Files
rawTherapee/rtengine/curves.cc
2015-07-29 17:53:19 +02:00

2113 lines
64 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <glib.h>
#include <glib/gstdio.h>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "rt_math.h"
#include "mytime.h"
#include "array2D.h"
#include "LUT.h"
#include "curves.h"
#include "opthelper.h"
#undef CLIPD
#define CLIPD(a) ((a)>0.0f?((a)<1.0f?(a):1.0f):0.0f)
using namespace std;
namespace rtengine {
Curve::Curve () : N(0), x(NULL), y(NULL), ypp(NULL), hashSize(1000 /* has to be initialized to the maximum value */ ) {}
void Curve::AddPolygons ()
{
if (firstPointIncluded) {
poly_x.push_back(x1);
poly_y.push_back(y1);
}
for (int k=1; k<(nbr_points-1); k++) {
double t = k*increment;
double t2 = t*t;
double tr = 1.-t;
double tr2 = tr*tr;
double tr2t = tr*2*t;
// adding a point to the polyline
poly_x.push_back( tr2*x1 + tr2t*x2 + t2*x3);
poly_y.push_back( tr2*y1 + tr2t*y2 + t2*y3);
}
// adding the last point of the sub-curve
poly_x.push_back(x3);
poly_y.push_back(y3);
}
void Curve::fillHash() {
hash.resize(hashSize+2);
unsigned int polyIter = 0;
double const increment = 1./hashSize;
double milestone = 0.;
for (unsigned short i=0; i<(hashSize+1);) {
while(poly_x[polyIter] <= milestone) ++polyIter;
hash.at(i).smallerValue = polyIter-1;
++i;
milestone = i*increment;
}
milestone = 0.;
polyIter = 0;
for (unsigned int i=0; i<(hashSize+1);) {
while(poly_x[polyIter] < (milestone+increment)) ++polyIter;
hash.at(i).higherValue = polyIter;
++i;
milestone = i*increment;
}
hash.at(hashSize+1).smallerValue = poly_x.size()-1;
hash.at(hashSize+1).higherValue = poly_x.size();
/*
* Uncoment the code below to dump the polygon points and the hash table in files
if (poly_x.size() > 500) {
printf("Files generated (%d points)\n", poly_x.size());
FILE* f = fopen ("hash.txt", "wt");
for (unsigned int i=0; i<hashSize;i++) {
unsigned short s = hash.at(i).smallerValue;
unsigned short h = hash.at(i).higherValue;
fprintf (f, "%d: %d<%d (%.5f<%.5f)\n", i, s, h, poly_x[s], poly_x[h]);
}
fclose (f);
f = fopen ("poly_x.txt", "wt");
for (size_t i=0; i<poly_x.size();i++) {
fprintf (f, "%d: %.5f, %.5f\n", i, poly_x[i], poly_y[i]);
}
fclose (f);
}
*/
}
/** @ brief Return the number of control points of the curve
* This method return the number of control points of a curve. Not suitable for parametric curves.
* @return number of control points of the curve. 0 will be sent back for Parametric curves
*/
int Curve::getSize () const {
return N;
}
/** @ brief Return the a control point's value
* This method return a control points' value. Not suitable for parametric curves.
* @param cpNum id of the control points we're interested in
* @param x Y value of the control points, or -1 if invalid
* @param y Y value of the control points, or -1 if invalid
*/
void Curve::getControlPoint(int cpNum, double &x, double &y) const {
if (this->x && cpNum < N) {
x = this->x[cpNum];
y = this->y[cpNum];
}
else {
x = y = -1.;
}
}
// Wikipedia sRGB: Unlike most other RGB color spaces, the sRGB gamma cannot be expressed as a single numerical value.
