rawTherapee/rtengine/dirpyr_equalizer.cc

1062 lines
35 KiB
C++

/*
* This file is part of RawTherapee.
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*
* (C) 2010 Emil Martinec <ejmartin@uchicago.edu>
*
*/
#include <cstddef>
#include <cmath>
#include "curves.h"
#include "labimage.h"
#include "color.h"
#include "mytime.h"
#include "improcfun.h"
#include "rawimagesource.h"
#include "array2D.h"
#include "rt_math.h"
#include "opthelper.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0)
#define RANGEFN(i) ((1000.0f / (i + 1000.0f)))
#define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000)
#define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) )
namespace rtengine
{
static const int maxlevel = 6;
static const int maxlevelloc = 5;
static const float noise = 2000;
//sequence of scales
static const int scales[6] = {1, 2, 4, 8, 16, 32};
static const int scalesloc[5] = {1, 2, 4, 8, 16};
extern const Settings* settings;
//sequence of scales
SSEFUNCTION void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, float ** dest_a, float ** dest_b, const double * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
{
int lastlevel = maxlevel;
if(settings->verbose) {
printf("Dirpyr scaleprev=%i\n", scaleprev);
}
float atten123 = (float) settings->level123_cbdl;
if(atten123 > 50.f) {
atten123 = 50.f;
}
if(atten123 < 0.f) {
atten123 = 0.f;
}
float atten0 = (float) settings->level0_cbdl;
if(atten0 > 40.f) {
atten123 = 40.f;
}
if(atten0 < 0.f) {
atten0 = 0.f;
}
if((t_r - t_l) < 0.55f) {
t_l = t_r + 0.55f; //avoid too small range
}
while (lastlevel > 0 && fabs(mult[lastlevel - 1] - 1) < 0.001) {
lastlevel--;
//printf("last level to process %d \n",lastlevel);
}
if (lastlevel == 0) {
return;
}
int level;
float multi[6] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f};
float scalefl[6];
for(int lv = 0; lv < 6; lv++) {
scalefl[lv] = ((float) scales[lv]) / (float) scaleprev;
if(lv >= 1) {
if(scalefl[lv] < 1.f) {
multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
} else {
multi[lv] = (float) mult[lv];
}
} else {
if(scalefl[lv] < 1.f) {
multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
} else {
multi[lv] = (float) mult[lv];
}
}
}
if(settings->verbose) {
printf("CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4], multi[5]);
}
multi_array2D<float, maxlevel> dirpyrlo (srcwidth, srcheight);
level = 0;
//int thresh = 100 * mult[5];
int scale = (int)(scales[level]) / scaleprev;
if(scale < 1) {
scale = 1;
}
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
level = 1;
while(level < lastlevel) {
scale = (int)(scales[level]) / scaleprev;
if(scale < 1) {
scale = 1;
}
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale);
level ++;
}
float **tmpHue, **tmpChr;
if(skinprot != 0.f) {
// precalculate hue and chroma, use SSE, if available
// by precalculating these values we can greatly reduce the number of calculations in idirpyr_eq_channel()
// but we need two additional buffers for this preprocessing
tmpHue = new float*[srcheight];
for (int i = 0; i < srcheight; i++) {
tmpHue[i] = new float[srcwidth];
}
#ifdef __SSE2__
#pragma omp parallel for
for(int i = 0; i < srcheight; i++) {
int j;
for(j = 0; j < srcwidth - 3; j += 4) {
_mm_storeu_ps(&tmpHue[i][j], xatan2f(LVFU(l_b[i][j]), LVFU(l_a[i][j])));
}
for(; j < srcwidth; j++) {
tmpHue[i][j] = xatan2f(l_b[i][j], l_a[i][j]);
}
}
#else
