rawTherapee/rtgui/inspector.cc
Pandagrapher 89d2bdce5b Initial commit for real hidpi support
Note: This commit has only been tested on MacOS

Changes:
- Icons now use the native hidpi support from Gtk (through Icon Theme)
- Icons are now directly generated from scalable file (i.e. SVG file)
- Widget sizes are scaled based on DPI and scale factor
- Font size is scaled based on DPI and scale factor
2022-08-19 16:47:28 +02:00

711 lines
21 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include "inspector.h"
#include "guiutils.h"
#include <gtkmm.h>
#include "cursormanager.h"
#include "guiutils.h"
#include "multilangmgr.h"
#include "options.h"
#include "pathutils.h"
#include "rtscalable.h"
#include "../rtengine/previewimage.h"
#include "../rtengine/rt_math.h"
InspectorBuffer::InspectorBuffer(const Glib::ustring &imagePath) : currTransform(0), fromRaw(false)
{
if (!imagePath.empty() && Glib::file_test(imagePath, Glib::FILE_TEST_EXISTS) && !Glib::file_test(imagePath, Glib::FILE_TEST_IS_DIR)) {
imgPath = imagePath;
// generate thumbnail image
Glib::ustring ext = getExtension (imagePath);
if (ext.empty()) {
imgPath.clear();
return;
}
rtengine::PreviewImage pi(imagePath, ext, rtengine::PreviewImage::PIM_EmbeddedOrRaw);
Cairo::RefPtr<Cairo::ImageSurface> imageSurface = pi.getImage();
if (imageSurface) {
imgBuffer.setSurface(imageSurface);
fromRaw = true;
} else {
imgPath.clear();
}
}
}
/*
InspectorBuffer::~InspectorBuffer() {
}
*/
//int InspectorBuffer::infoFromImage (const Glib::ustring& fname)
//{
//
// rtengine::FramesMetaData* idata = rtengine::FramesMetaData::fromFile (fname, nullptr, true);
//
// if (!idata) {
// return 0;
// }
//
// int deg = 0;
//
// if (idata->hasExif()) {
// if (idata->getOrientation() == "Rotate 90 CW" ) {
// deg = 90;
// } else if (idata->getOrientation() == "Rotate 180" ) {
// deg = 180;
// } else if (idata->getOrientation() == "Rotate 270 CW") {
// deg = 270;
// }
// }
//
// delete idata;
// return deg;
//}
Inspector::Inspector () : currImage(nullptr), scaled(false), scale(1.0), zoomScale(1.0), zoomScaleBegin(1.0), active(false), pinned(false), dirty(false), fullscreen(true), keyDown(false), windowShowing(false)
{
set_name("Inspector");
if (!options.inspectorWindow) {
window = nullptr;
}
else {
window = new Gtk::Window();
window->set_name("InspectorWindow");
window->set_title("RawTherapee " + M("INSPECTOR_WINDOW_TITLE"));
window->set_visible(false);
window->add_events(Gdk::KEY_PRESS_MASK);
window->signal_key_release_event().connect(sigc::mem_fun(*this, &Inspector::on_key_release));
window->signal_key_press_event().connect(sigc::mem_fun(*this, &Inspector::on_key_press));
window->signal_hide().connect(sigc::mem_fun(*this, &Inspector::on_window_hide));
window->signal_window_state_event().connect(sigc::mem_fun(*this, &Inspector::on_inspector_window_state_event));
add_events(Gdk::BUTTON_PRESS_MASK | Gdk::BUTTON_MOTION_MASK | Gdk::SCROLL_MASK | Gdk::SMOOTH_SCROLL_MASK);
gestureZoom = Gtk::GestureZoom::create(*this);
gestureZoom->signal_begin().connect(sigc::mem_fun(*this, &Inspector::on_zoom_begin));
gestureZoom->signal_scale_changed().connect(sigc::mem_fun(*this, &Inspector::on_zoom_scale_changed));
window->add(*this);
window->set_size_request(500, 500);
window->fullscreen();
initialized = false; // delay init to avoid flickering on some systems
active = true; // always track inspected thumbnails
}
}
Inspector::~Inspector()
{
deleteBuffers();
if (window)
delete window;
