Files
rawTherapee/rtengine/colorclip.h
Hombre 8b2eac9a3d Pipette and "On Preview Widgets" branch. See issue 227
The pipette part is already working quite nice but need to be finished. The widgets part needs more work...
2014-01-21 23:37:36 +01:00

160 lines
4.9 KiB
C

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
inline double tightestroot (double L, double a, double b, double r1, double r2, double r3);
#ifndef __COLORCLIP__
#define __COLORCLIP__
#include <cmath>
#include "median.h"
// gives back the tightest >0 amplification by which color clipping occures
inline double tightestroot (double L, double a, double b, double r1, double r2, double r3) {
double an = a/500.0, bn = b/200.0, p = (L+16.0)/116.0;
double coeff3 = r1*an*an*an - r3*bn*bn*bn;
double coeff2 = 3.0 * p * (r1*an*an + r3*bn*bn);
double coeff1 = 3.0 * p*p * (r1*an - r3*bn);
double coeff0 = p*p*p*(r1+r2+r3) - 1.0;
double a1 = coeff2 / coeff3;
double a2 = coeff1 / coeff3;
double a3 = coeff0 / coeff3;
double Q = (a1 * a1 - 3.0 * a2) / 9.0;
double R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0;
double Qcubed = Q * Q * Q;
double d = Qcubed - R * R;
// printf ("input L=%g, a=%g, b=%g\n", L, a, b);
// printf ("c1=%g, c2=%g, c3=%g, c4=%g\n", coeff3, coeff2, coeff1, coeff0);
/* Three real roots */
if (d >= 0) {
double theta = acos(R / sqrt(Qcubed));
double sqrtQ = sqrt(Q);
double x0 = -2.0 * sqrtQ * cos( theta / 3.0) - a1 / 3.0;
double x1 = -2.0 * sqrtQ * cos((theta + 2.0 * M_PI) / 3.0) - a1 / 3.0;
double x2 = -2.0 * sqrtQ * cos((theta + 4.0 * M_PI) / 3.0) - a1 / 3.0;
// printf ("3 roots: %g, %g, %g\n", x0, x1, x2);
SORT3 (x0,x1,x2,a1,a2,a3);
if (a1>0)
return a1;
if (a2>0)
return a2;
if (a3>0)
return a3;
return -1;
}
/* One real root */
else {
// double e = pow(sqrt(-d) + fabs(R), 1.0 / 3.0);
double e = exp (1.0 / 3.0 * log (sqrt(-d) + fabs(R)));
if (R > 0)
e = -e;
double x0 = (e + Q / e) - a1 / 3.0;
// printf ("1 root: %g\n", x0);
if (x0<0)
return -1;
else
return x0;
}
}
/*******************************************************************************
* FindCubicRoots
* --------------
*
* Copyright (C) 1997-2001 Ken Turkowski. <turk_at_computer.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ------------------------------------------------------------------------
*
* Solve:
* coeff[3] * x^3 + coeff[2] * x^2 + coeff[1] * x + coeff[0] = 0
*
* returns:
* 3 - 3 real roots
* 1 - 1 real root (2 complex conjugate)
*
*******************************************************************************/
/*long
FindCubicRoots(const FLOAT coeff[4], FLOAT x[3])
{
FLOAT a1 = coeff[2] / coeff[3];
FLOAT a2 = coeff[1] / coeff[3];
FLOAT a3 = coeff[0] / coeff[3];
double_t Q = (a1 * a1 - 3 * a2) / 9;
double_t R = (2 * a1 * a1 * a1 - 9 * a1 * a2 + 27 * a3) / 54;
double_t Qcubed = Q * Q * Q;
double_t d = Qcubed - R * R;
// Three real roots
if (d >= 0) {
double_t theta = acos(R / sqrt(Qcubed));
double_t sqrtQ = sqrt(Q);
x[0] = -2 * sqrtQ * cos( theta / 3) - a1 / 3;
x[1] = -2 * sqrtQ * cos((theta + 2 * pi) / 3) - a1 / 3;
x[2] = -2 * sqrtQ * cos((theta + 4 * pi) / 3) - a1 / 3;
return (3);
}
// One real root
else {
double_t e = pow(sqrt(-d) + fabs(R), 1. / 3.);
if (R > 0)
e = -e;
x[0] = (e + Q / e) - a1 / 3.;
return (1);
}
}
*/
#endif