// The overall gamma is approximately 2.2, consisting of a linear (gamma 1.0) section near black, and a non-linear section elsewhere involving a 2.4 exponent
// and a gamma (slope of log output versus log input) changing from 1.0 through about 2.3.
const double CurveFactory::sRGBGamma = 2.2;
const double CurveFactory::sRGBGammaCurve = 2.4;
SSEFUNCTION void fillCurveArray(DiagonalCurve* diagCurve, LUTf &outCurve, int skip, bool needed) {
if (needed) {
LUTf lutCurve (65536);
for (int i=0; i<=0xffff; i+= i<0xffff-skip ? skip : 1 ) {
// change to [0,1] range
float val = (float)i / 65535.f;
// apply custom/parametric/NURBS curve, if any
val = diagCurve->getVal (val);
// store result in a temporary array
lutCurve[i] = (val);
}
// if skip>1, let apply linear interpolation in the skipped points of the curve
if (skip > 1) {
int prev = 0;
for (int i=1; i<=0xffff-skip; i++) {
if (i%skip==0) {
prev+=skip;
continue;
}
lutCurve[i] = ( lutCurve[prev] * (skip - i%skip) + lutCurve[prev+skip] * (i%skip) ) / skip;
}
}
for (int i=0; i<=0xffff; i++) {
outCurve[i] = (65535.f * lutCurve[i]);
}
}
else {
#ifdef __SSE2__
__m128 fourv = _mm_set1_ps(4.f);
__m128 iv = _mm_set_ps(3.f,2.f,1.f,0.f);
for (int i=0; i<=0xfffc; i+=4) {
_mm_storeu_ps(&outCurve[i],iv);
iv += fourv;
}
#else
for (int i=0; i<=0xffff; i++) {
outCurve[i] = (float)i;
}
#endif
}
}
void CurveFactory::updatechroma (
const std::vector<double>& cccurvePoints,
LUTu & histogramC, LUTu & outBeforeCCurveHistogramC,//for chroma
int skip)
{
LUTf dCcurve(65536,0);
float val;
for (int i=0; i<48000; i++) {//32768*1.414 + ...
val = (double)i / 47999.0;
dCcurve[i] = CLIPD(val);
}
outBeforeCCurveHistogramC.clear();
bool histNeededC = false;
if (!cccurvePoints.empty() && cccurvePoints[0]!=0) {
if (outBeforeCCurveHistogramC /*&& histogramCropped*/)
histNeededC = true;
}
for (int i=0; i<48000; i++) {//32768*1.414 + ...
float val;
if (histNeededC) {
float hval = dCcurve[i];
int hi = (int)(255.0*CLIPD(hval)); //
outBeforeCCurveHistogramC[hi] += histogramC[i] ;
}
}
}
void CurveFactory::curveLightBrightColor (
procparams::ColorAppearanceParams::eTCModeId curveMode1, const std::vector<double>& curvePoints1,
procparams::ColorAppearanceParams::eTCModeId curveMode2, const std::vector<double>& curvePoints2,
procparams::ColorAppearanceParams::eCTCModeId curveMode3, const std::vector<double>& curvePoints3,
LUTu & histogram, LUTu & histogramCropped, LUTu & outBeforeCCurveHistogram,//for Luminance
LUTu & histogramC, LUTu & outBeforeCCurveHistogramC,//for chroma
ColorAppearance & customColCurve1,
ColorAppearance & customColCurve2,
ColorAppearance & customColCurve3,
int skip)
{
outBeforeCCurveHistogram.clear();
outBeforeCCurveHistogramC.clear();
bool histNeededC = false;
bool histNeeded = false;
DiagonalCurve* tcurve = NULL;
customColCurve3.Reset();
