenutili,
locedgwavCurve, locedgwavutili,
loclmasCurve_wav,lmasutili_wav,
LHutili, HHutili, CHutili, HHutilijz, CHutilijz, LHutilijz, cclocalcurve, localcutili, rgblocalcurve, localrgbutili, localexutili, exlocalcurve, hltonecurveloc, shtonecurveloc, tonecurveloc, lightCurveloc,
huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, lastsav, false, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
meantme, stdtme, meanretie, stdretie, fab,
highresi, nresi, highresi46, nresi46, Lhighresi, Lnresi, Lhighresi46, Lnresi46
);
if (sp + 1u < params.locallab.spots.size()) {
// do not copy for last spot as it is not needed anymore
lastorigView->CopyFrom(labView);
}
if (params.locallab.spots.at(sp).spotMethod == "exc") {
ipf.calc_ref(sp, reservView.get(), reservView.get(), 0, 0, fw, fh, 1, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avge, locwavCurveden, locwavdenutili);
} else {
ipf.calc_ref(sp, labView, labView, 0, 0, fw, fh, 1, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre, avge, locwavCurveden, locwavdenutili);
}
}
t2.set();
ipf.lab2rgb(*labView, *baseImg, params.icm.workingProfile);
if (settings->verbose) {
printf("Total local:- %d usec\n", t2.etime(t1));
}
}
curve1(65536);
curve2(65536);
curve(65536, 0);
satcurve(65536, 0);
lhskcurve(65536, 0);
lumacurve(32770, 0); // lumacurve[32768] and lumacurve[32769] will be set to 32768 and 32769 later to allow linear interpolation
clcurve(65536, 0);
wavclCurve(65536, 0);
//if(params.blackwhite.enabled) params.toneCurve.hrenabled=false;
CurveFactory::complexCurve(expcomp, black / 65535.0, hlcompr, hlcomprthresh, params.toneCurve.shcompr, bright, contr,
params.toneCurve.curve, params.toneCurve.curve2,
hist16, curve1, curve2, curve, dummy, customToneCurve1, customToneCurve2);
CurveFactory::RGBCurve(params.rgbCurves.rcurve, rCurve, 1);
CurveFactory::RGBCurve(params.rgbCurves.gcurve, gCurve, 1);
CurveFactory::RGBCurve(params.rgbCurves.bcurve, bCurve, 1);
bool opautili = false;
if (params.colorToning.enabled) {
TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix(params.icm.workingProfile);
double wp[3][3] = {
{wprof[0][0], wprof[0][1], wprof[0][2]},
{wprof[1][0], wprof[1][1], wprof[1][2]},
{wprof[2][0], wprof[2][1], wprof[2][2]}
};
params.colorToning.getCurves(ctColorCurve, ctOpacityCurve, wp, opautili);
clToningcurve(65536, 0);
CurveFactory::diagonalCurve2Lut(params.colorToning.clcurve, clToningcurve, 1);
cl2Toningcurve(65536, 0);
CurveFactory::diagonalCurve2Lut(params.colorToning.cl2curve, cl2Toningcurve, 1);
}
// labView = new LabImage(fw, fh);
if (params.blackwhite.enabled) {
CurveFactory::curveBW(params.blackwhite.beforeCurve, params.blackwhite.afterCurve, hist16, dummy, customToneCurvebw1, customToneCurvebw2, 1);
}
double rrm, ggm, bbm;
float autor, autog, autob;
float satLimit = float (params.colorToning.satProtectionThreshold) / 100.f * 0.7f + 0.3f;
float satLimitOpacity = 1.f - (float (params.colorToning.saturatedOpacity) / 100.f);
if (params.colorToning.enabled && params.colorToning.autosat && params.colorToning.method != "LabGrid") { //for colortoning evaluation of saturation settings