#pragma omp parallel for
for(int i = 0; i < srcheight; i++) {
for(int j = 0; j < srcwidth; j++) {
tmpHue[i][j] = xatan2f(l_b[i][j], l_a[i][j]);
}
}
#endif
tmpChr = new float*[srcheight];
for (int i = 0; i < srcheight; i++) {
tmpChr[i] = new float[srcwidth];
}
#ifdef __SSE2__
#pragma omp parallel
{
__m128 div = _mm_set1_ps(327.68f);
#pragma omp for
for(int i = 0; i < srcheight; i++) {
int j;
for(j = 0; j < srcwidth - 3; j += 4) {
_mm_storeu_ps(&tmpChr[i][j], _mm_sqrt_ps(SQRV(LVFU(l_b[i][j])) + SQRV(LVFU(l_a[i][j]))) / div);
}
for(; j < srcwidth; j++) {
tmpChr[i][j] = sqrtf(SQR((l_b[i][j])) + SQR((l_a[i][j]))) / 327.68f;
}
}
}
#else
#pragma omp parallel for
for(int i = 0; i < srcheight; i++) {
for(int j = 0; j < srcwidth; j++) {
tmpChr[i][j] = sqrtf(SQR((l_b[i][j])) + SQR((l_a[i][j]))) / 327.68f;
}
}
#endif
}
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
float ** buffer = dirpyrlo[lastlevel - 1];
for(int level = lastlevel - 1; level > 0; level--) {
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice );
}
scale = scales[0];
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice );
if(skinprot != 0.f) {
for (int i = 0; i < srcheight; i++) {
delete [] tmpChr[i];
}
delete [] tmpChr;
for (int i = 0; i < srcheight; i++) {
delete [] tmpHue[i];
}
delete [] tmpHue;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#pragma omp parallel for
for (int i = 0; i < srcheight; i++)
for (int j = 0; j < srcwidth; j++) {
dst[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
}
}
SSEFUNCTION void ImProcFunctions :: cbdl_local_temp(float ** src, float ** dst, float ** loctemp, int srcwidth, int srcheight, const float * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
{
int lastlevel = maxlevelloc;
if(settings->verbose) {
printf("Dirpyr scaleprev=%i\n", scaleprev);
}
float atten123 = (float) settings->level123_cbdl;
if(atten123 > 50.f) {
atten123 = 50.f;
}
if(atten123 < 0.f) {
atten123 = 0.f;
}
float atten0 = (float) settings->level0_cbdl;
if(atten0 > 40.f) {
atten123 = 40.f;
}
if(atten0 < 0.f) {
atten0 = 0.f;
}
if((t_r - t_l) < 0.55f) {
t_l = t_r + 0.55f; //avoid too small range
}
while (lastlevel > 0 && fabs(mult[lastlevel - 1] - 1) < 0.001) {
lastlevel--;
//printf("last level to process %d \n",lastlevel);
}
if (lastlevel == 0) {
return;
}
int level;
float multi[5] = {1.f, 1.f, 1.f, 1.f, 1.f};
float scalefl[5];
for(int lv = 0; lv < 5; lv++) {
scalefl[lv] = ((float) scalesloc[lv]) / (float) scaleprev;
if(lv >= 1) {
if(scalefl[lv] < 1.f) {
multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
} else {
multi[lv] = (float) mult[lv];
}
} else {
if(scalefl[lv] < 1.f) {
multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
} else {
multi[lv] = (float) mult[lv];
}
}
}
if(settings->verbose) {
printf("CbDL local mult0=%f 1=%f 2=%f 3=%f 4=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4]);
}
multi_array2D<float, maxlevelloc> dirpyrlo (srcwidth, srcheight);
level = 0;
//int thresh = 100 * mult[5];
int scale = (int)(scalesloc[level]) / scaleprev;
if(scale < 1) {
scale = 1;
}
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
level = 1;
while(level < lastlevel) {
scale = (int)(scalesloc[level]) / scaleprev;
if(scale < 1) {
scale = 1;
}
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale);
level ++;
}
float **tmpHue, **tmpChr;
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
float ** buffer = dirpyrlo[lastlevel - 1];
