Files
rawTherapee/rtengine/hlmultipliers.cc
Hombre 8b2eac9a3d Pipette and "On Preview Widgets" branch. See issue 227
The pipette part is already working quite nice but need to be finished. The widgets part needs more work...
2014-01-21 23:37:36 +01:00

353 lines
15 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <climits>
#include <cstdio>
#include "rawimagesource.h"
#include "rawimagesource_i.h"
#include "../rtgui/options.h"
namespace rtengine {
// computes highlight recovery multipliers. Needs a possibly downscaled image where
// the highlights are indicated by INT_MAX
void hlmultipliers (int** rec[3], int max_3[3], int dh, int dw) {
// STEP I. recover color with two-color information
int phase = -1;
int k=0;
for (k=0; k<1000; k++) {
int changed = 0;
for (int i=1; i<dh-1; i++)
for (int j=1; j<dw-1; j++) {
int co, c1, c2;
// if (phase==2)
// phase++;
// if (phase>0)// && phase!=4)
// continue;
if (phase==-1 || phase==0 || phase==2) {
if (rec[0][i][j] == INT_MAX && rec[1][i][j] != INT_MAX && rec[1][i][j] >=0 && rec[2][i][j] != INT_MAX && rec[2][i][j] >=0) {
co = 0;
c1 = 1;
c2 = 2;
}
else if (rec[1][i][j] == INT_MAX && rec[0][i][j] != INT_MAX && rec[0][i][j] >=0 && rec[2][i][j] != INT_MAX && rec[2][i][j] >=0) {
co = 1;
c1 = 0;
c2 = 2;
}
else if (rec[2][i][j] == INT_MAX && rec[1][i][j] != INT_MAX && rec[1][i][j] >=0 && rec[0][i][j] != INT_MAX && rec[0][i][j] >=0) {
co = 2;
c1 = 1;
c2 = 0;
}
else
continue;
double ratio[2] = {0.0, 0.0};
int count = 0;
double rato = (double)rec[c1][i][j] / rec[c2][i][j];
double arato = 0.0;
if (phase==2) {
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>=0 && rec[c1][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
double ratt = (double)rec[c1][i+x][j+y] / rec[c2][i+x][j+y];
if (ratt > rato*1.2 || ratt < rato / 1.2 || rec[co][i+x][j+y]<max_3[co]*1/2)
continue;
ratio[0] += (double)rec[c1][i+x][j+y] / rec[co][i+x][j+y];
ratio[1] += (double)rec[c2][i+x][j+y] / rec[co][i+x][j+y];
count++;
}
}
}
else if (phase==-1) {
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>=0 && rec[c1][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
double ratt = (double)rec[c1][i+x][j+y] / rec[c2][i+x][j+y];
if (ratt > rato*1.05 || ratt < rato / 1.05 || rec[co][i+x][j+y]<max_3[co]*4/5)
continue;
arato += ratt;
ratio[0] += (double)rec[c1][i+x][j+y] / rec[co][i+x][j+y];
ratio[1] += (double)rec[c2][i+x][j+y] / rec[co][i+x][j+y];
count++;
}
}
}
else {
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>=0 && rec[c1][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
double ratt = (double)rec[c1][i+x][j+y] / rec[c2][i+x][j+y];
if (ratt > rato*1.1 || ratt < rato / 1.1 || rec[co][i+x][j+y]<max_3[co]*3/4)
continue;
arato += ratt;
ratio[0] += (double)rec[c1][i+x][j+y] / rec[co][i+x][j+y];
ratio[1] += (double)rec[c2][i+x][j+y] / rec[co][i+x][j+y];
count++;
}
}
}
// compute new pixel values from the surrounding color ratios
if (count>1) { //(phase==0 && count>1) || (phase==2 && count>1)) {
rec[co][i][j] = -(int)((rec[c1][i][j] / ratio[0] * count + rec[c2][i][j] / ratio[1] * count) / 2);
changed++;
}
}
else if (phase==1 || phase==3) {
if (rec[0][i][j] == INT_MAX && rec[1][i][j] == INT_MAX && rec[2][i][j] != INT_MAX && rec[2][i][j] >=0) {
co = 2;
c1 = 0;
c2 = 1;
}