float moyS = 0.f;
float eqty = 0.f;
ipf.moyeqt(baseImg, moyS, eqty); //return image : mean saturation and standard dev of saturation
float satp = ((moyS + 1.5f * eqty) - 0.3f) / 0.7f; //1.5 sigma ==> 93% pixels with high saturation -0.3 / 0.7 convert to Hombre scale
if (satp >= 0.92f) {
satp = 0.92f; //avoid values too high (out of gamut)
}
if (satp <= 0.15f) {
satp = 0.15f; //avoid too low values
}
satLimit = 100.f * satp;
satLimitOpacity = 100.f * (moyS - 0.85f * eqty); //-0.85 sigma==>20% pixels with low saturation
}
autor = -9000.f; // This will ask to compute the "auto" values for the B&W tool (have to be inferior to -5000)
DCPProfileApplyState as;
DCPProfile *dcpProf = imgsrc->getDCP(params.icm, as);
LUTu histToneCurve;
ipf.rgbProc(baseImg, labView, nullptr, curve1, curve2, curve, params.toneCurve.saturation, rCurve, gCurve, bCurve, satLimit, satLimitOpacity, ctColorCurve, ctOpacityCurve, opautili, clToningcurve, cl2Toningcurve, customToneCurve1, customToneCurve2, customToneCurvebw1, customToneCurvebw2, rrm, ggm, bbm, autor, autog, autob, expcomp, hlcompr, hlcomprthresh, dcpProf, as, histToneCurve, options.chunkSizeRGB, options.measure);
if (settings->verbose) {
printf ("Output image / Auto B&W coefs: R=%.2f G=%.2f B=%.2f\n", static_cast<double>(autor), static_cast<double>(autog), static_cast<double>(autob));
}
// if clut was used and size of clut cache == 1 we free the memory used by the clutstore (default clut cache size = 1 for 32 bit OS)
if (params.filmSimulation.enabled && !params.filmSimulation.clutFilename.empty() && options.clutCacheSize == 1) {
CLUTStore::getInstance().clearCache();
}
// freeing up some memory
customToneCurve1.Reset();
customToneCurve2.Reset();
ctColorCurve.Reset();
ctOpacityCurve.Reset();
noiseLCurve.Reset();
noiseCCurve.Reset();
customToneCurvebw1.Reset();
customToneCurvebw2.Reset();
// Freeing baseImg because not used anymore
delete baseImg;
baseImg = nullptr;
if (pl) {
pl->setProgress(0.55);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// start tile processing...???
if (params.labCurve.contrast != 0) { //only use hist16 for contrast
hist16.clear();
#ifdef _OPENMP
#pragma omp parallel
#endif
{
LUTu hist16thr(hist16.getSize()); // one temporary lookup table per thread
hist16thr.clear();
#ifdef _OPENMP
#pragma omp for schedule(static) nowait
#endif
for (int i = 0; i < fh; i++)
for (int j = 0; j < fw; j++) {
hist16thr[(int)((labView->L[i][j]))]++;
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
hist16 += hist16thr;
}
}
}
bool utili;
CurveFactory::complexLCurve(params.labCurve.brightness, params.labCurve.contrast, params.labCurve.lcurve, hist16, lumacurve, dummy, 1, utili);
const bool clcutili = CurveFactory::diagonalCurve2Lut(params.labCurve.clcurve, clcurve, 1);
bool ccutili, cclutili;
CurveFactory::complexsgnCurve(autili, butili, ccutili, cclutili, params.labCurve.acurve, params.labCurve.bcurve, params.labCurve.cccurve,
params.labCurve.lccurve, curve1, curve2, satcurve, lhskcurve, 1);
if (params.colorToning.enabled && params.colorToning.method == "LabGrid") {
ipf.colorToningLabGrid(labView, 0,labView->W , 0, labView->H, false);
