rawTherapee/rtengine/filmnegativeproc.cc
2019-10-30 22:12:06 +01:00

399 lines
13 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2019 Alberto Romei <aldrop8@gmail.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cmath>
#include <iostream>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "rawimage.h"
#include "rawimagesource.h"
#include "coord.h"
#include "mytime.h"
#include "opthelper.h"
#include "procparams.h"
#include "rt_algo.h"
#include "rtengine.h"
//#define BENCHMARK
#include "StopWatch.h"
namespace
{
bool channelsAvg(
const rtengine::RawImage* ri,
int width,
int height,
const float* cblacksom,
rtengine::Coord spotPos,
int spotSize,
const rtengine::procparams::FilmNegativeParams& params,
std::array<float, 3>& avgs
)
{
avgs = {}; // Channel averages
if (ri->getSensorType() != rtengine::ST_BAYER && ri->getSensorType() != rtengine::ST_FUJI_XTRANS) {
return false;
}
if (rtengine::settings->verbose) {
printf("Spot coord: x=%d y=%d\n", spotPos.x, spotPos.y);
}
const int half_spot_size = spotSize / 2;
const int& x1 = spotPos.x - half_spot_size;
const int& x2 = spotPos.x + half_spot_size;
const int& y1 = spotPos.y - half_spot_size;
const int& y2 = spotPos.y + half_spot_size;
if (x1 < 0 || x2 > width || y1 < 0 || y2 > height) {
return false; // Spot goes outside bounds, bail out.
}
std::array<int, 3> pxCount = {}; // Per-channel sample counts
for (int c = x1; c < x2; ++c) {
for (int r = y1; r < y2; ++r) {
const int ch = ri->getSensorType() == rtengine::ST_BAYER ? ri->FC(r,c) : ri->XTRANSFC(r,c);
++pxCount[ch];
// Sample the original unprocessed values from RawImage, subtracting black levels.
// Scaling is irrelevant, as we are only interested in the ratio between two spots.
avgs[ch] += ri->data[r][c] - cblacksom[ch];
}
}
for (int ch = 0; ch < 3; ++ch) {
avgs[ch] /= pxCount[ch];
}
return true;
}
}
bool rtengine::RawImageSource::getFilmNegativeExponents(Coord2D spotA, Coord2D spotB, int tran, const procparams::FilmNegativeParams &currentParams, std::array<float, 3>& newExps)
{
newExps = {
static_cast<float>(currentParams.redRatio * currentParams.greenExp),
static_cast<float>(currentParams.greenExp),
static_cast<float>(currentParams.blueRatio * currentParams.greenExp)
};
constexpr int spotSize = 32; // TODO: Make this configurable?
Coord spot;
std::array<float, 3> clearVals;
std::array<float, 3> denseVals;
// Sample first spot
transformPosition(spotA.x, spotA.y, tran, spot.x, spot.y);
if (!channelsAvg(ri, W, H, cblacksom, spot, spotSize, currentParams, clearVals)) {
return false;
}
// Sample second spot
transformPosition(spotB.x, spotB.y, tran, spot.x, spot.y);
if (!channelsAvg(ri, W, H, cblacksom, spot, spotSize, currentParams, denseVals)) {
return false;
}
// Detect which one is the dense spot, based on green channel
if (clearVals[1] < denseVals[1]) {
std::swap(clearVals, denseVals);
}
if (settings->verbose) {
printf("Clear film values: R=%g G=%g B=%g\n", clearVals[0], clearVals[1], clearVals[2]);
printf("Dense film values: R=%g G=%g B=%g\n", denseVals[0], denseVals[1], denseVals[2]);
}
const float denseGreenRatio = clearVals[1] / denseVals[1];
// Calculate logarithms in arbitrary base
const auto logBase =
[](float base, float num) -> float
{
return std::log(num) / std::log(base);
};
// Calculate exponents for each channel, based on the ratio between the bright and dark values,
// compared to the ratio in the reference channel (green)
for (int ch = 0; ch < 3; ++ch) {
if (ch == 1) {
newExps[ch] = 1.f; // Green is the reference channel
} else {
newExps[ch] = CLAMP(logBase(clearVals[ch] / denseVals[ch], denseGreenRatio), 0.3f, 4.f);
}
}
if (settings->verbose) {
printf("New exponents: R=%g G=%g B=%g\n", newExps[0], newExps[1], newExps[2]);
}
return true;
}
void rtengine::RawImageSource::filmNegativeProcess(const procparams::FilmNegativeParams &params)
{
// BENCHFUNMICRO
if (!params.enabled) {
return;
}
// Exponents are expressed as positive in the parameters, so negate them in order
// to get the reciprocals.
const std::array<float, 3> exps = {
static_cast<float>(-params.redRatio * params.greenExp),
static_cast<float>(-params.greenExp),
static_cast<float>(-params.blueRatio * params.greenExp)
};
MyTime t1, t2, t3,t4, t5;
t1.set();
// Channel vectors to calculate medians
std::array<std::vector<float>, 3> cvs;
// Sample one every 5 pixels, and push the value in the appropriate channel vector.