for(int level = lastlevel - 1; level > 0; level--) {
idirpyr_eq_channel_loc(dirpyrlo[level], dirpyrlo[level - 1], loctemp, buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice );
}
scale = scalesloc[0];
idirpyr_eq_channel_loc(dirpyrlo[0], dst, loctemp, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice );
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#pragma omp parallel for
for (int i = 0; i < srcheight; i++)
for (int j = 0; j < srcwidth; j++) {
dst[i][j] = src[i][j];
loctemp[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
}
}
void ImProcFunctions :: dirpyr_equalizercam (CieImage *ncie, float ** src, float ** dst, int srcwidth, int srcheight, float ** h_p, float ** C_p, const double * mult, const double dirpyrThreshold, const double skinprot, bool execdir, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
{
int lastlevel = maxlevel;
if(settings->verbose) {
printf("CAM dirpyr scaleprev=%i\n", scaleprev);
}
float atten123 = (float) settings->level123_cbdl;
if(atten123 > 50.f) {
atten123 = 50.f;
}
if(atten123 < 0.f) {
atten123 = 0.f;
}
// printf("atten=%f\n",atten);
float atten0 = (float) settings->level0_cbdl;
if(atten0 > 40.f) {
atten123 = 40.f;
}
if(atten0 < 0.f) {
atten0 = 0.f;
}
if((t_r - t_l) < 0.55f) {
t_l = t_r + 0.55f; //avoid too small range
}
while (fabs(mult[lastlevel - 1] - 1) < 0.001 && lastlevel > 0) {
lastlevel--;
//printf("last level to process %d \n",lastlevel);
}
if (lastlevel == 0) {
return;
}
int level;
float multi[6] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f};
float scalefl[6];
for(int lv = 0; lv < 6; lv++) {
scalefl[lv] = ((float) scales[lv]) / (float) scaleprev;
// if(scalefl[lv] < 1.f) multi[lv] = 1.f; else multi[lv]=(float) mult[lv];
if (lv >= 1) {
if(scalefl[lv] < 1.f) {
multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f;
} else {
multi[lv] = (float) mult[lv];
}
} else {
if(scalefl[lv] < 1.f) {
multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f;
} else {
multi[lv] = (float) mult[lv];
}
}
}
if(settings->verbose) {
printf("CAM CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4], multi[5]);
}
multi_array2D<float, maxlevel> dirpyrlo (srcwidth, srcheight);
level = 0;
int scale = (int)(scales[level]) / scaleprev;
if(scale < 1) {
scale = 1;
}
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
level = 1;
while(level < lastlevel) {
scale = (int)(scales[level]) / scaleprev;
if(scale < 1) {
scale = 1;
}
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale);
level ++;
}
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
float ** buffer = dirpyrlo[lastlevel - 1];
for(int level = lastlevel - 1; level > 0; level--) {
idirpyr_eq_channelcam(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold , h_p, C_p, skinprot, b_l, t_l, t_r);
}
scale = scales[0];
idirpyr_eq_channelcam(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, skinprot, b_l, t_l, t_r);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(execdir) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < srcheight; i++)
for (int j = 0; j < srcwidth; j++) {
if(ncie->J_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) {
dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary?
} else {
dst[i][j] = src[i][j];
}
}
} else
for (int i = 0; i < srcheight; i++)
for (int j = 0; j < srcwidth; j++) {
dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary?