}
ipf.shadowsHighlights(labView, params.sh.enabled, params.sh.lab,params.sh.highlights ,params.sh.shadows, params.sh.radius, 1, params.sh.htonalwidth, params.sh.stonalwidth);
if (params.localContrast.enabled) {
// Alberto's local contrast
ipf.localContrast(labView, labView->L, params.localContrast, false, 1);//scale);
}
ipf.chromiLuminanceCurve(nullptr, 1, labView, labView, curve1, curve2, satcurve, lhskcurve, clcurve, lumacurve, utili, autili, butili, ccutili, cclutili, clcutili, dummy, dummy);
if ((params.colorappearance.enabled && !params.colorappearance.tonecie) || (!params.colorappearance.enabled)) {
ipf.EPDToneMap (labView, 0, 1);
}
ipf.vibrance(labView, params.vibrance, params.toneCurve.hrenabled, params.icm.workingProfile);
ipf.labColorCorrectionRegions(labView);
// for all treatments Defringe, Sharpening, Contrast detail ,Microcontrast they are activated if "CIECAM" function are disabled
if ((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) {
ipf.impulsedenoise (labView);
ipf.defringe(labView);
}
if (params.sharpenEdge.enabled) {
ipf.MLsharpen(labView);
}
if (params.sharpenMicro.enabled) {
if ((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) {
ipf.MLmicrocontrast(labView); //!params.colorappearance.sharpcie
}
}
if (((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) && params.sharpening.enabled) {
ipf.sharpening(labView, params.sharpening);
}
// directional pyramid wavelet
if (params.dirpyrequalizer.cbdlMethod == "aft") {
if ((params.colorappearance.enabled && !settings->autocielab) || !params.colorappearance.enabled) {
ipf.dirpyrequalizer(labView, 1); //TODO: this is the luminance tonecurve, not the RGB one
}
}
if ((params.wavelet.enabled)) {
LabImage *unshar = nullptr;
WaveletParams WaveParams = params.wavelet;
WavCurve wavCLVCurve;
WavCurve wavdenoise;
WavCurve wavdenoiseh;
Wavblcurve wavblcurve;
WavOpacityCurveRG waOpacityCurveRG;
WavOpacityCurveSH waOpacityCurveSH;
WavOpacityCurveBY waOpacityCurveBY;
WavOpacityCurveW waOpacityCurveW;
WavOpacityCurveWL waOpacityCurveWL;
LabImage *provradius = nullptr;
bool procont = WaveParams.expcontrast;
bool prochro = WaveParams.expchroma;
bool proedge = WaveParams.expedge;
bool profin = WaveParams.expfinal;
bool proton = WaveParams.exptoning;
bool pronois = WaveParams.expnoise;
/*
if(WaveParams.showmask) {
WaveParams.showmask = false;
WaveParams.expclari = true;
}
*/
if (WaveParams.softrad > 0.f) {
provradius = new LabImage(*labView, true);
}
params.wavelet.getCurves(wavCLVCurve, wavdenoise, wavdenoiseh, wavblcurve, waOpacityCurveRG, waOpacityCurveSH, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL);
CurveFactory::diagonalCurve2Lut(params.wavelet.wavclCurve, wavclCurve, 1);
if ((WaveParams.ushamethod == "sharp" || WaveParams.ushamethod == "clari") && WaveParams.expclari && WaveParams.CLmethod != "all") {
const Glib::ustring provis = params.wavelet.CLmethod;
params.wavelet.CLmethod = "all";
ipf.ip_wavelet(labView, labView, 2, WaveParams, wavCLVCurve, wavdenoise, wavdenoiseh, wavblcurve, waOpacityCurveRG, waOpacityCurveSH, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL, wavclCurve, 1);