}
void Inspector::showWindow(bool pinned, bool scaled)
{
if (!window || windowShowing)
return;
// initialize when shown first
if (!initialized) {
window->show_all();
initialized = true;
}
// show inspector window
this->scaled = scaled;
window->set_visible(true);
this->pinned = pinned;
windowShowing = true;
// update content when becoming visible
switchImage(next_image_path);
mouseMove(next_image_pos, 0);
}
void Inspector::hideWindow()
{
if (!window) {
return;
}
window->set_visible(false);
}
bool Inspector::on_key_release(GdkEventKey *event)
{
keyDown = false;
if (!window)
return false;
if (!pinned) {
switch (event->keyval) {
case GDK_KEY_f:
case GDK_KEY_F:
zoomScale = 1.0;
window->set_visible(false);
return true;
}
}
return false;
}
bool Inspector::on_key_press(GdkEventKey *event)
{
if (!window)
return false;
if (keyDown) {
return true;
}
keyDown = true;
switch (event->keyval) {
case GDK_KEY_z:
case GDK_KEY_F:
// show image unscaled in 100% view
if (pinned || scaled)
zoomScale = 1.0; // reset if not key hold
scaled = false;
queue_draw();
return true;
case GDK_KEY_f:
// show image scaled to window size
if (pinned || !scaled)
zoomScale = 1.0; // reset if not key hold
scaled = true;
queue_draw();
return true;
case GDK_KEY_F11:
// toggle fullscreen
if (fullscreen)
window->unfullscreen();
else
window->fullscreen();
fullscreen = !fullscreen;
return true;
case GDK_KEY_Escape:
// hide window
zoomScale = 1.0;
window->set_visible(false);
return true;
}
keyDown = false;
return false;
}
void Inspector::on_window_hide()
{
windowShowing = false;
}
bool Inspector::on_inspector_window_state_event(GdkEventWindowState *event)
{
if (!window->get_window() || window->get_window()->gobj() != event->window) {
return false;
}
fullscreen = event->new_window_state & GDK_WINDOW_STATE_FULLSCREEN;
return true;
}
bool Inspector::on_button_press_event(GdkEventButton *event)
{
if (!window)
return false;
if (event->type == GDK_BUTTON_PRESS) {
button_pos.set(event->x, event->y);
if (!pinned)
// pin window with mouse click
pinned = true;
return true;
}
return false;
}
bool Inspector::on_motion_notify_event(GdkEventMotion *event)
{
if (!currImage || !window)
return false;
int deviceScale = get_scale_factor();
int event_x = round(event->x);
int event_y = round(event->y);
int delta_x = (button_pos.x - event_x) * deviceScale;
int delta_y = (button_pos.y - event_y) * deviceScale;
int imW = currImage->imgBuffer.getWidth();
int imH = currImage->imgBuffer.getHeight();
moveCenter(delta_x, delta_y, imW, imH, deviceScale);
button_pos.set(event_x, event_y);
if (!dirty) {
dirty = true;
queue_draw();
}
return true;
}
bool Inspector::on_scroll_event(GdkEventScroll *event)
{
if (!currImage || !window)
return false;
pinned = true;
bool alt = event->state & GDK_MOD1_MASK;
int deviceScale = get_scale_factor();
int imW = currImage->imgBuffer.getWidth();
int imH = currImage->imgBuffer.getHeight();
#ifdef GDK_WINDOWING_QUARTZ
// event reports speed of scroll wheel
double step_x = -event->delta_x;
double step_y = event->delta_y;
#else
// assume fixed step of 5%
double step_x = 5;
double step_y = 5;
#endif
int delta_x = 0;
int delta_y = 0;
switch (event->direction) {
case GDK_SCROLL_SMOOTH:
#ifdef GDK_WINDOWING_QUARTZ
// no additional step for smooth scrolling
delta_x = event->delta_x * deviceScale;
delta_y = event->delta_y * deviceScale;
#else
// apply step to smooth scrolling as well
delta_x = event->delta_x * deviceScale * step_x * imW / 100;
