rawTherapee/rtengine/flatcurves.cc
2019-09-10 12:34:57 +02:00

388 lines
11 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include "curves.h"
#include <cmath>
#include <vector>
namespace rtengine
{
FlatCurve::FlatCurve (const std::vector<double>& p, bool isPeriodic, int poly_pn) : kind(FCT_Empty), leftTangent(nullptr), rightTangent(nullptr), identityValue(0.5), periodic(isPeriodic)
{
ppn = poly_pn > 65500 ? 65500 : poly_pn;
poly_x.clear();
poly_y.clear();
if (p.size() > 4) {
bool identity = true;
kind = (FlatCurveType)p[0];
if (kind == FCT_MinMaxCPoints) {
int oneMorePoint = periodic ? 1 : 0;
N = (p.size() - 1) / 4;
x = new double[N + oneMorePoint];
y = new double[N + oneMorePoint];
leftTangent = new double[N + oneMorePoint];
rightTangent = new double[N + oneMorePoint];
int ix = 1;
for (int i = 0; i < N; i++) {
x[i] = p[ix++];
y[i] = p[ix++];
leftTangent[i] = p[ix++];
rightTangent[i] = p[ix++];
if (y[i] >= identityValue + 1.e-7 || y[i] <= identityValue - 1.e-7) {
identity = false;
}
}
// The first point is copied to the end of the point list, to handle the curve periodicity
if (periodic) {
x[N] = p[1] + 1.0;
y[N] = p[2];
leftTangent[N] = p[3];
rightTangent[N] = p[4];
}
if (!identity && N > (periodic ? 1 : 0) ) {
CtrlPoints_set ();
fillHash();
}
}
/*else if (kind==FCT_Parametric) {
}*/
if (identity) {
kind = FCT_Empty;
}
}
}
FlatCurve::~FlatCurve ()
{
delete [] x;
delete [] y;
delete [] leftTangent;
delete [] rightTangent;
delete [] ypp;
poly_x.clear();
poly_y.clear();
}
/*
* The nominal (identity) curve may not be 0.5, use this method to set it to whatever value in the 0.-1. range you want
* Return true if the curve is nominal
*/
bool FlatCurve::setIdentityValue (double iVal)
{
if (identityValue == iVal) {
return kind == FCT_Empty;
}
identityValue = iVal;
bool identity = true;
for (int i = 0; i < N + (periodic ? 1 : 0); i++) {
if (y[i] >= identityValue + 1.e-7 || y[i] <= identityValue - 1.e-7) {
identity = false;
break;
}
}
if (!identity && N > (periodic ? 1 : 0) ) {
CtrlPoints_set ();
fillHash();
kind = FCT_MinMaxCPoints;
} else {
poly_x.clear();
poly_y.clear();
hash.clear();
kind = FCT_Empty;
}
return kind == FCT_Empty;
}
void FlatCurve::CtrlPoints_set ()
{
int N_ = periodic ? N : N - 1;
int nbSubCurvesPoints = N_ * 6;
std::vector<double> sc_x(nbSubCurvesPoints); // X sub-curve points ( XP0,XP1,XP2, XP2,XP3,XP4, ...)
std::vector<double> sc_y(nbSubCurvesPoints); // Y sub-curve points ( YP0,YP1,YP2, YP2,YP3,YP4, ...)
std::vector<double> sc_length(N_ * 2); // Length of the subcurves
std::vector<bool> sc_isLinear(N_ * 2); // true if the subcurve is linear
double total_length = 0.;
// Create the list of Bezier sub-curves
// CtrlPoints_set is called if N > 1
unsigned int j = 0;
unsigned int k = 0;
for (int i = 0; i < N_;) {
double length;
double dx;
double dy;
bool startLinear, endLinear;
startLinear = (rightTangent[i] == 0.) || (y[i] == y[i + 1]);
endLinear = (leftTangent [i + 1] == 0.) || (y[i] == y[i + 1]);
if (startLinear && endLinear) {
// line shape
sc_x[j] = x[i];
sc_y[j++] = y[i];
sc_x[j] = x[i + 1];
sc_y[j] = y[i + 1];
sc_isLinear[k] = true;
i++;
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length = sqrt(dx * dx + dy * dy);
j++;
// Storing the length of all sub-curves and the total length (to have a better distribution
// of the points along the curve)
sc_length[k++] = length;
total_length += length;
} else {
double xp1, xp2, yp2, xp3;
if (startLinear) {
xp1 = x[i];
} else {
//xp1 = (xp4 - xp0) * rightTangent0 + xp0;
xp1 = (x[i + 1] - x[i]) * rightTangent[i] + x[i];
}
if (endLinear) {
xp3 = x[i + 1];
} else {
//xp3 = (xp0 - xp4]) * leftTangent4 + xp4;
xp3 = (x[i] - x[i + 1]) * leftTangent[i + 1] + x[i + 1];
}
xp2 = (xp1 + xp3) / 2.0;
yp2 = (y[i] + y[i + 1]) / 2.0;
if (rightTangent[i] + leftTangent[i + 1] > 1.0) { // also means that start and end are not linear
xp1 = xp3 = xp2;
}
if (startLinear) {
// Point 0, 2
sc_x[j] = x[i];
sc_y[j++] = y[i];
sc_x[j] = xp2;