else if (rec[0][i][j] == INT_MAX && rec[2][i][j] == INT_MAX && rec[1][i][j] != INT_MAX && rec[1][i][j] >=0) {
co = 1;
c1 = 0;
c2 = 2;
}
else if (rec[1][i][j] == INT_MAX && rec[2][i][j] == INT_MAX && rec[0][i][j] != INT_MAX && rec[0][i][j] >=0) {
co = 0;
c1 = 1;
c2 = 2;
}
else
continue;
double ratio[2] = {0.0, 0.0};
int count[2] = {0, 0};
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
// average m/c color ratios in the surrounding pixels
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c1][i+x][j+y]>0 && rec[c1][i+x][j+y]!=INT_MAX) {
if ((phase==1 && rec[c1][i+x][j+y]<max_3[c1]*3/4) || (phase==3 && rec[c1][i+x][j+y]<max_3[c1]*1/2))
continue;
ratio[0] += (double)rec[co][i+x][j+y] / rec[c1][i+x][j+y];
count[0] ++;
}
if (rec[co][i+x][j+y]>=0 && rec[co][i+x][j+y]!=INT_MAX && rec[c2][i+x][j+y]>0 && rec[c2][i+x][j+y]!=INT_MAX) {
if ((phase==1 && rec[c2][i+x][j+y]<max_3[c2]*3/4) || (phase==3 && rec[c2][i+x][j+y]<max_3[c2]*1/2))
// if (/*phase!=3 && */rec[c2][i+x][j+y]<max[c2]*3/4)
continue;
ratio[1] += (double)rec[co][i+x][j+y] / rec[c2][i+x][j+y];
count[1] ++;
}
}
// compute new pixel values from the surrounding color ratios
if ((phase==1 && count[0]>2) || (phase==3 && count[0]>1)) {
rec[c1][i][j] = - (int) ((double)rec[co][i][j] / ratio[0] * count[0]);
changed++;
}
if ((phase==1 && count[1]>2) || (phase==3 && count[1]>1)) {
rec[c2][i][j] = - (int) ((double)rec[co][i][j] / ratio[1] * count[1]);
changed++;
}
}
else {
int val = 0;
int num = 0;
for (int c=0; c<3; c++)
if (rec[c][i][j]!=INT_MAX) {
val += rec[c][i][j];
num++;
}
if (num<3 && num>0) {
for (int c=0; c<3; c++)
rec[c][i][j] = val / num;
}
}
}
bool change = false;
for (int i=1; i<dh-1; i++)
for (int j=1; j<dw-1; j++)
for (int c=0; c<3; c++) {
if (rec[c][i][j]<0) {
rec[c][i][j] = -rec[c][i][j];
change = true;
}
}
if (!change && phase<4) {
phase++;
if( options.rtSettings.verbose )
printf ("phc %d: %d\n", phase, k);
}
else if (!change)
break;
if (k%20 == 0 && options.rtSettings.verbose )
printf ("changed %d\n", changed);
}
if( options.rtSettings.verbose )
printf ("Highlight recovery ends in %d iterations\n", k);
int maxval = max(max_3[0], max_3[1], max_3[2]);
for (int i=0; i<dh; i++)
for (int j=0; j<dw; j++)
if (rec[0][i][j]==INT_MAX || rec[1][i][j]==INT_MAX || rec[2][i][j]==INT_MAX) {
rec[0][i][j] = maxval;
rec[1][i][j] = maxval;
rec[2][i][j] = maxval;
}
}
void RawImageSource::HLRecovery_ColorPropagation (float* red, float* green, float* blue, int i, int sx1, int width, int skip) {
int blr = (i+HR_SCALE/2) / HR_SCALE - 1;
if (blr<0 || blr>=H/HR_SCALE-2)
return;
double mr1 = 1.0 - ((double)((i+HR_SCALE/2) % HR_SCALE) / HR_SCALE + 0.5 / HR_SCALE);
int maxcol = W/HR_SCALE-2;
for (int j=sx1, jx=0; jx<width; j+=skip, jx++) {
if (needhr[i][j]) {
int blc = (j+HR_SCALE/2) / HR_SCALE - 1;
if (blc<0 || blc>=maxcol)
continue;
double mc1 = 1.0 - ((double)((j+HR_SCALE/2) % HR_SCALE) / HR_SCALE + 0.5 / HR_SCALE);
double mulr = mr1*mc1 * hrmap[0][blr][blc] + mr1*(1.0-mc1) * hrmap[0][blr][blc+1] + (1.0-mr1)*mc1 * hrmap[0][blr+1][blc] + (1.0-mr1)*(1.0-mc1) * hrmap[0][blr+1][blc+1];
double mulg = mr1*mc1 * hrmap[1][blr][blc] + mr1*(1.0-mc1) * hrmap[1][blr][blc+1] + (1.0-mr1)*mc1 * hrmap[1][blr+1][blc] + (1.0-mr1)*(1.0-mc1) * hrmap[1][blr+1][blc+1];