if (!curvePoints3.empty() && curvePoints3[0]>DCT_Linear && curvePoints3[0]<DCT_Unchanged) {
tcurve = new DiagonalCurve (curvePoints3, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogramC /*&& histogramCropped*/)
histNeededC = true;
}
if (tcurve) {
if (tcurve->isIdentity()) {
delete tcurve;
tcurve = NULL;
}
else
customColCurve3.Set(tcurve);
delete tcurve;
tcurve = NULL;
}
customColCurve2.Reset();
if (!curvePoints2.empty() && curvePoints2[0]>DCT_Linear && curvePoints2[0]<DCT_Unchanged) {
tcurve = new DiagonalCurve (curvePoints2, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram /*&& histogramCropped*/)
histNeeded = true;
}
if (tcurve) {
if (tcurve->isIdentity()) {
delete tcurve;
tcurve = NULL;
}
else
customColCurve2.Set(tcurve);
delete tcurve;
tcurve = NULL;
}
// create first curve if needed
customColCurve1.Reset();
if (!curvePoints1.empty() && curvePoints1[0]>DCT_Linear && curvePoints1[0]<DCT_Unchanged) {
tcurve = new DiagonalCurve (curvePoints1, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram /*&& histogramCropped*/)
histNeeded = true;
}
if (tcurve) {
if (tcurve->isIdentity()) {
delete tcurve;
tcurve = NULL;
}
else {
customColCurve1.Set(tcurve);
delete tcurve;
tcurve = NULL;
}
}
if (histNeeded) {
for (int i=0; i<32768; i++) {
double hval = CLIPD((double)i / 32767.0);
int hi = (int)(255.0*hval);
outBeforeCCurveHistogram[hi] += histogram[i] ;
}
}
if (histNeededC) {
for (int i=0; i<48000; i++) {//32768*1.414 + ...
double hval = CLIPD((double)i / 47999.0);
int hi = (int)(255.0*hval); //
outBeforeCCurveHistogramC[hi] += histogramC[i] ;
}
}
if (tcurve) delete tcurve;
}
// add curve Denoise : C=f(C)
void CurveFactory::denoiseCC ( bool & ccdenoiseutili,const std::vector<double>& cccurvePoints, LUTf & NoiseCCcurve,int skip){
bool needed;
DiagonalCurve* dCurve = NULL;
LUTf dCcurve(65536,0);
float val;
for (int i=0; i<48000; i++) {
dCcurve[i] = (float)i / 47999.0;
}
needed = false;
if (!cccurvePoints.empty() && cccurvePoints[0]!=0) {
dCurve = new DiagonalCurve (cccurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (dCurve && !dCurve->isIdentity())
{needed = true;ccdenoiseutili=true;}
}
fillCurveArray(dCurve, NoiseCCcurve, skip, needed);
//NoiseCCcurve.dump("Noise");
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
}
void CurveFactory::curveBW (
const std::vector<double>& curvePointsbw, const std::vector<double>& curvePointsbw2,
LUTu & histogrambw, LUTu & outBeforeCCurveHistogrambw,//for Luminance
ToneCurve & customToneCurvebw1, ToneCurve & customToneCurvebw2, int skip)
{
const float gamma_ = Color::sRGBGammaCurve;
const float start = expf(gamma_*logf( -0.055 / ((1.0/gamma_-1.0)*1.055 )));
const float slope = 1.055 * powf (start, 1.0/gamma_-1) - 0.055/start;
const float mul = 1.055;
const float add = 0.055;
outBeforeCCurveHistogrambw.clear();
