Files
rawTherapee/rtengine/klt/selectGoodFeatures.cc
Hombre 8b2eac9a3d Pipette and "On Preview Widgets" branch. See issue 227
The pipette part is already working quite nice but need to be finished. The widgets part needs more work...
2014-01-21 23:37:36 +01:00

543 lines
16 KiB
C++

/*********************************************************************
* selectGoodFeatures.c
*
*********************************************************************/
/* Standard includes */
#include <cassert>
#include <cstdlib> /* malloc(), qsort() */
#include <cstdio> /* fflush() */
#include <cstring> /* memset() */
#include <cmath> /* fsqrt() */
#define fsqrt(X) sqrt(X)
/* Our includes */
#include "base.h"
#include "error.h"
#include "convolve.h"
#include "klt.h"
#include "klt_util.h"
#include "pyramid.h"
int KLT_verbose = 1;
typedef enum {SELECTING_ALL, REPLACING_SOME} selectionMode;
/*********************************************************************
* _quicksort
* Replacement for qsort(). Computing time is decreased by taking
* advantage of specific knowledge of our array (that there are
* three ints associated with each point).
*
* This routine generously provided by
* Manolis Lourakis <lourakis@csi.forth.gr>
*
* NOTE: The results of this function may be slightly different from
* those of qsort(). This is due to the fact that different sort
* algorithms have different behaviours when sorting numbers with the
* same value: Some leave them in the same relative positions in the
* array, while others change their relative positions. For example,
* if you have the array [c d b1 a b2] with b1=b2, it may be sorted as
* [a b1 b2 c d] or [a b2 b1 c d].
*/
#define SWAP3(list, i, j) \
{ int *pi, *pj, tmp; \
pi=list+3*(i); pj=list+3*(j); \
\
tmp=*pi; \
*pi++=*pj; \
*pj++=tmp; \
\
tmp=*pi; \
*pi++=*pj; \
*pj++=tmp; \
\
tmp=*pi; \
*pi=*pj; \
*pj=tmp; \
}
void _quicksort(int *pointlist, int n)
{
unsigned int i, j, ln, rn;
while (n > 1)
{
SWAP3(pointlist, 0, n/2);
for (i = 0, j = n; ; )
{
do
--j;
while (pointlist[3*j+2] < pointlist[2]);
do
++i;
while (i < j && pointlist[3*i+2] > pointlist[2]);
if (i >= j)
break;
SWAP3(pointlist, i, j);
}
SWAP3(pointlist, j, 0);
ln = j;
rn = n - ++j;
if (ln < rn)
{
_quicksort(pointlist, ln);
pointlist += 3*j;
n = rn;
}
else
{
_quicksort(pointlist + 3*j, rn);
n = ln;
}
}
}
#undef SWAP3
/*********************************************************************/
static void _fillFeaturemap(
int x, int y,
uchar *featuremap,
int mindist,
int ncols,
int nrows)
{
int ix, iy;
for (iy = y - mindist ; iy <= y + mindist ; iy++)
for (ix = x - mindist ; ix <= x + mindist ; ix++)
if (ix >= 0 && ix < ncols && iy >= 0 && iy < nrows)
featuremap[iy*ncols+ix] = 1;
}
/*********************************************************************
* _enforceMinimumDistance
*
* Removes features that are within close proximity to better features.
*
* INPUTS
* featurelist: A list of features. The nFeatures property
* is used.
*
* OUTPUTS
* featurelist: Is overwritten. Nearby "redundant" features are removed.
* Writes -1's into the remaining elements.
*
* RETURNS
* The number of remaining features.
