rawTherapee/rtengine/ipretinex.cc

555 lines
17 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
* adaptation to RawTherapee
* 2015 Jacques Desmis <jdesmis@gmail.com>
* 2015 Ingo Weyrich <heckflosse@i-weyrich.de>
* D. J. Jobson, Z. Rahman, and G. A. Woodell. A multi-scale
* Retinex for bridging the gap between color images and the
* human observation of scenes. IEEE Transactions on Image Processing,
* 1997, 6(7): 965-976
* Fan Guo Zixing Cai Bin Xie Jin Tang
* School of Information Science and Engineering, Central South University Changsha, China
* Weixing Wang and Lian Xu
* College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
* inspired from 2003 Fabien Pelisson <Fabien.Pelisson@inrialpes.fr>
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "rtengine.h"
#include "gauss.h"
#include "rawimagesource.h"
#include "improcfun.h"
#include "opthelper.h"
#include "StopWatch.h"
#define MAX_RETINEX_SCALES 8
#define clipretinex( val, minv, maxv ) (( val = (val < minv ? minv : val ) ) > maxv ? maxv : val )
#define med3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \
pp[0]=a0; pp[1]=a1; pp[2]=a2; pp[3]=a3; pp[4]=a4; pp[5]=a5; pp[6]=a6; pp[7]=a7; pp[8]=a8; \
PIX_SORT(pp[1],pp[2]); PIX_SORT(pp[4],pp[5]); PIX_SORT(pp[7],pp[8]); \
PIX_SORT(pp[0],pp[1]); PIX_SORT(pp[3],pp[4]); PIX_SORT(pp[6],pp[7]); \
PIX_SORT(pp[1],pp[2]); PIX_SORT(pp[4],pp[5]); PIX_SORT(pp[7],pp[8]); \
PIX_SORT(pp[0],pp[3]); PIX_SORT(pp[5],pp[8]); PIX_SORT(pp[4],pp[7]); \
PIX_SORT(pp[3],pp[6]); PIX_SORT(pp[1],pp[4]); PIX_SORT(pp[2],pp[5]); \
PIX_SORT(pp[4],pp[7]); PIX_SORT(pp[4],pp[2]); PIX_SORT(pp[6],pp[4]); \
PIX_SORT(pp[4],pp[2]); median=pp[4];} //pp4 = median
namespace rtengine
{
extern const Settings* settings;
static float RetinexScales[MAX_RETINEX_SCALES];
void retinex_scales( float* scales, int nscales, int mode, int s, float high)
{
if ( nscales == 1 ) {
scales[0] = (float)s / 2.f;
} else if (nscales == 2) {
scales[1] = (float) s / 2.f;
scales[0] = (float) s;
} else {
float size_step = (float) s / (float) nscales;
if (mode == 0) {
for (int i = 0; i < nscales; ++i ) {
scales[nscales - i - 1] = 2.0f + (float)i * size_step;
}
} else if (mode == 1) {
size_step = (float)log(s - 2.0f) / (float) nscales;
for (int i = 0; i < nscales; ++i ) {
scales[nscales - i - 1] = 2.0f + (float)pow (10.f, (i * size_step) / log (10.f));
}
} else if (mode == 2) {
size_step = (float) log(s - 2.0f) / (float) nscales;
for ( int i = 0; i < nscales; ++i ) {
scales[i] = s - (float)pow (10.f, (i * size_step) / log (10.f));
}
} else if (mode == 3) {
size_step = (float) log(s - 2.0f) / (float) nscales;
for ( int i = 0; i < nscales; ++i ) {
scales[i] = high * s - (float)pow (10.f, (i * size_step) / log (10.f));
}
}
}
}
void mean_stddv2( float **dst, float &mean, float &stddv, int W_L, int H_L, float &maxtr, float &mintr)
{
// summation using double precision to avoid too large summation error for large pictures
double vsquared = 0.f;
double sum = 0.f;
maxtr = -999999.f;
mintr = 999999.f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float lmax = -999999.f, lmin = 999999.f;
#ifdef _OPENMP
#pragma omp for reduction(+:sum,vsquared) nowait // this leads to differences, but parallel summation is more accurate
#endif
for (int i = 0; i < H_L; i++ )
for (int j = 0; j < W_L; j++) {
sum += dst[i][j];
vsquared += (dst[i][j] * dst[i][j]);
if ( dst[i][j] > lmax) {
lmax = dst[i][j] ;
}
if ( dst[i][j] < lmin) {
lmin = dst[i][j] ;
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
maxtr = maxtr > lmax ? maxtr : lmax;
mintr = mintr < lmin ? mintr : lmin;
}
}
mean = sum / (double) (W_L * H_L);
vsquared /= (double) W_L * H_L;
stddv = ( vsquared - (mean * mean) );
stddv = (float)sqrt(stddv);
}
void mean_stddv( float **dst, float &mean, float &stddv, int W_L, int H_L, const float factor, float &maxtr, float &mintr)
{
// summation using double precision to avoid too large summation error for large pictures
double vsquared = 0.f;
double sum = 0.f;
maxtr = 0.f;
mintr = 0.f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float lmax = 0.f, lmin = 0.f;
#ifdef _OPENMP
#pragma omp for reduction(+:sum,vsquared) // this can lead to differences, but parallel summation is more accurate
#endif
for (int i = 0; i < H_L; i++ )