bool histNeeded = false;
DiagonalCurve* tcurve = NULL;
customToneCurvebw2.Reset();
if (!curvePointsbw2.empty() && curvePointsbw2[0]>DCT_Linear && curvePointsbw2[0]<DCT_Unchanged) {
tcurve = new DiagonalCurve (curvePointsbw2, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogrambw /*&& histogramCropped*/)
histNeeded = true;
}
if (tcurve) {
if (!tcurve->isIdentity())
customToneCurvebw2.Set(tcurve, gamma_, start, slope, mul, add);
delete tcurve;
tcurve = NULL;
}
customToneCurvebw1.Reset();
if (!curvePointsbw.empty() && curvePointsbw[0]>DCT_Linear && curvePointsbw[0]<DCT_Unchanged) {
tcurve = new DiagonalCurve (curvePointsbw, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogrambw /*&& histogramCropped*/)
histNeeded = true;
}
if (tcurve) {
if (!tcurve->isIdentity())
customToneCurvebw1.Set(tcurve, gamma_, start, slope, mul, add);
delete tcurve;
tcurve = NULL;
}
// create first curve if needed
if (histNeeded) {
LUTf dcurve(65536,0);
float val;
for (int i=0; i<32768; i++) {
val = (float)i / 32767.f;
dcurve[i] = CLIPD(val);
}
for (int i=0; i<32768; i++) {
float hval = dcurve[i];
int hi = (int)(255.0*CLIPD(hval));
outBeforeCCurveHistogrambw[hi] += histogrambw[i] ;
}
}
if (tcurve) delete tcurve;
}
// add curve Lab : C=f(L)
void CurveFactory::curveCL ( bool & clcutili,const std::vector<double>& clcurvePoints, LUTf & clCurve, LUTu & histogramcl, LUTu & outBeforeCLurveHistogram,int skip){
bool needed;
DiagonalCurve* dCurve = NULL;
if (outBeforeCLurveHistogram)
outBeforeCLurveHistogram.clear();
bool histNeededCL = false;
needed = false;
if (!clcurvePoints.empty() && clcurvePoints[0]!=0) {
dCurve = new DiagonalCurve (clcurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCLurveHistogram)
histNeededCL = true;
if (dCurve && !dCurve->isIdentity())
{needed = true;clcutili=true;}
}
if(histNeededCL)
for (int i=0; i<50000; i++) {//32768*1.414 + ...
int hi = (int)(255.0*CLIPD((float)i / 49999.0)); //
outBeforeCLurveHistogram[hi] += histogramcl[i] ;
}
fillCurveArray(dCurve, clCurve, skip, needed);
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
}
// add curve Lab wavelet : Cont=f(L)
void CurveFactory::curveWavContL ( bool & wavcontlutili,const std::vector<double>& wavclcurvePoints, LUTf & wavclCurve, /*LUTu & histogramwavcl, LUTu & outBeforeWavCLurveHistogram,*/int skip){
bool needed;
DiagonalCurve* dCurve = NULL;
// if (outBeforeWavCLurveHistogram)
// outBeforeWavCLurveHistogram.clear();
bool histNeededCL = false;
needed = false;
if (!wavclcurvePoints.empty() && wavclcurvePoints[0]!=0) {
dCurve = new DiagonalCurve (wavclcurvePoints, CURVES_MIN_POLY_POINTS/skip);
// if (outBeforeWavCLurveHistogram)
// histNeededCL = true;
if (dCurve && !dCurve->isIdentity())
{needed = true;wavcontlutili=true;}
}
// if(histNeededCL)
for (int i=0; i<32768; i++) {//32768*1.414 + ...
