rawTherapee/rtengine/iplabregions.cc

344 lines
12 KiB
C++

/* -*- C++ -*-
*
* This file is part of RawTherapee.
*
* Copyright 2018 Alberto Griggio <alberto.griggio@gmail.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _OPENMP
#include <omp.h>
#endif
#include "improcfun.h"
#include "guidedfilter.h"
//#define BENCHMARK
#include "StopWatch.h"
#include "sleef.c"
namespace {
#ifdef __SSE2__
void fastlin2log(float *x, float factor, float base, int w)
{
float baseLog = 1.f / xlogf(base);
vfloat baseLogv = F2V(baseLog);
factor = factor * (base - 1.f);
vfloat factorv = F2V(factor);
vfloat onev = F2V(1.f);
int i = 0;
for (; i < w - 3; i += 4) {
STVFU(x[i], xlogf(LVFU(x[i]) * factorv + onev) * baseLogv);
}
for (; i < w; ++i) {
x[i] = xlogf(x[i] * factor + 1.f) * baseLog;
}
}
#endif
}
namespace rtengine {
void ImProcFunctions::labColorCorrectionRegions(LabImage *lab)
{
if (!params->colorToning.enabled || params->colorToning.method != "LabRegions") {
return;
}
BENCHFUN
int n = params->colorToning.labregions.size();
int show_mask_idx = params->colorToning.labregionsShowMask;
if (show_mask_idx >= n) {
show_mask_idx = -1;
}
std::vector<std::unique_ptr<FlatCurve>> hmask(n);
std::vector<std::unique_ptr<FlatCurve>> cmask(n);
std::vector<std::unique_ptr<FlatCurve>> lmask(n);
const int begin_idx = max(show_mask_idx, 0);
const int end_idx = (show_mask_idx < 0 ? n : show_mask_idx+1);
for (int i = begin_idx; i < end_idx; ++i) {
auto &r = params->colorToning.labregions[i];
if (!r.hueMask.empty() && r.hueMask[0] != FCT_Linear) {
hmask[i].reset(new FlatCurve(r.hueMask, true));
}
if (!r.chromaticityMask.empty() && r.chromaticityMask[0] != FCT_Linear) {
cmask[i].reset(new FlatCurve(r.chromaticityMask, false));
}
if (!r.lightnessMask.empty() && r.lightnessMask[0] != FCT_Linear) {
lmask[i].reset(new FlatCurve(r.lightnessMask, false));
}
}
std::vector<array2D<float>> abmask(n);
std::vector<array2D<float>> Lmask(n);
for (int i = begin_idx; i < end_idx; ++i) {
abmask[i](lab->W, lab->H);
Lmask[i](lab->W, lab->H);
}
array2D<float> guide(lab->W, lab->H);
// magic constant c_factor: normally chromaticity is in [0; 42000] (see color.h), but here we use the constant to match how the chromaticity pipette works (see improcfun.cc lines 4705-4706 and color.cc line 1930
constexpr float c_factor = 327.68f / 48000.f;
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
float cBuffer[lab->W];
float hBuffer[lab->W];
#endif
#ifdef _OPENMP
#pragma omp for schedule(dynamic, 16)
#endif
for (int y = 0; y < lab->H; ++y) {
#ifdef __SSE2__
// vectorized precalculation
Color::Lab2Lch(lab->a[y], lab->b[y], cBuffer, hBuffer, lab->W);
fastlin2log(cBuffer, c_factor, 10.f, lab->W);
#endif
for (int x = 0; x < lab->W; ++x) {
const float l = lab->L[y][x] / 32768.f;
guide[y][x] = LIM01(l);
#ifdef __SSE2__
// use precalculated values