// Choose an odd step, not a multiple of the CFA size, to get a chance to visit each channel.
if (ri->getSensorType() == ST_BAYER) {
for (int row = 0; row < H; row += 5) {
const int c0 = ri->FC(row, 0);
const int c1 = ri->FC(row, 5);
int col = 0;
for (; col < W - 5; col += 10) {
cvs[c0].push_back(rawData[row][col]);
cvs[c1].push_back(rawData[row][col + 5]);
}
if (col < W) {
cvs[c0].push_back(rawData[row][col]);
}
}
}
else if (ri->getSensorType() == ST_FUJI_XTRANS) {
for (int row = 0; row < H; row += 5) {
const std::array<unsigned int, 6> cs = {
ri->XTRANSFC(row, 0),
ri->XTRANSFC(row, 5),
ri->XTRANSFC(row, 10),
ri->XTRANSFC(row, 15),
ri->XTRANSFC(row, 20),
ri->XTRANSFC(row, 25)
};
int col = 0;
for (; col < W - 25; col += 30) {
for (int c = 0; c < 6; ++c) {
cvs[cs[c]].push_back(rawData[row][col + c * 5]);
}
}
for (int c = 0; col < W; col += 5, ++c) {
cvs[cs[c]].push_back(rawData[row][col]);
}
}
}
constexpr float MAX_OUT_VALUE = 65000.f;
t2.set();
if (settings->verbose) {
printf("Median vector fill loop time us: %d\n", t2.etime(t1));
}
t2.set();
std::array<float, 3> medians; // Channel median values
std::array<float, 3> mults = {
1.f,
1.f,
1.f
}; // Channel normalization multipliers
for (int c = 0; c < 3; ++c) {
// Find median values for each channel
if (!cvs[c].empty()) {
findMinMaxPercentile(cvs[c].data(), cvs[c].size(), 0.5f, medians[c], 0.5f, medians[c], true);
medians[c] = pow_F(rtengine::max(medians[c], 1.f), exps[c]);
// Determine the channel multiplier so that N times the median becomes 65k. This clips away
// the values in the dark border surrounding the negative (due to the film holder, for example),
// the reciprocal of which have blown up to stellar values.
mults[c] = MAX_OUT_VALUE / (medians[c] * 24.f);
}
}
t3.set();
if (settings->verbose) {
printf("Sample count: %zu, %zu, %zu\n", cvs[0].size(), cvs[1].size(), cvs[2].size());
printf("Medians: %g %g %g\n", medians[0], medians[1], medians[2] );
printf("Computed multipliers: %g %g %g\n", mults[0], mults[1], mults[2] );
printf("Median calc time us: %d\n", t3.etime(t2));
}
constexpr float CLIP_VAL = 65535.f;
t3.set();
if (ri->getSensorType() == ST_BAYER) {
#ifdef __SSE2__
const vfloat onev = F2V(1.f);
const vfloat clipv = F2V(CLIP_VAL);
#endif
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 16)
#endif
for (int row = 0; row < H; ++row) {
int col = 0;
// Avoid trouble with zeroes, minimum pixel value is 1.
const float exps0 = exps[FC(row, col)];
const float exps1 = exps[FC(row, col + 1)];
const float mult0 = mults[FC(row, col)];
const float mult1 = mults[FC(row, col + 1)];
#ifdef __SSE2__
const vfloat expsv = _mm_setr_ps(exps0, exps1, exps0, exps1);
const vfloat multsv = _mm_setr_ps(mult0, mult1, mult0, mult1);
for (; col < W - 3; col += 4) {
STVFU(rawData[row][col], vminf(multsv * pow_F(vmaxf(LVFU(rawData[row][col]), onev), expsv), clipv));
}
#endif // __SSE2__
for (; col < W - 1; col += 2) {
rawData[row][col] = rtengine::min(mult0 * pow_F(rtengine::max(rawData[row][col], 1.f), exps0), CLIP_VAL);
rawData[row][col + 1] = rtengine::min(mult1 * pow_F(rtengine::max(rawData[row][col + 1], 1.f), exps1), CLIP_VAL);
}
if (col < W) {
rawData[row][col] = rtengine::min(mult0 * pow_F(rtengine::max(rawData[row][col], 1.f), exps0), CLIP_VAL);
}
}
} else if (ri->getSensorType() == ST_FUJI_XTRANS) {
#ifdef __SSE2__
const vfloat onev = F2V(1.f);
const vfloat clipv = F2V(CLIP_VAL);
#endif
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 16)
#endif
for (int row = 0; row < H; row ++) {
int col = 0;
// Avoid trouble with zeroes, minimum pixel value is 1.