int hi = (int)(255.0*CLIPD((float)i / 32767.0)); //
// outBeforeWavCLurveHistogram[hi] += histogramwavcl[i] ;
}
fillCurveArray(dCurve, wavclCurve, skip, needed);
// wavclCurve.dump("WL");
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
}
// add curve Colortoning : C=f(L)
void CurveFactory::curveToningCL ( bool & clctoningutili,const std::vector<double>& clcurvePoints, LUTf & clToningCurve,int skip){
bool needed;
DiagonalCurve* dCurve = NULL;
needed = false;
if (!clcurvePoints.empty() && clcurvePoints[0]!=0) {
dCurve = new DiagonalCurve (clcurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (dCurve && !dCurve->isIdentity())
{needed = true;clctoningutili=true;}
}
fillCurveArray(dCurve, clToningCurve, skip, needed);
// clToningCurve.dump("CLToning");
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
}
// add curve Colortoning : CLf(L)
void CurveFactory::curveToningLL ( bool & llctoningutili,const std::vector<double>& llcurvePoints, LUTf & llToningCurve, int skip){
bool needed;
DiagonalCurve* dCurve = NULL;
needed = false;
if (!llcurvePoints.empty() && llcurvePoints[0]!=0) {
dCurve = new DiagonalCurve (llcurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (dCurve && !dCurve->isIdentity())
{needed = true;llctoningutili=true;}
}
fillCurveArray(dCurve, llToningCurve, skip, needed);
// llToningCurve.dump("LLToning");
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void CurveFactory::complexsgnCurve (float adjustr, bool & autili, bool & butili, bool & ccutili, bool & cclutili, double saturation, double rstprotection,
const std::vector<double>& acurvePoints, const std::vector<double>& bcurvePoints,const std::vector<double>& cccurvePoints,
const std::vector<double>& lccurvePoints, LUTf & aoutCurve, LUTf & boutCurve, LUTf & satCurve, LUTf & lhskCurve,
LUTu & histogramC, LUTu & histogramLC, LUTu & outBeforeCCurveHistogram,LUTu & outBeforeLCurveHistogram, //for chroma
int skip) {
//-----------------------------------------------------
bool needed;
DiagonalCurve* dCurve = NULL;
LUTf dCcurve(65536,0);
int k=48000;//32768*1.41
if(outBeforeCCurveHistogram || outBeforeLCurveHistogram) {
for (int i=0; i<k*adjustr; i++) { //# 32768*1.414 approximation maxi for chroma
dCcurve[i] = (float)i / (k*adjustr-1);
}
}
if (outBeforeCCurveHistogram)
outBeforeCCurveHistogram.clear();
bool histNeededC = false;
if (outBeforeLCurveHistogram)
outBeforeLCurveHistogram.clear();
bool histNeededLC = false;
//-----------------------------------------------------
needed = false;
// create a curve if needed
if (!acurvePoints.empty() && acurvePoints[0]!=0) {
dCurve = new DiagonalCurve (acurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (dCurve && !dCurve->isIdentity()) {
needed = true;
autili=true;
}
}
fillCurveArray(dCurve, aoutCurve, skip, needed);
//if(autili) aoutCurve.dump("acurve");
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
//-----------------------------------------------------
needed = false;
if (!bcurvePoints.empty() && bcurvePoints[0]!=0) {
dCurve = new DiagonalCurve (bcurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (dCurve && !dCurve->isIdentity()) {
needed = true;
butili=true;
}
}
fillCurveArray(dCurve, boutCurve, skip, needed);
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
//-----------------------------------------------
needed = false;
if (!cccurvePoints.empty() && cccurvePoints[0]!=0) {
dCurve = new DiagonalCurve (cccurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram /*&& histogramCropped*/)
histNeededC = true;
if (dCurve && !dCurve->isIdentity())
{needed = true;ccutili=true;}
}
if (histNeededC) {
for (int i=0; i<k*adjustr; i++) {//32768*1.414 + ...
float hval = dCcurve[i];
int hi = (int)(255.0*CLIPD(hval)); //
outBeforeCCurveHistogram[hi] += histogramC[i] ;
}
}
fillCurveArray(dCurve, satCurve, skip, needed);
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
//----------------------------
needed = false;
if (!lccurvePoints.empty() && lccurvePoints[0]!=0) {
dCurve = new DiagonalCurve (lccurvePoints, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeLCurveHistogram /*&& histogramCropped*/)
histNeededLC = true;
if (dCurve && !dCurve->isIdentity())
{needed = true;cclutili=true;}
}
if (histNeededLC) {
for (int i=0; i<k*adjustr; i++) {//32768*1.414 + ...