unshar = new LabImage(*labView, true);
params.wavelet.CLmethod = provis;
WaveParams.expcontrast = false;
WaveParams.expchroma = false;
WaveParams.expedge = false;
WaveParams.expfinal = false;
WaveParams.exptoning = false;
WaveParams.expnoise = false;
}
ipf.ip_wavelet(labView, labView, 2, WaveParams, wavCLVCurve, wavdenoise, wavdenoiseh, wavblcurve, waOpacityCurveRG, waOpacityCurveSH, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL, wavclCurve, 1);
if ((WaveParams.ushamethod == "sharp" || WaveParams.ushamethod == "clari") && WaveParams.expclari && WaveParams.CLmethod != "all") {
WaveParams.expcontrast = procont;
WaveParams.expchroma = prochro;
WaveParams.expedge = proedge;
WaveParams.expfinal = profin;
WaveParams.exptoning = proton;
WaveParams.expnoise = pronois;
if (WaveParams.softrad > 0.f) {
array2D<float> ble(fw, fh);
array2D<float> guid(fw, fh);
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(fw, fh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < fh; ir++)
for (int jr = 0; jr < fw; jr++) {
float X, Y, Z;
float L = provradius->L[ir][jr];
float a = provradius->a[ir][jr];
float b = provradius->b[ir][jr];
Color::Lab2XYZ(L, a, b, X, Y, Z);
guid[ir][jr] = Y / 32768.f;
float La = labView->L[ir][jr];
float aa = labView->a[ir][jr];
float ba = labView->b[ir][jr];
Color::Lab2XYZ(La, aa, ba, X, Y, Z);
tmpImage->r(ir, jr) = X;
tmpImage->g(ir, jr) = Y;
tmpImage->b(ir, jr) = Z;
ble[ir][jr] = Y / 32768.f;
}
double epsilmax = 0.0001;
double epsilmin = 0.00001;
double aepsil = (epsilmax - epsilmin) / 100.f;
double bepsil = epsilmin; //epsilmax - 100.f * aepsil;
double epsil = aepsil * WaveParams.softrad + bepsil;
float blur = 10.f / 1 * (0.5f + 0.8f * WaveParams.softrad);
// rtengine::guidedFilter(guid, ble, ble, blur, 0.001, multiTh);
rtengine::guidedFilter(guid, ble, ble, blur, epsil, false);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < fh; ir++)
for (int jr = 0; jr < fw; jr++) {
float X = tmpImage->r(ir, jr);
float Y = 32768.f * ble[ir][jr];
float Z = tmpImage->b(ir, jr);
float L, a, b;
Color::XYZ2Lab(X, Y, Z, L, a, b);
labView->L[ir][jr] = L;
}
delete tmpImage;
}
}
if ((WaveParams.ushamethod == "sharp" || WaveParams.ushamethod == "clari") && WaveParams.expclari && WaveParams.CLmethod != "all") {
float mL = (float)(WaveParams.mergeL / 100.f);
float mC = (float)(WaveParams.mergeC / 100.f);
float mL0;
float mC0;
if ((WaveParams.CLmethod == "one" || WaveParams.CLmethod == "inf") && WaveParams.Backmethod == "black") {
mL0 = mC0 = 0.f;
mL = -1.5f * mL;
mC = -mC;
} else if (WaveParams.CLmethod == "sup" && WaveParams.Backmethod == "resid") {
mL0 = mL;
mC0 = mC;
} else {
mL0 = mL = mC0 = mC = 0.f;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int x = 0; x < fh; x++)
for (int y = 0; y < fw; y++) {
labView->L[x][y] = LIM((1.f + mL0) * (unshar->L[x][y]) - mL * labView->L[x][y], 0.f, 32768.f);
labView->a[x][y] = (1.f + mC0) * (unshar->a[x][y]) - mC * labView->a[x][y];
labView->b[x][y] = (1.f + mC0) * (unshar->b[x][y]) - mC * labView->b[x][y];
}
delete unshar;
unshar = NULL;
if (WaveParams.softrad > 0.f) {