delta_y = event->delta_y * deviceScale * step_y * imH / 100;
#endif
break;
case GDK_SCROLL_DOWN:
delta_y = step_y * deviceScale * imH / 100;
break;
case GDK_SCROLL_UP:
delta_y = -step_y * deviceScale * imH / 100;
break;
case GDK_SCROLL_LEFT:
delta_x = step_x * deviceScale * imW / 100;
break;
case GDK_SCROLL_RIGHT:
delta_x = -step_x * deviceScale * imW / 100;
break;
}
if ((options.zoomOnScroll && !alt) || (!options.zoomOnScroll && alt)) {
// zoom
beginZoom(event->x, event->y);
if (std::fabs(delta_y) > std::fabs(delta_x))
on_zoom_scale_changed(1.0 - (double)delta_y / imH / deviceScale);
else
on_zoom_scale_changed(1.0 - (double)delta_x / imW / deviceScale);
return true;
}
// scroll
moveCenter(delta_x, delta_y, imW, imH, deviceScale);
if (!dirty) {
dirty = true;
queue_draw();
}
return true;
}
void Inspector::moveCenter(int delta_x, int delta_y, int imW, int imH, int deviceScale)
{
rtengine::Coord margin; // limit to image size
margin.x = rtengine::min<int>(window->get_width() * deviceScale / scale, imW) / 2;
margin.y = rtengine::min<int>(window->get_height() * deviceScale / scale, imH) / 2;
center.set(rtengine::LIM<double>(center.x + delta_x / scale, margin.x, imW - margin.x),
rtengine::LIM<double>(center.y + delta_y / scale, margin.y, imH - margin.y));
}
void Inspector::beginZoom(double x, double y)
{
if (!currImage || !window)
return;
int deviceScale = get_scale_factor();
int imW = currImage->imgBuffer.getWidth();
int imH = currImage->imgBuffer.getHeight();
// limit center to image size
moveCenter(0, 0, imW, imH, deviceScale);
// store center and current position for zooming
double cur_scale = zoomScale;
if (scaled) {
Glib::RefPtr<Gdk::Window> win = get_window();
double winW = win->get_width() * deviceScale;
double winH = win->get_height() * deviceScale;
int imW = rtengine::max<int>(currImage->imgBuffer.getWidth(), 1);
int imH = rtengine::max<int>(currImage->imgBuffer.getHeight(), 1);
cur_scale *= rtengine::min<double>(winW / imW, winH / imH);
}
dcenterBegin.x = (x - window->get_width() / 2.) / cur_scale * deviceScale;
dcenterBegin.y = (y - window->get_height() / 2.) / cur_scale * deviceScale;
centerBegin = center;
zoomScaleBegin = zoomScale;
}
void Inspector::on_zoom_begin(GdkEventSequence *s)
{
double x, y;
pinned = true;
if (gestureZoom->get_point(s, x, y))
beginZoom(x, y);
}
void Inspector::on_zoom_scale_changed(double zscale)
{
if (!currImage || !window)
return;
zoomScale = rtengine::LIM<double>(zoomScaleBegin * zscale, 0.01, 16.0);
double dcenterRatio = 1.0 - zoomScaleBegin / zoomScale;
center.x = centerBegin.x + dcenterBegin.x * dcenterRatio;
center.y = centerBegin.y + dcenterBegin.y * dcenterRatio;
if (!dirty) {
dirty = true;
queue_draw();
}
}
bool Inspector::on_draw(const ::Cairo::RefPtr< Cairo::Context> &cr)
{
dirty = false;
Glib::RefPtr<Gdk::Window> win = get_window();
if (!win) {
return false;
}
if (!active) {
active = true;
}
// cleanup the region
if (currImage && currImage->imgBuffer.surfaceCreated()) {
// this will eventually create/update the off-screen pixmap
// compute the displayed area
rtengine::Coord2D availableSize;
rtengine::Coord2D topLeft;
rtengine::Coord topLeftInt;
rtengine::Coord2D dest(0, 0);
int deviceScale = window? get_scale_factor(): 1;
availableSize.x = win->get_width() * deviceScale;
availableSize.y = win->get_height() * deviceScale;
int imW = rtengine::max<int>(currImage->imgBuffer.getWidth(), 1);
int imH = rtengine::max<int>(currImage->imgBuffer.getHeight(), 1);