*/
static void _enforceMinimumDistance(
int *pointlist, /* featurepoints */
int npoints, /* number of featurepoints */
KLT_FeatureList featurelist, /* features */
int ncols, int nrows, /* size of images */
int mindist, /* min. dist b/w features */
int min_eigenvalue, /* min. eigenvalue */
KLT_BOOL overwriteAllFeatures)
{
int indx; /* Index into features */
int x, y, val; /* Location and trackability of pixel under consideration */
uchar *featuremap; /* Boolean array recording proximity of features */
int *ptr;
/* Cannot add features with an eigenvalue less than one */
if (min_eigenvalue < 1) min_eigenvalue = 1;
/* Allocate memory for feature map and clear it */
featuremap = (uchar *) malloc(ncols * nrows * sizeof(uchar));
memset(featuremap, 0, ncols*nrows);
/* Necessary because code below works with (mindist-1) */
mindist--;
/* If we are keeping all old good features, then add them to the featuremap */
if (!overwriteAllFeatures)
for (indx = 0 ; indx < featurelist->nFeatures ; indx++)
if (featurelist->feature[indx]->val >= 0) {
x = (int) featurelist->feature[indx]->x;
y = (int) featurelist->feature[indx]->y;
_fillFeaturemap(x, y, featuremap, mindist, ncols, nrows);
}
/* For each feature point, in descending order of importance, do ... */
ptr = pointlist;
indx = 0;
while (1) {
/* If we can't add all the points, then fill in the rest
of the featurelist with -1's */
if (ptr >= pointlist + 3*npoints) {
while (indx < featurelist->nFeatures) {
if (overwriteAllFeatures ||
featurelist->feature[indx]->val < 0) {
featurelist->feature[indx]->x = -1;
featurelist->feature[indx]->y = -1;
featurelist->feature[indx]->val = KLT_NOT_FOUND;
featurelist->feature[indx]->aff_img = NULL;
featurelist->feature[indx]->aff_img_gradx = NULL;
featurelist->feature[indx]->aff_img_grady = NULL;
featurelist->feature[indx]->aff_x = -1.0;
featurelist->feature[indx]->aff_y = -1.0;
featurelist->feature[indx]->aff_Axx = 1.0;
featurelist->feature[indx]->aff_Ayx = 0.0;
featurelist->feature[indx]->aff_Axy = 0.0;
featurelist->feature[indx]->aff_Ayy = 1.0;
}
indx++;
}
break;
}
x = *ptr++;
y = *ptr++;
val = *ptr++;
/* Ensure that feature is in-bounds */
assert(x >= 0);
assert(x < ncols);
assert(y >= 0);
assert(y < nrows);
while (!overwriteAllFeatures &&
indx < featurelist->nFeatures &&
featurelist->feature[indx]->val >= 0)
indx++;
if (indx >= featurelist->nFeatures) break;
/* If no neighbor has been selected, and if the minimum
eigenvalue is large enough, then add feature to the current list */
if (!featuremap[y*ncols+x] && val >= min_eigenvalue) {
featurelist->feature[indx]->x = (KLT_locType) x;
featurelist->feature[indx]->y = (KLT_locType) y;
featurelist->feature[indx]->val = (int) val;
featurelist->feature[indx]->aff_img = NULL;
featurelist->feature[indx]->aff_img_gradx = NULL;
featurelist->feature[indx]->aff_img_grady = NULL;
featurelist->feature[indx]->aff_x = -1.0;
featurelist->feature[indx]->aff_y = -1.0;
featurelist->feature[indx]->aff_Axx = 1.0;
featurelist->feature[indx]->aff_Ayx = 0.0;
featurelist->feature[indx]->aff_Axy = 0.0;
featurelist->feature[indx]->aff_Ayy = 1.0;
indx++;
/* Fill in surrounding region of feature map, but
make sure that pixels are in-bounds */
_fillFeaturemap(x, y, featuremap, mindist, ncols, nrows);
}
}
/* Free feature map */
free(featuremap);
}
/*********************************************************************
* _comparePoints
*
* Used by qsort (in _KLTSelectGoodFeatures) to determine
* which feature is better.
* By switching the '>' with the '<', qsort is fooled into sorting
* in descending order.
*/
#ifdef KLT_USE_QSORT
static int _comparePoints(const void *a, const void *b)
{
int v1 = *(((int *) a) + 2);
int v2 = *(((int *) b) + 2);
if (v1 > v2) return(-1);
else if (v1 < v2) return(1);
else return(0);
}
#endif
/*********************************************************************
* _sortPointList
*/
static void _sortPointList(
int *pointlist,
int npoints)
{
#ifdef KLT_USE_QSORT
qsort(pointlist, npoints, 3*sizeof(int), _comparePoints);
#else
_quicksort(pointlist, npoints);
#endif
}
/*********************************************************************
* _minEigenvalue
*
* Given the three distinct elements of the symmetric 2x2 matrix
* [gxx gxy]
* [gxy gyy],
* Returns the minimum eigenvalue of the matrix.