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
SSEFUNCTION void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale)
{
//scale is spacing of directional averaging weights
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// calculate weights, compute directionally weighted average
if(level > 1) {
//generate domain kernel
int domker[5][5] = {{1, 1, 1, 1, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 1, 1, 1, 1}};
// int domker[5][5] = {{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1}};
static const int halfwin = 2;
const int scalewin = halfwin * scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
// multiplied each value of domkerv by 1000 to avoid multiplication by 1000 inside the loop
float domkerv[5][5][4] ALIGNED16 = {{{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}}};
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for //schedule (dynamic,8)
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
for (int jnbr = max(0, j - scalewin); jnbr <= j + scalewin; jnbr += scale) {
//printf("i=%d ",(inbr-i)/scale+halfwin);
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
#ifdef __SSE2__
for(; j < width - scalewin - 3; j += 4) {
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
dftemp1v = LVFU(data_fine[i][j]);
for(int inbr = MAX(0, i - scalewin); inbr <= MIN(height - 1, i + scalewin); inbr += scale) {
int indexihlp = (inbr - i) / scale + halfwin;
for (int jnbr = j - scalewin, indexjhlp = 0; jnbr <= j + scalewin; jnbr += scale, indexjhlp++) {
dftemp2v = LVFU(data_fine[inbr][jnbr]);
dirwtv = LVF(domkerv[indexihlp][indexjhlp]) / (vabsf(dftemp1v - dftemp2v) + thousandv);
valv += dirwtv * dftemp2v;
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv / normv); //low pass filter
}
for(; j < width - scalewin; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
#else
for(; j < width - scalewin; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
#endif
for(; j < width; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= min(width - 1, j + scalewin); jnbr += scale) {
dirwt = DIRWT(inbr, jnbr, i, j);
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
}
}
} else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication
// const int scalewin = scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
__m128 thousandv = _mm_set1_ps( 1000.0f );
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++)
{
float dirwt;
for(j = 0; j < scale; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
for (int jnbr = max(0, j - scale); jnbr <= j + scale; jnbr += scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
#ifdef __SSE2__
for(; j < width - scale - 3; j += 4) {
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
dftemp1v = LVFU(data_fine[i][j]);
for(int inbr = MAX(0, i - scale); inbr <= MIN(height - 1, i + scale); inbr += scale) {
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
dftemp2v = LVFU(data_fine[inbr][jnbr]);
dirwtv = thousandv / (vabsf(dftemp2v - dftemp1v) + thousandv);
valv += dirwtv * dftemp2v;
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv / normv); //low pass filter
}
for(; j < width - scale; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
#else
for(; j < width - scale; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
#endif
for(; j < width; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
for (int jnbr = j - scale; jnbr <= min(width - 1, j + scale); jnbr += scale) {
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; //low pass filter
}
}
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void ImProcFunctions::idirpyr_eq_channel_loc(float ** data_coarse, float ** data_fine, float ** loctemp, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice)
{
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg / 100.f);
float offs;
if(skinprot == 0.f) {
offs = 0.f;
} else {
offs = -1.f;
}
float multbis[5];
multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult
if(level == 4 && mult[level] > 1.f) {
multbis[level] = 1.f + 0.65f * (mult[level] - 1.f);
}
// if(level == 5 && mult[level] > 1.f) {
// multbis[level] = 1.f + 0.45f * (mult[level] - 1.f);
// }
LUTf irangefn (0x20000);
{
const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0));
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
for (int i = 0; i < 0x20000; i++) {
if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) {
irangefn[i] = multbis[level] + offs;
} else {
if (abs(i - 0x10000) < noiselo) {
irangefn[i] = 1.f + offs ;
} else {
irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ;
}
}
}
}
if(skinprot == 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j] - data_coarse[i][j]);
buffer[i][j] += irangefn[hipass + 0x10000] * hipass;
}
}
/*
else if(skinprot > 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float scale = 1.f;
float hipass = (data_fine[i][j] - data_coarse[i][j]);
// These values are precalculated now
float modhue = hue[i][j];
float modchro = chrom[i][j];
Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r);
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ;
}
}
else
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float scale = 1.f;