double mulb = mr1*mc1 * hrmap[2][blr][blc] + mr1*(1.0-mc1) * hrmap[2][blr][blc+1] + (1.0-mr1)*mc1 * hrmap[2][blr+1][blc] + (1.0-mr1)*(1.0-mc1) * hrmap[2][blr+1][blc+1];
red[jx] = (red[jx] * mulr);
green[jx] = (green[jx] * mulg);
blue[jx] = (blue[jx] * mulb);
} else {
red[jx] = (red[jx]);
green[jx] = (green[jx]);
blue[jx] = (blue[jx]);
}
}
}
void RawImageSource::updateHLRecoveryMap_ColorPropagation () {
// detect maximal pixel values
float* red = new float[W];
float* blue = new float[W];
int maxr = 0, maxg = 0, maxb = 0;
for (int i=32; i<H-32; i++) {
interpolate_row_rb (red, blue, green[i-1], green[i], green[i+1], i);
for (int j=32; j<W-32; j++) {
if ((ri->ISRED(i,j) || !ri->isBayer()) && red[j] > maxr) maxr = red[j];
if ((ri->ISGREEN(i,j) || !ri->isBayer()) && green[i][j] > maxg) maxg = green[i][j];
if ((ri->ISBLUE(i,j) || !ri->isBayer()) && blue[j] > maxb) maxb = blue[j];
}
}
delete [] red;
delete [] blue;
maxr = maxr * 19 / 20;
maxg = maxg * 19 / 20;
maxb = maxb * 19 / 20;
max_3[0] = maxr;
max_3[1] = maxg;
max_3[2] = maxb;
// downscale image
int dw = W/HR_SCALE;
int dh = H/HR_SCALE;
Image16* ds = new Image16 (dw, dh);
// overburnt areas
int** rec[3];
for (int i=0; i<3; i++)
rec[i] = allocArray<int> (dw, dh);
float* reds[HR_SCALE];
float* blues[HR_SCALE];
for (int i=0; i<HR_SCALE; i++) {
reds[i] = new float[W];
blues[i] = new float[W];
}
if (needhr)
freeArray<char>(needhr, H);
needhr = allocArray<char> (W, H);
for (int i=0; i<dh; i++) {
for (int j=0; j<HR_SCALE; j++) {
interpolate_row_rb (reds[j], blues[j], green[HR_SCALE*i+j-1], green[HR_SCALE*i+j], green[HR_SCALE*i+j+1], HR_SCALE*i+j);
for (int k=0; k<W; k++)
if (reds[j][k]>=max_3[0] || green[HR_SCALE*i+j][k]>=max_3[1] || blues[j][k]>=max_3[2])
needhr[HR_SCALE*i+j][k] = 1;
else
needhr[HR_SCALE*i+j][k] = 0;
}
for (int j=0; j<dw; j++) {
int sumr = 0; int cr = 0;
int sumg = 0; int cg = 0;
int sumb = 0; int cb = 0;
for (int x=0; x<HR_SCALE; x++)
for (int y=0; y<HR_SCALE; y++) {
int ix = HR_SCALE*i+x;
int jy = HR_SCALE*j+y;
sumr += reds[x][jy];
if (reds[x][jy] < maxr) cr++;
sumg += green[ix][jy];
if (green[ix][jy] < maxg) cg++;
sumb += blues[x][jy];
if (blues[x][jy] < maxb) cb++;
}
if (cr<HR_SCALE*HR_SCALE) rec[0][i][j] = INT_MAX; else rec[0][i][j] = sumr / HR_SCALE/HR_SCALE;
if (cg<HR_SCALE*HR_SCALE) rec[1][i][j] = INT_MAX; else rec[1][i][j] = sumg / HR_SCALE/HR_SCALE;
if (cb<HR_SCALE*HR_SCALE) rec[2][i][j] = INT_MAX; else rec[2][i][j] = sumb / HR_SCALE/HR_SCALE;
ds->r(i,j) = sumr / HR_SCALE/HR_SCALE;
ds->g(i,j) = sumg / HR_SCALE/HR_SCALE;
ds->b(i,j) = sumb / HR_SCALE/HR_SCALE;
}
}
for (int i=0; i<HR_SCALE; i++) {
delete [] reds[i];
delete [] blues[i];
}
hlmultipliers (rec, max_3, dh, dw);
if (hrmap[0]!=NULL) {
freeArray<float> (hrmap[0], dh);
freeArray<float> (hrmap[1], dh);
freeArray<float> (hrmap[2], dh);
}
hrmap[0] = allocArray<float> (dw, dh);
hrmap[1] = allocArray<float> (dw, dh);
hrmap[2] = allocArray<float> (dw, dh);
for (int i=0; i<dh; i++)
for (int j=0; j<dw; j++) {
hrmap[0][i][j] = ds->r(i,j)>0 ? (double)rec[0][i][j] / ds->r(i,j) : 1.0;
hrmap[1][i][j] = ds->g(i,j)>0 ? (double)rec[1][i][j] / ds->g(i,j) : 1.0;
hrmap[2][i][j] = ds->b(i,j)>0 ? (double)rec[2][i][j] / ds->b(i,j) : 1.0;
}
delete ds;
freeArray<int> (rec[0], dh);
freeArray<int> (rec[1], dh);
freeArray<int> (rec[2], dh);
}
}