*/
static float _minEigenvalue(float gxx, float gxy, float gyy)
{
return (float) ((gxx + gyy - sqrt((gxx - gyy)*(gxx - gyy) + 4*gxy*gxy))/2.0f);
}
/*********************************************************************/
void _KLTSelectGoodFeatures(
KLT_TrackingContext tc,
KLT_PixelType *img,
int ncols,
int nrows,
KLT_FeatureList featurelist,
selectionMode mode)
{
_KLT_FloatImage floatimg, gradx, grady;
int window_hw, window_hh;
int *pointlist;
int npoints = 0;
KLT_BOOL overwriteAllFeatures = (mode == SELECTING_ALL) ?
TRUE : FALSE;
KLT_BOOL floatimages_created = FALSE;
/* Check window size (and correct if necessary) */
if (tc->window_width % 2 != 1) {
tc->window_width = tc->window_width+1;
KLTWarning("Tracking context's window width must be odd. "
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height % 2 != 1) {
tc->window_height = tc->window_height+1;
KLTWarning("Tracking context's window height must be odd. "
"Changing to %d.\n", tc->window_height);
}
if (tc->window_width < 3) {
tc->window_width = 3;
KLTWarning("Tracking context's window width must be at least three. \n"
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height < 3) {
tc->window_height = 3;
KLTWarning("Tracking context's window height must be at least three. \n"
"Changing to %d.\n", tc->window_height);
}
window_hw = tc->window_width/2;
window_hh = tc->window_height/2;
/* Create pointlist, which is a simplified version of a featurelist, */
/* for speed. Contains only integer locations and values. */
pointlist = (int *) malloc(ncols * nrows * 3 * sizeof(int));
/* Create temporary images, etc. */
if (mode == REPLACING_SOME &&
tc->sequentialMode && tc->pyramid_last != NULL) {
floatimg = ((_KLT_Pyramid) tc->pyramid_last)->img[0];
gradx = ((_KLT_Pyramid) tc->pyramid_last_gradx)->img[0];
grady = ((_KLT_Pyramid) tc->pyramid_last_grady)->img[0];
assert(gradx != NULL);
assert(grady != NULL);
} else {
floatimages_created = TRUE;
floatimg = _KLTCreateFloatImage(ncols, nrows);
gradx = _KLTCreateFloatImage(ncols, nrows);
grady = _KLTCreateFloatImage(ncols, nrows);
if (tc->smoothBeforeSelecting) {
_KLT_FloatImage tmpimg;
tmpimg = _KLTCreateFloatImage(ncols, nrows);
_KLTToFloatImage(img, ncols, nrows, tmpimg);
_KLTComputeSmoothedImage(tmpimg, _KLTComputeSmoothSigma(tc), floatimg);
_KLTFreeFloatImage(tmpimg);
} else _KLTToFloatImage(img, ncols, nrows, floatimg);
/* Compute gradient of image in x and y direction */
_KLTComputeGradients(floatimg, tc->grad_sigma, gradx, grady);
}
/* Write internal images */
if (tc->writeInternalImages) {
_KLTWriteFloatImageToPGM(floatimg, "kltimg_sgfrlf.pgm");
_KLTWriteFloatImageToPGM(gradx, "kltimg_sgfrlf_gx.pgm");
_KLTWriteFloatImageToPGM(grady, "kltimg_sgfrlf_gy.pgm");
}
/* Compute trackability of each image pixel as the minimum
of the two eigenvalues of the Z matrix */
{
float gx, gy;
float gxx, gxy, gyy;
int xx, yy;
int *ptr;
float val;
unsigned int limit = 1;
int borderx = tc->borderx; /* Must not touch cols */
int bordery = tc->bordery; /* lost by convolution */
int x, y;
if (borderx < window_hw) borderx = window_hw;
if (bordery < window_hh) bordery = window_hh;
/* Find largest value of an int */
for (size_t i = 0 ; i < sizeof(int) ; i++) limit *= 256;
limit = limit/2 - 1;
/* For most of the pixels in the image, do ... */
ptr = pointlist;
for (y = bordery ; y < nrows - bordery ; y += tc->nSkippedPixels + 1)
for (x = borderx ; x < ncols - borderx ; x += tc->nSkippedPixels + 1) {
/* Sum the gradients in the surrounding window */