float hipass = (data_fine[i][j] - data_coarse[i][j]);
// These values are precalculated now
float modhue = hue[i][j];
float modchro = chrom[i][j];
Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r);
float correct = irangefn[hipass + 0x10000];
if (scale == 1.f) {//image hard
buffer[i][j] += (1.f + (correct) * (factorHard)) * hipass ;
} else { //image soft with scale < 1 ==> skin
buffer[i][j] += (1.f + (correct)) * hipass ;
}
}
}
*/
}
void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice)
{
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg / 100.f);
float offs;
if(skinprot == 0.f) {
offs = 0.f;
} else {
offs = -1.f;
}
float multbis[6];
multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult
if(level == 4 && mult[level] > 1.f) {
multbis[level] = 1.f + 0.65f * (mult[level] - 1.f);
}
if(level == 5 && mult[level] > 1.f) {
multbis[level] = 1.f + 0.45f * (mult[level] - 1.f);
}
LUTf irangefn (0x20000);
{
const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0));
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
for (int i = 0; i < 0x20000; i++) {
if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) {
irangefn[i] = multbis[level] + offs;
} else {
if (abs(i - 0x10000) < noiselo) {
irangefn[i] = 1.f + offs ;
} else {
irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ;
}
}
}
}
if(skinprot == 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j] - data_coarse[i][j]);
buffer[i][j] += irangefn[hipass + 0x10000] * hipass;
}
}
else if(skinprot > 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float scale = 1.f;
float hipass = (data_fine[i][j] - data_coarse[i][j]);
// These values are precalculated now
float modhue = hue[i][j];
float modchro = chrom[i][j];
Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r);
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ;
}
}
else
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float scale = 1.f;
float hipass = (data_fine[i][j] - data_coarse[i][j]);
// These values are precalculated now
float modhue = hue[i][j];
float modchro = chrom[i][j];
Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r);
float correct = irangefn[hipass + 0x10000];
if (scale == 1.f) {//image hard
buffer[i][j] += (1.f + (correct) * (factorHard)) * hipass ;
} else { //image soft with scale < 1 ==> skin
buffer[i][j] += (1.f + (correct)) * hipass ;
}
}
}
}
void ImProcFunctions::idirpyr_eq_channelcam(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, const double skinprot, float b_l, float t_l, float t_r)
{
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg / 100.f);
float offs;
if(skinprot == 0.f) {
offs = 0.f;
} else {
offs = -1.f;
}
float multbis[6];
multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult
if(level == 4 && mult[level] > 1.f) {
multbis[level] = 1.f + 0.65f * (mult[level] - 1.f);
}
if(level == 5 && mult[level] > 1.f) {
multbis[level] = 1.f + 0.45f * (mult[level] - 1.f);
}
LUTf irangefn (0x20000);
{
const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0));
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
for (int i = 0; i < 0x20000; i++) {
if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) {
irangefn[i] = multbis[level] + offs;
} else {
if (abs(i - 0x10000) < noiselo) {
irangefn[i] = 1.f + offs ;
} else {
irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ;
}
}
}
}
if(skinprot == 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j] - data_coarse[i][j]);
buffer[i][j] += irangefn[hipass + 0x10000] * hipass ;
}
}
else if(skinprot > 0.f)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j] - data_coarse[i][j]);
float scale = 1.f;
Color::SkinSatCbdlCam ((data_fine[i][j]) / 327.68f, l_a_h[i][j] , l_b_c[i][j], skinprot, scale, true, b_l, t_l, t_r);
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ;
}
}
else
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
float hipass = (data_fine[i][j] - data_coarse[i][j]);
float scale = 1.f;
float correct;
correct = irangefn[hipass + 0x10000];
Color::SkinSatCbdlCam ((data_fine[i][j]) / 327.68f, l_a_h[i][j], l_b_c[i][j] , skinprotneg, scale, false, b_l, t_l, t_r);
if (scale == 1.f) {//image hard
buffer[i][j] += (1.f + (correct) * factorHard) * hipass ;
} else { //image soft
buffer[i][j] += (1.f + (correct)) * hipass ;
}
}
}
// if(gamutlab) {
// ImProcFunctions::badpixcam (buffer[i][j], 6.0, 10, 2);//for bad pixels
// }
/* if(gamutlab) {//disabled
float Lprov1=(buffer[i][j])/327.68f;
float R,G,B;
#ifdef _DEBUG
bool neg=false;
bool more_rgb=false;
//gamut control : Lab values are in gamut
Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb);
#else
//gamut control : Lab values are in gamut
Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);
#endif
// Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);//gamut control in Lab mode ..not in CIECAM
buffer[i][j]=Lprov1*327.68f;
float2 sincosval = xsincosf(modhue);
l_a_h[i][j]=327.68f*modchro*sincosval.y;
l_b_c[i][j]=327.68f*modchro*sincosval.x;
}
*/
}
// float hipass = (data_fine[i][j]-data_coarse[i][j]);
// buffer[i][j] += irangefn[hipass+0x10000] * hipass ;
#undef DIRWT_L
#undef DIRWT_AB
#undef NRWT_L
#undef NRWT_AB
}