scale = rtengine::min(1., rtengine::min<double>(availableSize.x / imW, availableSize.y / imH));
if (scaled) {
// reduce size of image to fit into window, no further zoom down
zoomScale = rtengine::max<double>(zoomScale, 1.0);
scale *= zoomScale;
}
else {
// limit zoom to fill at least complete window or 1:1
zoomScale = rtengine::max<double>(zoomScale, rtengine::min<double>(1.0, scale));
scale = zoomScale;
}
availableSize.x /= scale;
availableSize.y /= scale;
if (imW < availableSize.x) {
// center the image in the available space along X
topLeft.x = 0;
dest.x = (availableSize.x - imW) / 2.;
} else {
// partial image display
// double clamp
topLeft.x = center.x + availableSize.x / 2.;
topLeft.x = rtengine::min<double>(topLeft.x, imW);
topLeft.x -= availableSize.x;
topLeft.x = rtengine::max<double>(topLeft.x, 0);
}
if (imH < availableSize.y) {
// center the image in the available space along Y
topLeft.y = 0;
dest.y = (availableSize.y - imH) / 2.;
} else {
// partial image display
// double clamp
topLeft.y = center.y + availableSize.y / 2.;
topLeft.y = rtengine::min<double>(topLeft.y, imH);
topLeft.y -= availableSize.y;
topLeft.y = rtengine::max<double>(topLeft.y, 0);
}
//printf("center: %d, %d (img: %d, %d) (availableSize: %d, %d) (topLeft: %d, %d)\n", center.x, center.y, imW, imH, availableSize.x, availableSize.y, topLeft.x, topLeft.y);
topLeftInt.x = floor(topLeft.x);
topLeftInt.y = floor(topLeft.y);
// define the destination area
currImage->imgBuffer.setDrawRectangle(win, dest.x, dest.y, rtengine::min<int>(ceil(availableSize.x + (topLeft.x - topLeftInt.x) - 2 * dest.x), imW), rtengine::min<int>(ceil(availableSize.y + (topLeft.y - topLeftInt.y) - 2 * dest.y), imH), false);
currImage->imgBuffer.setSrcOffset(topLeftInt.x, topLeftInt.y);
if (!currImage->imgBuffer.surfaceCreated()) {
return false;
}
// Draw!
Gdk::RGBA c;
Glib::RefPtr<Gtk::StyleContext> style = get_style_context();
if (!window) {
// draw the background
style->render_background(cr, 0, 0, get_width(), get_height());
}
bool scaledImage = scale != 1.0;
if (!window || (deviceScale == 1 && !scaledImage)) {
// standard drawing
currImage->imgBuffer.copySurface(win);
}
else {
// consider device scale and image scale
if (deviceScale > 1) {
#ifdef __APPLE__
// use full device resolution and let it scale the image (macOS)
cairo_surface_set_device_scale(cr->get_target()->cobj(), scale, scale);
scaledImage = false;
#else
cr->scale(1. / deviceScale, 1. / deviceScale);
#endif
}
int viewW = rtengine::min<int>(imW, ceil(availableSize.x + (topLeft.x - topLeftInt.x)));
int viewH = rtengine::min<int>(imH, ceil(availableSize.y + (topLeft.y - topLeftInt.y)));
Glib::RefPtr<Gdk::Pixbuf> crop = Gdk::Pixbuf::create(currImage->imgBuffer.getSurface(), topLeftInt.x, topLeftInt.y, viewW, viewH);
if (!scaledImage) {
Gdk::Cairo::set_source_pixbuf(cr, crop, dest.x, dest.y);
}
else {
double dx = scale * (dest.x + topLeftInt.x - topLeft.x);
double dy = scale * (dest.y + topLeftInt.y - topLeft.y);
// scale crop as the device does not seem to support it (Linux)
crop = crop->scale_simple(round(viewW*scale), round(viewH*scale), Gdk::INTERP_BILINEAR);
Gdk::Cairo::set_source_pixbuf(cr, crop, dx, dy);
}
cr->paint();
}
if (!window) {
// draw the frame
c = style->get_border_color (Gtk::STATE_FLAG_NORMAL);
cr->set_source_rgb (c.get_red(), c.get_green(), c.get_blue());
cr->set_line_width (1);
cr->rectangle (0.5, 0.5, availableSize.x - 1, availableSize.y - 1);
cr->stroke ();