for (int j = 0; j < W_L; j++) {
sum += dst[i][j];
vsquared += (dst[i][j] * dst[i][j]);
if ( dst[i][j] > lmax) {
lmax = dst[i][j] ;
}
if ( dst[i][j] < lmin) {
lmin = dst[i][j] ;
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
maxtr = maxtr > lmax ? maxtr : lmax;
mintr = mintr < lmin ? mintr : lmin;
}
}
sum *= factor;
maxtr *= factor;
mintr *= factor;
vsquared *= (factor * factor);
mean = sum / (float) (W_L * H_L);
vsquared /= (float) W_L * H_L;
stddv = ( vsquared - (mean * mean) );
stddv = (float)sqrt(stddv);
}
void RawImageSource::MSR(float** luminance, float** originalLuminance, float **exLuminance, int width, int height, RetinexParams deh, const RetinextransmissionCurve & dehatransmissionCurve, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax)
{
if (deh.enabled) {//enabled
float mean, stddv, maxtr, mintr;
// float mini, delta, maxi;
float delta;
float eps = 2.f;
bool useHsl = deh.retinexcolorspace == "HSLLOG";
bool useHslLin = deh.retinexcolorspace == "HSLLIN";
float gain2 = (float) deh.gain / 100.f; //def =1 not use
gain2 = useHslLin ? gain2 * 0.5f : gain2;
float offse = (float) deh.offs; //def = 0 not use
int scal = deh.scal; //def=3
scal = 3;//disabled scal
int nei = (int) 2.8f * deh.neigh; //def = 220
float vart = (float)deh.vart / 100.f;//variance
float strength = (float) deh.str / 100.f; // Blend with original L channel data
float limD = (float) deh.limd;
limD = pow(limD, 1.7f);//about 2500 enough
limD *= useHslLin ? 10.f : 1.f;
float ilimD = 1.f / limD;
int moderetinex = 2; // default to 2 ( deh.retinexMethod == "high" )
float hig = ((float) deh.highl) / 100.f;
bool higplus = false ;
float elogt;
float hl = deh.baselog;
if(hl >= 2.71828f) {
elogt = 2.71828f + SQR(SQR(hl - 2.71828f));
} else {
elogt = hl;
}
elogt = 2.71828f;//disabled baselog
FlatCurve* shcurve = NULL;//curve L=f(H)
bool lhutili = false;
if (deh.enabled) {
shcurve = new FlatCurve(deh.lhcurve);
if (!shcurve || shcurve->isIdentity()) {
if (shcurve) {
delete shcurve;
shcurve = NULL;
}
} else {
lhutili = true;
}
}
if(deh.retinexMethod == "highliplus") {
higplus = true;
}
if (deh.retinexMethod == "uni") {
moderetinex = 0;
}
if (deh.retinexMethod == "low") {
moderetinex = 1;
}
if (deh.retinexMethod == "highli" || deh.retinexMethod == "highliplus") {
moderetinex = 3;
}
float aahi = 49.f / 99.f; ////reduce sensibility 50%
float bbhi = 1.f - aahi;
float high;
high = bbhi + aahi * (float) deh.highl;
retinex_scales( RetinexScales, scal, moderetinex, nei, high );
int H_L = height;
int W_L = width;
float *src[H_L] ALIGNED16;
float *srcBuffer = new float[H_L * W_L];
for (int i = 0; i < H_L; i++) {
src[i] = &srcBuffer[i * W_L];
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) {
src[i][j] = luminance[i][j] + eps;
luminance[i][j] = 0.f;
}
float *out[H_L] ALIGNED16;
float *outBuffer = new float[H_L * W_L];
for (int i = 0; i < H_L; i++) {
out[i] = &outBuffer[i * W_L];
}
const float logBetaGain = xlogf(16384.f);
float pond = logBetaGain / (float) scal;
if(!useHslLin) {
pond /= log(elogt);
}
float *buffer = new float[W_L * H_L];;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
for ( int scale = scal - 1; scale >= 0; scale-- ) {
if(scale == scal - 1) {
gaussianBlur<float> (src, out, W_L, H_L, RetinexScales[scale], buffer);
} else { // reuse result of last iteration
gaussianBlur<float> (out, out, W_L, H_L, sqrtf(SQR(RetinexScales[scale]) - SQR(RetinexScales[scale + 1])), buffer);
}
#ifdef __SSE2__
vfloat pondv = F2V(pond);
vfloat limMinv = F2V(ilimD);
vfloat limMaxv = F2V(limD);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < H_L; i++) {
int j = 0;
#ifdef __SSE2__
if(useHslLin) {
for (; j < W_L - 3; j += 4) {
_mm_storeu_ps(&luminance[i][j], LVFU(luminance[i][j]) + pondv * (LIMV(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv) ));
}
} else {
for (; j < W_L - 3; j += 4) {
_mm_storeu_ps(&luminance[i][j], LVFU(luminance[i][j]) + pondv * xlogf(LIMV(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv) ));
}
}
#endif
if(useHslLin) {
for (; j < W_L; j++) {
luminance[i][j] += pond * (LIM(src[i][j] / out[i][j], ilimD, limD));
}
} else {
for (; j < W_L; j++) {
luminance[i][j] += pond * xlogf(LIM(src[i][j] / out[i][j], ilimD, limD)); // /logt ?