delete provradius;
provradius = NULL;
}
}
wavCLVCurve.Reset();
}
ipf.softLight(labView, params.softlight);
if (params.icm.workingTRC != ColorManagementParams::WorkingTrc::NONE) {
const int GW = labView->W;
const int GH = labView->H;
std::unique_ptr<LabImage> provis;
const float pres = 0.01f * params.icm.preser;
if (pres > 0.f && params.icm.wprim != ColorManagementParams::Primaries::DEFAULT) {
provis.reset(new LabImage(GW, GH));
provis->CopyFrom(labView);
}
const std::unique_ptr<Imagefloat> tmpImage1(new Imagefloat(GW, GH));
ipf.lab2rgb(*labView, *tmpImage1, params.icm.workingProfile);
const float gamtone = params.icm.workingTRCGamma;
const float slotone = params.icm.workingTRCSlope;
int illum = toUnderlying(params.icm.will);
const int prim = toUnderlying(params.icm.wprim);
Glib::ustring prof = params.icm.workingProfile;
cmsHTRANSFORM dummy = nullptr;
int ill = 0;
ipf.workingtrc(tmpImage1.get(), tmpImage1.get(), GW, GH, -5, prof, 2.4, 12.92310, ill, 0, dummy, true, false, false);
ipf.workingtrc(tmpImage1.get(), tmpImage1.get(), GW, GH, 5, prof, gamtone, slotone, illum, prim, dummy, false, true, true);
ipf.rgb2lab(*tmpImage1, *labView, params.icm.workingProfile);
// labView and provis
if(provis) {
ipf.preserv(labView, provis.get(), GW, GH);
}
if(params.icm.fbw) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int x = 0; x < GH; x++)
for (int y = 0; y < GW; y++) {
labView->a[x][y] = 0.f;
labView->b[x][y] = 0.f;
}
}
}
//Colorappearance and tone-mapping associated
int f_w = 1, f_h = 1;
if (params.colorappearance.tonecie || params.colorappearance.enabled) {
f_w = fw;
f_h = fh;
}
CieImage *cieView = new CieImage(f_w, (f_h));
CurveFactory::curveLightBrightColor(
params.colorappearance.curve,
params.colorappearance.curve2,
params.colorappearance.curve3,
hist16, dummy,
dummy, dummy,
customColCurve1,
customColCurve2,
customColCurve3,
1);
if (params.colorappearance.enabled) {
double adap;
int imgNum = 0;
if (imgsrc->getSensorType() == ST_BAYER) {
imgNum = params.raw.bayersensor.imageNum;
} else if (imgsrc->getSensorType() == ST_FUJI_XTRANS) {
//imgNum = params.raw.xtranssensor.imageNum;
}
float fnum = imgsrc->getMetaData()->getFNumber(imgNum); // F number
float fiso = imgsrc->getMetaData()->getISOSpeed(imgNum) ; // ISO
float fspeed = imgsrc->getMetaData()->getShutterSpeed(imgNum) ; //speed
float fcomp = imgsrc->getMetaData()->getExpComp(imgNum); //compensation + -
if (fnum < 0.3f || fiso < 5.f || fspeed < 0.00001f) {
adap = 2000.;
}//if no exif data or wrong
else {
double E_V = fcomp + log2 ((fnum * fnum) / fspeed / (fiso / 100.f));
double kexp = 0.;
E_V += kexp * params.toneCurve.expcomp;// exposure compensation in tonecurve ==> direct EV
E_V += 0.5 * log2(params.raw.expos); // exposure raw white point ; log2 ==> linear to EV
adap = std::pow(2.0, E_V - 3.0); //cd / m2
}
LUTf CAMBrightCurveJ;
LUTf CAMBrightCurveQ;
float CAMMean = NAN;
float d, dj, yb;
ipf.ciecam_02float (cieView, float (adap), 1, 2, labView, &params, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 0, 1, true, d, dj, yb, 1);
}
delete cieView;
cieView = nullptr;
// end tile processing...???