}
}
return true;
}
void Inspector::mouseMove (rtengine::Coord2D pos, int transform)
{
if (!active) {
return;
}
next_image_pos = pos;
// skip actual update of content when not visible
if (window && !window->get_visible())
return;
if (currImage) {
center.set(rtengine::LIM01(pos.x)*double(currImage->imgBuffer.getWidth()), rtengine::LIM01(pos.y)*double(currImage->imgBuffer.getHeight()));
} else {
center.set(0, 0);
}
queue_draw();
}
void Inspector::switchImage (const Glib::ustring &fullPath)
{
if (!active) {
return;
}
if (delayconn.connected()) {
delayconn.disconnect();
}
next_image_path = fullPath;
// skip actual update of content when not visible
if (window && !window->get_visible())
return;
if (!options.inspectorDelay) {
doSwitchImage();
} else {
delayconn = Glib::signal_timeout().connect(sigc::mem_fun(*this, &Inspector::doSwitchImage), options.inspectorDelay);
}
}
bool Inspector::doSwitchImage()
{
Glib::ustring fullPath = next_image_path;
// we first check the size of the list, it may have been changed in Preference
if (images.size() > size_t(options.maxInspectorBuffers)) {
// deleting the last entries
for (size_t i = images.size() - 1; i > size_t(options.maxInspectorBuffers - 1); --i) {
delete images.at(i);
images.at(i) = nullptr;
}
// resizing down
images.resize(options.maxInspectorBuffers);
}
if (fullPath.empty()) {
currImage = nullptr;
queue_draw();
} else {
bool found = false;
for (size_t i = 0; i < images.size(); ++i) {
if (images.at(i) != nullptr && images.at(i)->imgPath == fullPath) {
currImage = images.at(i);
// rolling the list 1 step to the beginning
for (size_t j = i; j < images.size() - 1; ++j) {
images.at(j) = images.at(j + 1);
}
images.at(images.size() - 1) = currImage; // move the last used image to the tail
found = true;
break;
}
}
if (!found) {
if (images.size() == size_t(options.maxInspectorBuffers)) {
// The list is full, delete the first entry
delete images.at(0);
images.erase(images.begin());
}
// Loading a new image
InspectorBuffer *iBuffer = new InspectorBuffer(fullPath);
// and add it to the tail
if (!iBuffer->imgPath.empty()) {
images.push_back(iBuffer);
currImage = images.at(images.size() - 1);
} else {
delete iBuffer;
currImage = nullptr;
}
}
}
return true;
}
void Inspector::deleteBuffers ()
{
for (size_t i = 0; i < images.size(); ++i) {
if (images.at(i) != nullptr) {
delete images.at(i);
images.at(i) = nullptr;
}
}
images.resize(0);
currImage = nullptr;
}
void Inspector::flushBuffers ()
{
if (!active) {
return;
}
deleteBuffers();
}
void Inspector::setActive(bool state)
{
if (!state) {
flushBuffers();
}
if (!window)
active = state;
}
Gtk::SizeRequestMode Inspector::get_request_mode_vfunc () const
{
return Gtk::SIZE_REQUEST_CONSTANT_SIZE;
}
void Inspector::get_preferred_height_vfunc (int &minimum_height, int &natural_height) const
{
minimum_height = RTScalable::scalePixelSize(50);
natural_height = RTScalable::scalePixelSize(300);
}
void Inspector::get_preferred_width_vfunc (int &minimum_width, int &natural_width) const
{
minimum_width = RTScalable::scalePixelSize(50);
natural_width = RTScalable::scalePixelSize(200);
}
void Inspector::get_preferred_height_for_width_vfunc (int width, int &minimum_height, int &natural_height) const
{
get_preferred_height_vfunc(minimum_height, natural_height);
}
void Inspector::get_preferred_width_for_height_vfunc (int height, int &minimum_width, int &natural_width) const
{
get_preferred_width_vfunc (minimum_width, natural_width);
}