float hval = dCcurve[i];
int hi = (int)(255.0*CLIPD(hval)); //
outBeforeLCurveHistogram[hi] += histogramLC[i] ;
}
}
fillCurveArray(dCurve, lhskCurve, skip, needed);
if (dCurve) {
delete dCurve;
dCurve = NULL;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SSEFUNCTION void CurveFactory::complexCurve (double ecomp, double black, double hlcompr, double hlcomprthresh,
double shcompr, double br, double contr,
procparams::ToneCurveParams::eTCModeId curveMode, const std::vector<double>& curvePoints,
procparams::ToneCurveParams::eTCModeId curveMode2, const std::vector<double>& curvePoints2,
LUTu & histogram, LUTu & histogramCropped,
LUTf & hlCurve, LUTf & shCurve, LUTf & outCurve,
LUTu & outBeforeCCurveHistogram,
ToneCurve & customToneCurve1,
ToneCurve & customToneCurve2,
int skip) {
// the curve shapes are defined in sRGB gamma, but the output curves will operate on linear floating point data,
// hence we do both forward and inverse gamma conversions here.
const float gamma_ = Color::sRGBGammaCurve;
const float start = expf(gamma_*logf( -0.055 / ((1.0/gamma_-1.0)*1.055 )));
const float slope = 1.055 * powf (start, 1.0/gamma_-1) - 0.055/start;
const float mul = 1.055;
const float add = 0.055;
// a: slope of the curve, black: starting point at the x axis
const float a = powf (2.0, ecomp);
// clear array that stores histogram valid before applying the custom curve
outBeforeCCurveHistogram.clear();
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// tone curve base. a: slope (from exp.comp.), b: black, def_mul: max. x value (can be>1), hr,sr: highlight,shadow recovery
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DiagonalCurve* brightcurve = NULL;
// check if brightness curve is needed
if (br>0.00001 || br<-0.00001) {
std::vector<double> brightcurvePoints;
brightcurvePoints.resize(9);
brightcurvePoints.at(0) = double(DCT_NURBS);
brightcurvePoints.at(1) = 0.; //black point. Value in [0 ; 1] range
brightcurvePoints.at(2) = 0.; //black point. Value in [0 ; 1] range
if(br>0) {
brightcurvePoints.at(3) = 0.1; //toe point
brightcurvePoints.at(4) = 0.1+br/150.0; //value at toe point
brightcurvePoints.at(5) = 0.7; //shoulder point
brightcurvePoints.at(6) = min(1.0,0.7+br/300.0); //value at shoulder point
} else {
brightcurvePoints.at(3) = max(0.0,0.1-br/150.0); //toe point
brightcurvePoints.at(4) = 0.1; //value at toe point
brightcurvePoints.at(5) = 0.7-br/300.0; //shoulder point
brightcurvePoints.at(6) = 0.7; //value at shoulder point
}
brightcurvePoints.at(7) = 1.; // white point
brightcurvePoints.at(8) = 1.; // value at white point
brightcurve = new DiagonalCurve (brightcurvePoints, CURVES_MIN_POLY_POINTS/skip);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hlCurve.setClip(LUT_CLIP_BELOW); // used LUT_CLIP_BELOW, because we want to have a baseline of 2^expcomp in this curve. If we don't clip the lut we get wrong values, see Issue 2621 #14 for details
float exp_scale = a;
float scale = 65536.0;
float comp = (max(0.0,ecomp) + 1.0)*hlcompr/100.0;
float shoulder = ((scale/max(1.0f,exp_scale))*(hlcomprthresh/200.0))+0.1;
//printf("shoulder = %e\n",shoulder);
//printf ("exp_scale= %f comp= %f def_mul=%f a= %f \n",exp_scale,comp,def_mul,a);
if (comp<=0.0f)
for (int i=0; i<0x10000; i++)
hlCurve[i]=exp_scale;
else {
for (int i=0; i<=shoulder; i++)
hlCurve[i]=exp_scale;
float scalemshoulder = scale - shoulder;
for (int i=shoulder+1; i<0x10000; i++) {
// change to [0,1] range
float val = (float)i-shoulder;
float R = val*comp/(scalemshoulder);
hlCurve[i] = xlog(1.0+R*exp_scale)/R; // don't use xlogf or 1.f here. Leads to errors caused by too low precision
}
}
// curve without contrast
LUTf dcurve(0x10000);
//%%%%%%%%%%%%%%%%%%%%%%%%%%
// change to [0,1] range
shCurve.setClip(LUT_CLIP_ABOVE); // used LUT_CLIP_ABOVE, because the curve converges to 1.0 at the upper end and we don't want to exceed this value.