const float c = cBuffer[x];
float h = hBuffer[x];
#else
float c, h;
Color::Lab2Lch(lab->a[y][x], lab->b[y][x], c, h);
c = xlin2log(c * c_factor, 10.f);
#endif
h = Color::huelab_to_huehsv2(h);
h += 1.f/6.f; // offset the hue because we start from purple instead of red
if (h > 1.f) {
h -= 1.f;
}
h = xlin2log(h, 3.f);
for (int i = begin_idx; i < end_idx; ++i) {
auto &hm = hmask[i];
auto &cm = cmask[i];
auto &lm = lmask[i];
float blend = LIM01((hm ? hm->getVal(h) : 1.f) * (cm ? cm->getVal(c) : 1.f) * (lm ? lm->getVal(l) : 1.f));
Lmask[i][y][x] = abmask[i][y][x] = blend;
}
}
}
}
for (int i = begin_idx; i < end_idx; ++i) {
float blur = params->colorToning.labregions[i].maskBlur;
blur = blur < 0.f ? -1.f/blur : 1.f + blur;
int r1 = max(int(4 / scale * blur + 0.5), 1);
int r2 = max(int(25 / scale * blur + 0.5), 1);
rtengine::guidedFilter(guide, abmask[i], abmask[i], r1, 0.001, multiThread);
rtengine::guidedFilter(guide, Lmask[i], Lmask[i], r2, 0.0001, multiThread);
}
if (show_mask_idx >= 0) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < lab->H; ++y) {
for (int x = 0; x < lab->W; ++x) {
auto blend = abmask[show_mask_idx][y][x];
lab->a[y][x] = 0.f;
lab->b[y][x] = blend * 42000.f;
lab->L[y][x] = LIM(lab->L[y][x] + 32768.f * blend, 0.f, 32768.f);
}
}
return;
}
const auto abcoord =
[](float x) -> float
{
return /*12000.f **/ SGN(x) * xlog2lin(std::abs(x), 4.f);
};
float abca[n];
float abcb[n];
float rs[n];
float slope[n];
float offset[n];
float power[n];
int channel[n];
for (int i = 0; i < n; ++i) {
auto &r = params->colorToning.labregions[i];
abca[i] = abcoord(r.a);
abcb[i] = abcoord(r.b);
rs[i] = 1.f + r.saturation / (SGN(r.saturation) > 0 ? 50.f : 100.f);
slope[i] = r.slope;
offset[i] = r.offset;
power[i] = r.power;
channel[i] = r.channel;
}
TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile);
TMatrix iws = ICCStore::getInstance()->workingSpaceInverseMatrix(params->icm.workingProfile);
const auto CDL =
[=](float &l, float &a, float &b, float slope, float offset, float power, float saturation) -> void
{
if (slope != 1.f || offset != 0.f || power != 1.f || saturation != 1.f) {
float rgb[3];
float x, y, z;
Color::Lab2XYZ(l, a, b, x, y, z);
Color::xyz2rgb(x, y, z, rgb[0], rgb[1], rgb[2], iws);
for (int i = 0; i < 3; ++i) {
rgb[i] = (pow_F(max((rgb[i] / 65535.f) * slope + offset, 0.f), power)) * 65535.f;
}
if (saturation != 1.f) {
float Y = Color::rgbLuminance(rgb[0], rgb[1], rgb[2], ws);
for (int i = 0; i < 3; ++i) {
rgb[i] = max(Y + saturation * (rgb[i] - Y), 0.f);
}
}
Color::rgbxyz(rgb[0], rgb[1], rgb[2], x, y, z, ws);
Color::XYZ2Lab(x, y, z, l, a, b);
}
};
const auto chan =
[=](float prev_l, float prev_a, float prev_b, float &l, float &a, float &b, int channel) -> void
{
if (channel >= 0) {
float prev_rgb[3];
float rgb[3];
float x, y, z;
Color::Lab2XYZ(l, a, b, x, y, z);