sc_y[j] = yp2;
sc_isLinear[k] = true;
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length = sqrt(dx * dx + dy * dy);
j++;
// Storing the length of all sub-curves and the total length (to have a better distribution
// of the points along the curve)
sc_length[k++] = length;
total_length += length;
} else {
// Point 0, 1, 2
sc_x[j] = x[i];
sc_y[j++] = y[i];
sc_x[j] = xp1;
sc_y[j] = y[i];
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length = sqrt(dx * dx + dy * dy);
j++;
sc_x[j] = xp2;
sc_y[j] = yp2;
sc_isLinear[k] = false;
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length += sqrt(dx * dx + dy * dy);
j++;
// Storing the length of all sub-curves and the total length (to have a better distribution
// of the points along the curve)
sc_length[k++] = length;
total_length += length;
}
if (endLinear) {
// Point 2, 4
sc_x[j] = xp2;
sc_y[j++] = yp2;
sc_x[j] = x[i + 1];
sc_y[j] = y[i + 1];
sc_isLinear[k] = true;
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length = sqrt(dx * dx + dy * dy);
j++;
// Storing the length of all sub-curves and the total length (to have a better distribution
// of the points along the curve)
sc_length[k++] = length;
total_length += length;
} else {
// Point 2, 3, 4
sc_x[j] = xp2;
sc_y[j++] = yp2;
sc_x[j] = xp3;
sc_y[j] = y[i + 1];
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length = sqrt(dx * dx + dy * dy);
j++;
sc_x[j] = x[i + 1];
sc_y[j] = y[i + 1];
sc_isLinear[k] = false;
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length += sqrt(dx * dx + dy * dy);
j++;
// Storing the length of all sub-curves and the total length (to have a better distribution
// of the points along the curve)
sc_length[k++] = length;
total_length += length;
}
i++;
}
}
poly_x.clear();
poly_y.clear();
j = 0;
// adding an initial horizontal line if necessary
if (!periodic && sc_x[j] != 0.) {
poly_x.push_back(0.);
poly_y.push_back(sc_y[j]);
}
// the first point of the curves
poly_x.push_back(sc_x[j]);
poly_y.push_back(sc_y[j]);
firstPointIncluded = false;
// create the polyline with the number of points adapted to the X range of the sub-curve
for (unsigned int i = 0; i < k; i++) {
if (sc_isLinear[i]) {
j++; // skip the first point
poly_x.push_back(sc_x[j]);
poly_y.push_back(sc_y[j++]);
} else {
nbr_points = (int)(((double)(ppn) * sc_length[i] ) / total_length);
if (nbr_points < 0) {
for(size_t it = 0; it < sc_x.size(); it += 3) {
printf("sc_length[%zu/3]=%f \n", it, sc_length[it / 3]);
}
printf("Flat curve: error detected!\n i=%u k=%u periodic=%d nbr_points=%d ppn=%d N=%d sc_length[i/3]=%f total_length=%f\n", i, k, periodic, nbr_points, ppn, N, sc_length[i / 3], total_length);
exit(0);
}
// increment along the curve, not along the X axis
increment = 1.0 / (double)(nbr_points - 1);
x1 = sc_x[j];
y1 = sc_y[j++];
x2 = sc_x[j];
y2 = sc_y[j++];
x3 = sc_x[j];
y3 = sc_y[j++];
AddPolygons ();
}
}
// adding the final horizontal segment, always (see under)
poly_x.push_back(3.0); // 3.0 is a hack for optimization purpose of the getVal method (the last value has to be beyond the normal range)
poly_y.push_back(sc_y[j - 1]);
fillDyByDx();
}
double FlatCurve::getVal (double t) const
{
switch (kind) {
case FCT_MinMaxCPoints : {
// magic to handle curve periodicity : we look above the 1.0 bound for the value
if (t < poly_x[0]) {
t += 1.0;
}
// do a binary search for the right interval:
unsigned int k_lo = 0, k_hi = poly_x.size() - 1;
while (k_hi > 1 + k_lo) {
unsigned int k = (k_hi + k_lo) / 2;
if (poly_x[k] > t) {
k_hi = k;
} else {
k_lo = k;
}
}
return poly_y[k_lo] + (t - poly_x[k_lo]) * dyByDx[k_lo];
}
/*case Parametric : {
break;
}*/
case FCT_Empty :
case FCT_Linear : // Linear doesn't exist yet and is then considered as identity
default:
return identityValue;
}
}
void FlatCurve::getVal (const std::vector<double>& t, std::vector<double>& res) const
{
res.resize (t.size());
for (unsigned int i = 0; i < t.size(); i++) {
res[i] = getVal(t[i]);
}
}
}