gxx = 0; gxy = 0; gyy = 0;
for (yy = y-window_hh ; yy <= y+window_hh ; yy++)
for (xx = x-window_hw ; xx <= x+window_hw ; xx++) {
gx = *(gradx->data + ncols*yy+xx);
gy = *(grady->data + ncols*yy+xx);
gxx += gx * gx;
gxy += gx * gy;
gyy += gy * gy;
}
/* Store the trackability of the pixel as the minimum
of the two eigenvalues */
*ptr++ = x;
*ptr++ = y;
val = _minEigenvalue(gxx, gxy, gyy);
if (val > limit) {
KLTWarning("(_KLTSelectGoodFeatures) minimum eigenvalue %f is "
"greater than the capacity of an int; setting "
"to maximum value", val);
val = (float) limit;
}
*ptr++ = (int) val;
npoints++;
}
}
/* Sort the features */
_sortPointList(pointlist, npoints);
/* Check tc->mindist */
if (tc->mindist < 0) {
KLTWarning("(_KLTSelectGoodFeatures) Tracking context field tc->mindist "
"is negative (%d); setting to zero", tc->mindist);
tc->mindist = 0;
}
/* Enforce minimum distance between features */
_enforceMinimumDistance(
pointlist,
npoints,
featurelist,
ncols, nrows,
tc->mindist,
tc->min_eigenvalue,
overwriteAllFeatures);
/* Free memory */
free(pointlist);
if (floatimages_created) {
_KLTFreeFloatImage(floatimg);
_KLTFreeFloatImage(gradx);
_KLTFreeFloatImage(grady);
}
}
/*********************************************************************
* KLTSelectGoodFeatures
*
* Main routine, visible to the outside. Finds the good features in
* an image.
*
* INPUTS
* tc: Contains parameters used in computation (size of image,
* size of window, min distance b/w features, sigma to compute
* image gradients, # of features desired).
* img: Pointer to the data of an image (probably unsigned chars).
*
* OUTPUTS
* features: List of features. The member nFeatures is computed.
*/
void KLTSelectGoodFeatures(
KLT_TrackingContext tc,
KLT_PixelType *img,
int ncols,
int nrows,
KLT_FeatureList fl)
{
if (KLT_verbose >= 1) {
fprintf(stderr, "(KLT) Selecting the %d best features "
"from a %d by %d image... ", fl->nFeatures, ncols, nrows);
fflush(stderr);
}
_KLTSelectGoodFeatures(tc, img, ncols, nrows,
fl, SELECTING_ALL);
if (KLT_verbose >= 1) {
fprintf(stderr, "\n\t%d features found.\n",
KLTCountRemainingFeatures(fl));
if (tc->writeInternalImages)
fprintf(stderr, "\tWrote images to 'kltimg_sgfrlf*.pgm'.\n");
fflush(stderr);
}
}
/*********************************************************************
* KLTReplaceLostFeatures
*
* Main routine, visible to the outside. Replaces the lost features
* in an image.
*
* INPUTS
* tc: Contains parameters used in computation (size of image,
* size of window, min distance b/w features, sigma to compute
* image gradients, # of features desired).
* img: Pointer to the data of an image (probably unsigned chars).
*
* OUTPUTS
* features: List of features. The member nFeatures is computed.
*/
void KLTReplaceLostFeatures(
KLT_TrackingContext tc,
KLT_PixelType *img,
int ncols,
int nrows,
KLT_FeatureList fl)
{
int nLostFeatures = fl->nFeatures - KLTCountRemainingFeatures(fl);
if (KLT_verbose >= 1) {
fprintf(stderr, "(KLT) Attempting to replace %d features "
"in a %d by %d image... ", nLostFeatures, ncols, nrows);
fflush(stderr);
}
/* If there are any lost features, replace them */
if (nLostFeatures > 0)
_KLTSelectGoodFeatures(tc, img, ncols, nrows,
fl, REPLACING_SOME);
if (KLT_verbose >= 1) {
fprintf(stderr, "\n\t%d features replaced.\n",
nLostFeatures - fl->nFeatures + KLTCountRemainingFeatures(fl));
if (tc->writeInternalImages)
fprintf(stderr, "\tWrote images to 'kltimg_sgfrlf*.pgm'.\n");
fflush(stderr);
}
}