185 lines
5.2 KiB
C++
185 lines
5.2 KiB
C++
/* -*- C++ -*-
|
|
*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2018 Alberto Griggio <alberto.griggio@gmail.com>
|
|
* Optimized 2019 Ingo Weyrich <heckflosse67@gmx.de>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* This is a Fast Guided Filter implementation, derived directly from the
|
|
* pseudo-code of the paper:
|
|
*
|
|
* Fast Guided Filter
|
|
* by Kaiming He, Jian Sun
|
|
*
|
|
* available at https://arxiv.org/abs/1505.00996
|
|
*/
|
|
|
|
#include "guidedfilter.h"
|
|
#include "boxblur.h"
|
|
#include "rescale.h"
|
|
#include "imagefloat.h"
|
|
#define BENCHMARK
|
|
#include "StopWatch.h"
|
|
namespace rtengine {
|
|
|
|
namespace {
|
|
|
|
int calculate_subsampling(int w, int h, int r)
|
|
{
|
|
if (r == 1) {
|
|
return 1;
|
|
}
|
|
|
|
if (max(w, h) <= 600) {
|
|
return 1;
|
|
}
|
|
|
|
for (int s = 5; s > 0; --s) {
|
|
if (r % s == 0) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
return LIM(r / 2, 2, 4);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
void guidedFilter(const array2D<float> &guide, const array2D<float> &src, array2D<float> &dst, int r, float epsilon, bool multithread, int subsampling)
|
|
{
|
|
enum Op {MUL, DIVEPSILON, SUBMUL};
|
|
|
|
const auto apply =
|
|
[multithread, epsilon](Op op, array2D<float> &res, const array2D<float> &a, const array2D<float> &b, const array2D<float> &c=array2D<float>()) -> void
|
|
{
|
|
const int w = res.width();
|
|
const int h = res.height();
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < h; ++y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
switch (op) {
|
|
case MUL:
|
|
res[y][x] = a[y][x] * b[y][x];
|
|
break;
|
|
case DIVEPSILON:
|
|
res[y][x] = a[y][x] / (b[y][x] + epsilon); // note: the value of epsilon intentionally has an impact on the result. It is not only to avoid divisions by zero
|
|
break;
|
|
case SUBMUL:
|
|
res[y][x] = c[y][x] - (a[y][x] * b[y][x]);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
res[y][x] = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
const auto f_subsample =
|
|
[multithread](array2D<float> &d, const array2D<float> &s) -> void
|
|
{
|
|
rescaleBilinear(s, d, multithread);
|
|
};
|
|
|
|
const auto f_mean =
|
|
[multithread](array2D<float> &d, array2D<float> &s, int rad) -> void
|
|
{
|
|
rad = LIM(rad, 0, (min(s.width(), s.height()) - 1) / 2 - 1);
|
|
boxblur(static_cast<float**>(s), static_cast<float**>(d), rad, s.width(), s.height(), multithread);
|
|
};
|
|
|
|
const int W = src.width();
|
|
const int H = src.height();
|
|
|
|
if (subsampling <= 0) {
|
|
subsampling = calculate_subsampling(W, H, r);
|
|
}
|
|
|
|
const size_t w = W / subsampling;
|
|
const size_t h = H / subsampling;
|
|
const float r1 = float(r) / subsampling;
|
|
|
|
array2D<float> I1(w, h);
|
|
array2D<float> p1(w, h);
|
|
|
|
f_subsample(I1, guide);
|
|
|
|
if (&guide == &src) {
|
|
f_mean(p1, I1, r1);
|
|
|
|
apply(MUL, I1, I1, I1); // I1 = I1 * I1
|
|
|
|
f_mean(I1, I1, r1);
|
|
|
|
apply(SUBMUL, I1, p1, p1, I1); // I1 = I1 - p1 * p1
|
|
apply(DIVEPSILON, I1, I1, I1); // I1 = I1 / (I1 + epsilon)
|
|
apply(SUBMUL, p1, I1, p1, p1); // p1 = p1 - I1 * p1
|
|
|
|
} else {
|
|
f_subsample(p1, src);
|
|
|
|
array2D<float> meanI(w, h);
|
|
f_mean(meanI, I1, r1);
|
|
|
|
array2D<float> meanp(w, h);
|
|
f_mean(meanp, p1, r1);
|
|
|
|
apply(MUL, p1, I1, p1);
|
|
|
|
f_mean(p1, p1, r1);
|
|
|
|
apply(MUL, I1, I1, I1);
|
|
|
|
f_mean(I1, I1, r1);
|
|
|
|
apply(SUBMUL, I1, meanI, meanI, I1);
|
|
apply(SUBMUL, p1, meanI, meanp, p1);
|
|
apply(DIVEPSILON, I1, p1, I1);
|
|
apply(SUBMUL, p1, I1, meanI, meanp);
|
|
}
|
|
|
|
f_mean(I1, I1, r1);
|
|
f_mean(p1, p1, r1);
|
|
|
|
const int Ws = I1.width();
|
|
const int Hs = I1.height();
|
|
const int Wd = dst.width();
|
|
const int Hd = dst.height();
|
|
|
|
const float col_scale = static_cast<float>(Ws) / static_cast<float>(Wd);
|
|
const float row_scale = static_cast<float>(Hs) / static_cast<float>(Hd);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for if (multithread)
|
|
#endif
|
|
|
|
for (int y = 0; y < Hd; ++y) {
|
|
const float ymrs = y * row_scale;
|
|
for (int x = 0; x < Wd; ++x) {
|
|
dst[y][x] = getBilinearValue(I1, x * col_scale, ymrs) * guide[y][x] + getBilinearValue(p1, x * col_scale, ymrs);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace rtengine
|