Color::xyz2rgb(x, y, z, rgb[0], rgb[1], rgb[2], iws);
Color::Lab2XYZ(prev_l, prev_a, prev_b, x, y, z);
Color::xyz2rgb(x, y, z, prev_rgb[0], prev_rgb[1], prev_rgb[2], iws);
prev_rgb[channel] = rgb[channel];
Color::rgbxyz(prev_rgb[0], prev_rgb[1], prev_rgb[2], x, y, z, ws);
Color::XYZ2Lab(x, y, z, l, a, b);
}
};
#ifdef __SSE2__
const auto CDL_v =
[=](vfloat &l, vfloat &a, vfloat &b, float slope, float offset, float power, float saturation) -> void
{
if (slope != 1.f || offset != 0.f || power != 1.f || saturation != 1.f) {
float ll[4];
float aa[4];
float bb[4];
STVFU(ll[0], l);
STVFU(aa[0], a);
STVFU(bb[0], b);
for (int i = 0; i < 4; ++i) {
CDL(ll[i], aa[i], bb[i], slope, offset, power, saturation);
}
l = LVFU(ll[0]);
a = LVFU(aa[0]);
b = LVFU(bb[0]);
}
};
const auto chan_v =
[=](vfloat prev_l, vfloat prev_a, vfloat prev_b, vfloat &l, vfloat &a, vfloat &b, int channel) -> void
{
if (channel >= 0) {
float ll[4];
float aa[4];
float bb[4];
STVFU(ll[0], l);
STVFU(aa[0], a);
STVFU(bb[0], b);
float prev_ll[4];
float prev_aa[4];
float prev_bb[4];
STVFU(prev_ll[0], prev_l);
STVFU(prev_aa[0], prev_a);
STVFU(prev_bb[0], prev_b);
for (int i = 0; i < 4; ++i) {
chan(prev_ll[i], prev_aa[i], prev_bb[i], ll[i], aa[i], bb[i], channel);
}
l = LVFU(ll[0]);
a = LVFU(aa[0]);
b = LVFU(bb[0]);
}
};
#endif
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
vfloat c42000v = F2V(42000.f);
vfloat cm42000v = F2V(-42000.f);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int y = 0; y < lab->H; ++y) {
int x = 0;
#ifdef __SSE2__
for (; x < lab->W - 3; x += 4) {
vfloat lv = LVFU(lab->L[y][x]);
vfloat av = LVFU(lab->a[y][x]);
vfloat bv = LVFU(lab->b[y][x]);
for (int i = 0; i < n; ++i) {
vfloat blendv = LVFU(abmask[i][y][x]);
vfloat l_newv = lv;
vfloat a_newv = vclampf(av + lv * F2V(abca[i]), cm42000v, c42000v);
vfloat b_newv = vclampf(bv + lv * F2V(abcb[i]), cm42000v, c42000v);
CDL_v(l_newv, a_newv, b_newv, slope[i], offset[i], power[i], rs[i]);
l_newv = vmaxf(l_newv, ZEROV);
chan_v(lv, av, bv, l_newv, a_newv, b_newv, channel[i]);
lv = vintpf(LVFU(Lmask[i][y][x]), l_newv, lv);
av = vintpf(blendv, a_newv, av);
bv = vintpf(blendv, b_newv, bv);
}
STVFU(lab->L[y][x], lv);
STVFU(lab->a[y][x], av);
STVFU(lab->b[y][x], bv);
}
#endif
for (; x < lab->W; ++x) {
float l = lab->L[y][x];
float a = lab->a[y][x];
float b = lab->b[y][x];
for (int i = 0; i < n; ++i) {
float blend = abmask[i][y][x];
float l_new = l;
float a_new = LIM(a + l * abca[i], -42000.f, 42000.f);
float b_new = LIM(b + l * abcb[i], -42000.f, 42000.f);
CDL(l_new, a_new, b_new, slope[i], offset[i], power[i], rs[i]);
l_new = max(l_new, 0.f);
chan(l, a, b, l_new, a_new, b_new, channel[i]);
l = intp(Lmask[i][y][x], l_new, l);
a = intp(blend, a_new, a);
b = intp(blend, b_new, b);
}
lab->L[y][x] = l;
lab->a[y][x] = a;
lab->b[y][x] = b;
}
}
}
}
} // namespace rtengine