}
}
}
}
}
delete [] buffer;
delete [] outBuffer;
delete [] srcBuffer;
mean = 0.f;
stddv = 0.f;
// I call mean_stddv2 instead of mean_stddv ==> logBetaGain
mean_stddv2( luminance, mean, stddv, W_L, H_L, maxtr, mintr);
// printf("mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", mean, stddv, delta, maxtr, mintr);
// mean_stddv( luminance, mean, stddv, W_L, H_L, logBetaGain, maxtr, mintr);
if (dehatransmissionCurve && mean != 0.f && stddv != 0.f) { //if curve
float asig = 0.166666f / stddv;
float bsig = 0.5f - asig * mean;
float amax = 0.333333f / (maxtr - mean - stddv);
float bmax = 1.f - amax * maxtr;
float amin = 0.333333f / (mean - stddv - mintr);
float bmin = -amin * mintr;
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float absciss;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 0; i < H_L; i++ )
for (int j = 0; j < W_L; j++) { //for mintr to maxtr evalate absciss in function of original transmission
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) {
absciss = asig * luminance[i][j] + bsig;
} else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
} else { /*if(luminance[i][j] <= mean - stddv)*/
absciss = amin * luminance[i][j] + bmin;
}
luminance[i][j] *= (-1.f + 4.f * dehatransmissionCurve[absciss]); //new transmission
}
}
// median filter on transmission ==> reduce artifacts
if (deh.medianmap) {
int wid = W_L;
int hei = H_L;
float *tmL[hei] ALIGNED16;
float *tmLBuffer = new float[wid * hei];
int borderL = 1;
for (int i = 0; i < hei; i++) {
tmL[i] = &tmLBuffer[i * wid];
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = borderL; i < hei - borderL; i++) {
float pp[9], temp;
for (int j = borderL; j < wid - borderL; j++) {
med3(luminance[i][j], luminance[i - 1][j], luminance[i + 1][j], luminance[i][j + 1], luminance[i][j - 1], luminance[i - 1][j - 1], luminance[i - 1][j + 1], luminance[i + 1][j - 1], luminance[i + 1][j + 1], tmL[i][j]); //3x3
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = borderL; i < hei - borderL; i++ ) {
for (int j = borderL; j < wid - borderL; j++) {
luminance[i][j] = tmL[i][j];
}
}
delete [] tmLBuffer;
}
// I call mean_stddv2 instead of mean_stddv ==> logBetaGain
// mean_stddv( luminance, mean, stddv, W_L, H_L, 1.f, maxtr, mintr);
mean_stddv2( luminance, mean, stddv, W_L, H_L, maxtr, mintr);
}
float epsil = 0.1f;
mini = mean - vart * stddv;
if (mini < mintr) {
mini = mintr + epsil;
}
maxi = mean + vart * stddv;
if (maxi > maxtr) {
maxi = maxtr - epsil;
}
delta = maxi - mini;
// printf("maxi=%f mini=%f mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", maxi, mini, mean, stddv, delta, maxtr, mintr);
if ( !delta ) {
delta = 1.0f;
}
float cdfactor = gain2 * 32768.f / delta;
maxCD = -9999999.f;
minCD = 9999999.f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float cdmax = -999999.f, cdmin = 999999.f;
#ifdef _OPENMP
#pragma omp for
#endif
for ( int i = 0; i < H_L; i ++ )
for (int j = 0; j < W_L; j++) {
// float cd = cdfactor * ( luminance[i][j] * logBetaGain - mini ) + offse;
float cd = cdfactor * ( luminance[i][j] - mini ) + offse;
if(cd > cdmax) {
cdmax = cd;
}
if(cd < cdmin) {
cdmin = cd;
}
float str = strength;
if(lhutili) { // S=f(H)
{
float HH = exLuminance[i][j];
float valparam;
if(useHsl || useHslLin) {
valparam = float((shcurve->getVal(HH) - 0.5f));
} else {
valparam = float((shcurve->getVal(Color::huelab_to_huehsv2(HH)) - 0.5f));
}
str *= (1.f + 2.f * valparam);
}
}
// if(exLuminance[i][j] > 65535.f*hig && higplus) str *= hig;
luminance[i][j] = clipretinex( cd, 0.f, 32768.f ) * str + (1.f - str) * originalLuminance[i][j];
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
maxCD = maxCD > cdmax ? maxCD : cdmax;
minCD = minCD < cdmin ? minCD : cdmin;
}
}
// printf("cdmin=%f cdmax=%f\n",minCD, maxCD);
Tmean = mean;
Tsigma = stddv;
Tmin = mintr;
Tmax = maxtr;
if (shcurve) {
delete shcurve;
}
}
}
}