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (pl) {
pl->setProgress(0.60);
}
int imw, imh;
double tmpScale = ipf.resizeScale(&params, fw, fh, imw, imh);
bool labResize = params.resize.enabled && params.resize.method != "Nearest" && (tmpScale != 1.0 || params.prsharpening.enabled);
LabImage *tmplab;
// crop and convert to rgb16
int cx = 0, cy = 0, cw = labView->W, ch = labView->H;
if (params.crop.enabled) {
cx = params.crop.x;
cy = params.crop.y;
cw = params.crop.w;
ch = params.crop.h;
if (labResize) { // crop lab data
tmplab = new LabImage(cw, ch);
for (int row = 0; row < ch; row++) {
for (int col = 0; col < cw; col++) {
tmplab->L[row][col] = labView->L[row + cy][col + cx];
tmplab->a[row][col] = labView->a[row + cy][col + cx];
tmplab->b[row][col] = labView->b[row + cy][col + cx];
}
}
delete labView;
labView = tmplab;
cx = 0;
cy = 0;
}
}
if (labResize) { // resize lab data
if ((labView->W != imw || labView->H != imh) &&
(params.resize.allowUpscaling || (labView->W >= imw && labView->H >= imh))) {
// resize image
tmplab = new LabImage(imw, imh);
ipf.Lanczos(labView, tmplab, tmpScale);
delete labView;
labView = tmplab;
}
cw = labView->W;
ch = labView->H;
if (params.prsharpening.enabled) {
for (int i = 0; i < ch; i++) {
for (int j = 0; j < cw; j++) {
labView->L[i][j] = labView->L[i][j] < 0.f ? 0.f : labView->L[i][j];
}
}
ipf.sharpening(labView, params.prsharpening);
}
}
bool bwonly = params.blackwhite.enabled && !params.colorToning.enabled && !autili && !butili && !params.colorappearance.enabled;
///////////// Custom output gamma has been removed, the user now has to create
///////////// a new output profile with the ICCProfileCreator
// if Default gamma mode: we use the profile selected in the "Output profile" combobox;
// gamma come from the selected profile, otherwise it comes from "Free gamma" tool
Imagefloat* readyImg = ipf.lab2rgbOut(labView, cx, cy, cw, ch, params.icm);
if (settings->verbose) {
printf("Output profile_: \"%s\"\n", params.icm.outputProfile.c_str());
}
delete labView;
labView = nullptr;
if (bwonly) { //force BW r=g=b
if (settings->verbose) {
printf("Force BW\n");
}
for (int ccw = 0; ccw < cw; ccw++) {
for (int cch = 0; cch < ch; cch++) {
readyImg->r(cch, ccw) = readyImg->g(cch, ccw);
readyImg->b(cch, ccw) = readyImg->g(cch, ccw);
}
}
}
if (pl) {
pl->setProgress(0.70);
}
if (tmpScale != 1.0 && params.resize.method == "Nearest" &&
(params.resize.allowUpscaling || (readyImg->getWidth() >= imw && readyImg->getHeight() >= imh))) { // resize rgb data (gamma applied)
Imagefloat* tempImage = new Imagefloat(imw, imh);
ipf.resize(readyImg, tempImage, tmpScale);
delete readyImg;
readyImg = tempImage;
}
switch (params.metadata.mode) {
case MetaDataParams::TUNNEL:
// Sending back the whole first root, which won't necessarily be the selected frame number
// and may contain subframe depending on initial raw's hierarchy
readyImg->setMetadata(initialImage->getMetaData()->getRootExifData());
break;
case MetaDataParams::EDIT:
// ask for the correct frame number, but may contain subframe depending on initial raw's hierarchy
readyImg->setMetadata(initialImage->getMetaData()->getBestExifData(imgsrc, &params.raw), params.exif, params.iptc);
break;
default: // case MetaDataParams::STRIP
// nothing to do
break;
}
// Setting the output curve to readyImg
// use the selected output profile if present, otherwise use LCMS2 profile generate by lab2rgb16 w/ gamma