const std::array<float, 6> expsc = {
exps[ri->XTRANSFC(row, 0)],
exps[ri->XTRANSFC(row, 1)],
exps[ri->XTRANSFC(row, 2)],
exps[ri->XTRANSFC(row, 3)],
exps[ri->XTRANSFC(row, 4)],
exps[ri->XTRANSFC(row, 5)]
};
const std::array<float, 6> multsc = {
mults[ri->XTRANSFC(row, 0)],
mults[ri->XTRANSFC(row, 1)],
mults[ri->XTRANSFC(row, 2)],
mults[ri->XTRANSFC(row, 3)],
mults[ri->XTRANSFC(row, 4)],
mults[ri->XTRANSFC(row, 5)]
};
#ifdef __SSE2__
const vfloat expsv0 = _mm_setr_ps(expsc[0], expsc[1], expsc[2], expsc[3]);
const vfloat expsv1 = _mm_setr_ps(expsc[4], expsc[5], expsc[0], expsc[1]);
const vfloat expsv2 = _mm_setr_ps(expsc[2], expsc[3], expsc[4], expsc[5]);
const vfloat multsv0 = _mm_setr_ps(multsc[0], multsc[1], multsc[2], multsc[3]);
const vfloat multsv1 = _mm_setr_ps(multsc[4], multsc[5], multsc[0], multsc[1]);
const vfloat multsv2 = _mm_setr_ps(multsc[2], multsc[3], multsc[4], multsc[5]);
for (; col < W - 11; col += 12) {
STVFU(rawData[row][col], vminf(multsv0 * pow_F(vmaxf(LVFU(rawData[row][col]), onev), expsv0), clipv));
STVFU(rawData[row][col + 4], vminf(multsv1 * pow_F(vmaxf(LVFU(rawData[row][col + 4]), onev), expsv1), clipv));
STVFU(rawData[row][col + 8], vminf(multsv2 * pow_F(vmaxf(LVFU(rawData[row][col + 8]), onev), expsv2), clipv));
}
#endif // __SSE2__
for (; col < W - 5; col += 6) {
for (int c = 0; c < 6; ++c) {
rawData[row][col + c] = rtengine::min(multsc[c] * pow_F(rtengine::max(rawData[row][col + c], 1.f), expsc[c]), CLIP_VAL);
}
}
for (int c = 0; col < W; col++, c++) {
rawData[row][col + c] = rtengine::min(multsc[c] * pow_F(rtengine::max(rawData[row][col + c], 1.f), expsc[c]), CLIP_VAL);
}
}
}
t4.set();
if (settings->verbose) {
printf("Pow loop time us: %d\n", t4.etime(t3));
}
t4.set();
PixelsMap bitmapBads(W, H);
int totBP = 0; // Hold count of bad pixels to correct
if (ri->getSensorType() == ST_BAYER) {
#ifdef _OPENMP
#pragma omp parallel for reduction(+:totBP) schedule(dynamic,16)
#endif
for (int i = 0; i < H; ++i) {
for (int j = 0; j < W; ++j) {
if (rawData[i][j] >= MAX_OUT_VALUE) {
bitmapBads.set(j, i);
++totBP;
}
}
}
if (totBP > 0) {
interpolateBadPixelsBayer(bitmapBads, rawData);
}
}
else if (ri->getSensorType() == ST_FUJI_XTRANS) {
#ifdef _OPENMP
#pragma omp parallel for reduction(+:totBP) schedule(dynamic,16)
#endif
for (int i = 0; i < H; ++i) {
for (int j = 0; j < W; ++j) {
if (rawData[i][j] >= MAX_OUT_VALUE) {
bitmapBads.set(j, i);
totBP++;
}
}
}
if (totBP > 0) {
interpolateBadPixelsXtrans(bitmapBads);
}
}
t5.set();
if (settings->verbose) {
printf("Bad pixels count: %d\n", totBP);
printf("Bad pixels interpolation time us: %d\n", t5.etime(t4));
}
}