if (!params.icm.outputProfile.empty() && params.icm.outputProfile != ColorManagementParams::NoICMString) {
// if ICCStore::getInstance()->getProfile send back an object, then ICCStore::getInstance()->getContent will do too
cmsHPROFILE jprof = ICCStore::getInstance()->getProfile(params.icm.outputProfile); //get outProfile
if (jprof == nullptr) {
if (settings->verbose) {
printf("\"%s\" ICC output profile not found!\n - use LCMS2 substitution\n", params.icm.outputProfile.c_str());
}
} else {
if (settings->verbose) {
printf("Using \"%s\" output profile\n", params.icm.outputProfile.c_str());
}
ProfileContent pc = ICCStore::getInstance()->getContent(params.icm.outputProfile);
readyImg->setOutputProfile(pc.getData().c_str(), pc.getData().size());
}
} else {
// No ICM
readyImg->setOutputProfile(nullptr, 0);
}
// t2.set();
// if( settings->verbose )
// printf("Total:- %d usec\n", t2.etime(t1));
if (!job->initialImage) {
initialImage->decreaseRef();
}
delete job;
if (pl) {
pl->setProgress(0.75);
}
/* curve1.reset();curve2.reset();
curve.reset();
satcurve.reset();
lhskcurve.reset();
rCurve.reset();
gCurve.reset();
bCurve.reset();
hist16.reset();
hist16C.reset();
*/
return readyImg;
}
void stage_early_resize()
{
procparams::ProcParams& params = job->pparams;
//ImProcFunctions ipf (&params, true);
ImProcFunctions &ipf = * (ipf_p.get());
int imw, imh;
double scale_factor = ipf.resizeScale(&params, fw, fh, imw, imh);
std::unique_ptr<LabImage> tmplab(new LabImage(fw, fh));
ipf.rgb2lab(*baseImg, *tmplab, params.icm.workingProfile);
if (params.crop.enabled) {
int cx = params.crop.x;
int cy = params.crop.y;
int cw = params.crop.w;
int ch = params.crop.h;
std::unique_ptr<LabImage> cropped(new LabImage(cw, ch));
for (int row = 0; row < ch; row++) {
for (int col = 0; col < cw; col++) {
cropped->L[row][col] = tmplab->L[row + cy][col + cx];
cropped->a[row][col] = tmplab->a[row + cy][col + cx];
cropped->b[row][col] = tmplab->b[row + cy][col + cx];
}
}
tmplab = std::move(cropped);
}
assert(params.resize.enabled);
// resize image
if (params.resize.allowUpscaling || (imw <= fw && imh <= fh)) {
std::unique_ptr<LabImage> resized(new LabImage(imw, imh));
ipf.Lanczos(tmplab.get(), resized.get(), scale_factor);
tmplab = std::move(resized);
}
adjust_procparams(scale_factor);
fw = imw;
fh = imh;
delete baseImg;
baseImg = new Imagefloat(fw, fh);
ipf.lab2rgb(*tmplab, *baseImg, params.icm.workingProfile);
}
void adjust_procparams(double scale_factor)
{
procparams::ProcParams &params = job->pparams;
procparams::ProcParams defaultparams;
params.resize.enabled = false;
params.crop.enabled = false;
if (params.prsharpening.enabled) {
params.sharpening = params.prsharpening;
} else {
params.sharpening.radius *= scale_factor;
params.sharpening.deconvradius *= scale_factor;
}
params.impulseDenoise.thresh *= scale_factor;
if (scale_factor < 0.5) {
params.impulseDenoise.enabled = false;
}
params.wavelet.strength *= scale_factor;
double noise_factor = (1.0 - scale_factor);
params.dirpyrDenoise.luma *= noise_factor; // * scale_factor;
//params.dirpyrDenoise.Ldetail += (100 - params.dirpyrDenoise.Ldetail) * scale_factor;
auto &lcurve = params.dirpyrDenoise.lcurve;
for (size_t i = 2; i < lcurve.size(); i += 4) {
lcurve[i] *= min(noise_factor /* * scale_factor*/, 1.0);
}
noiseLCurve.Set(lcurve);
const char *medmethods[] = { "soft", "33", "55soft", "55", "77", "99" };
if (params.dirpyrDenoise.median) {
auto &key = params.dirpyrDenoise.methodmed == "RGB" ? params.dirpyrDenoise.rgbmethod : params.dirpyrDenoise.medmethod;
for (int i = 1; i < int (sizeof(medmethods) / sizeof(const char *)); ++i) {
if (key == medmethods[i]) {
int j = i - int (1.0 / scale_factor);
if (j < 0) {
params.dirpyrDenoise.median = false;
} else {
key = medmethods[j];
}
break;
}
}
}
params.epd.scale *= scale_factor;
//params.epd.edgeStopping *= scale_factor;
const double dirpyreq_scale = min(scale_factor * 1.5, 1.0);
for (int i = 0; i < 6; ++i) {
adjust_radius(defaultparams.dirpyrequalizer.mult[i], dirpyreq_scale,
params.dirpyrequalizer.mult[i]);
}
params.dirpyrequalizer.threshold *= scale_factor;
adjust_radius(defaultparams.defringe.radius, scale_factor,
params.defringe.radius);
params.sh.radius *= scale_factor;
params.localContrast.radius *= scale_factor;
if (params.raw.xtranssensor.method == procparams::RAWParams::XTransSensor::getMethodString(procparams::RAWParams::XTransSensor::Method::THREE_PASS)) {
params.raw.xtranssensor.method = procparams::RAWParams::XTransSensor::getMethodString(procparams::RAWParams::XTransSensor::Method::ONE_PASS);
}
if (params.raw.bayersensor.method == procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::PIXELSHIFT)) {
params.raw.bayersensor.method = procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::RCD);
}
// Use Rcd instead of Amaze for fast export
if (params.raw.bayersensor.method == procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::AMAZE)) {
params.raw.bayersensor.method = procparams::RAWParams::BayerSensor::getMethodString(procparams::RAWParams::BayerSensor::Method::RCD);
}
}
private:
ProcessingJobImpl* job;
int& errorCode;
ProgressListener* pl;
bool flush;
// internal state
std::unique_ptr<ImProcFunctions> ipf_p;
InitialImage *initialImage;
ImageSource *imgsrc;
int fw;
int fh;
int tr;
PreviewProps pp;
NoiseCurve noiseLCurve;
NoiseCurve noiseCCurve;
Imagefloat *calclum;
float autoNR;
float autoNRmax;
int tilesize;
int overlap;
float *ch_M;
float *max_r;
float *max_b;
float *min_b;
float *min_r;
float *lumL;
float *chromC;
float *ry;
float *sk;
float *pcsk;
double expcomp;
int bright;
int contr;
int black;
int hlcompr;
int hlcomprthresh;
ColorTemp currWB;
Imagefloat *baseImg;
LabImage* labView;
LUTu hist16;
LUTf curve1;
LUTf curve2;
LUTf curve;
LUTf satcurve;
LUTf lhskcurve;
LUTf lumacurve;
LUTf clcurve;
LUTf clToningcurve;
LUTf cl2Toningcurve;
LUTf wavclCurve;
LUTf rCurve;
LUTf gCurve;
LUTf bCurve;
LUTu dummy;
ToneCurve customToneCurve1, customToneCurve2;
ColorGradientCurve ctColorCurve;
OpacityCurve ctOpacityCurve;
ColorAppearance customColCurve1, customColCurve2, customColCurve3 ;
ToneCurve customToneCurvebw1;
ToneCurve customToneCurvebw2;
bool autili, butili;
};
} // namespace
IImagefloat* processImage(ProcessingJob* pjob, int& errorCode, ProgressListener* pl, bool flush)
{
ImageProcessor proc(pjob, errorCode, pl, flush);
return proc();
}
void batchProcessingThread(ProcessingJob* job, BatchProcessingListener* bpl)
{
ProcessingJob* currentJob = job;
while (currentJob) {
int errorCode;
IImagefloat* img = processImage(currentJob, errorCode, bpl, true);
if (errorCode) {
bpl->error(M("MAIN_MSG_CANNOTLOAD"));
currentJob = nullptr;
} else {
try {
currentJob = bpl->imageReady(img);
} catch (Glib::Exception& ex) {
bpl->error(ex.what());
currentJob = nullptr;
}
}
}
}
void startBatchProcessing(ProcessingJob* job, BatchProcessingListener* bpl)
{
if (bpl) {
Glib::Thread::create(sigc::bind(sigc::ptr_fun(batchProcessingThread), job, bpl), 0, true, true, Glib::THREAD_PRIORITY_LOW);
}
}
}