float val = 1.f/65535.f;
float val2 = simplebasecurve (val, black, 0.015*shcompr);
shCurve[0] = CLIPD(val2)/val;
val = 0.0;
// gamma correction
val = gamma (val, gamma_, start, slope, mul, add);
// apply brightness curve
if (brightcurve)
val = brightcurve->getVal (val); // TODO: getVal(double) is very slow! Optimize with a LUTf
// store result in a temporary array
dcurve[0] = CLIPD(val);
#pragma omp parallel for
for (int i=1; i<0x10000; i++) {
float val;
val = (float)i / 65535.0f;
float val2 = simplebasecurve (val, black, 0.015*shcompr);
shCurve[i] = CLIPD(val2)/val;
// gamma correction
val = gamma (val, gamma_, start, slope, mul, add);
// apply brightness curve
if (brightcurve)
val = brightcurve->getVal (val); // TODO: getVal(double) is very slow! Optimize with a LUTf
// store result in a temporary array
dcurve[i] = CLIPD(val);
}
if (brightcurve)
delete brightcurve;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// check if contrast curve is needed
if (contr>0.00001 || contr<-0.00001) {
// compute mean luminance of the image with the curve applied
unsigned int sum = 0;
float avg = 0;
//double sqavg = 0;
for (int i=0; i<=0xffff; i++) {
float fi=i;
fi *= hlCurve[i];
avg += dcurve[(int)(shCurve[fi]*fi)] * histogram[i];
//sqavg += dcurve[i]*dcurve[i] * histogram[i];
sum += histogram[i];
}
avg /= sum;
//sqavg /= sum;
//double stddev = sqrt(sqavg-avg*avg);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
std::vector<double> contrastcurvePoints;
contrastcurvePoints.resize(9);
contrastcurvePoints.at(0) = double(DCT_NURBS);
contrastcurvePoints.at(1) = 0; //black point. Value in [0 ; 1] range
contrastcurvePoints.at(2) = 0; //black point. Value in [0 ; 1] range
contrastcurvePoints.at(3) = avg-avg*(0.6-contr/250.0); //toe point
contrastcurvePoints.at(4) = avg-avg*(0.6+contr/250.0); //value at toe point
contrastcurvePoints.at(5) = avg+(1-avg)*(0.6-contr/250.0); //shoulder point
contrastcurvePoints.at(6) = avg+(1-avg)*(0.6+contr/250.0); //value at shoulder point
contrastcurvePoints.at(7) = 1.; // white point
contrastcurvePoints.at(8) = 1.; // value at white point
DiagonalCurve* contrastcurve = new DiagonalCurve (contrastcurvePoints, CURVES_MIN_POLY_POINTS/skip);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// apply contrast enhancement
for (int i=0; i<=0xffff; i++) {
dcurve[i] = contrastcurve->getVal (dcurve[i]);
}
delete contrastcurve;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create second curve if needed
bool histNeeded = false;
DiagonalCurve* tcurve = NULL;
customToneCurve2.Reset();
if (!curvePoints2.empty() && curvePoints2[0]>DCT_Linear && curvePoints2[0]<DCT_Unchanged) {
tcurve = new DiagonalCurve (curvePoints2, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram /*&& histogramCropped*/)
histNeeded = true;
}
if (tcurve) {
if (!tcurve->isIdentity())
customToneCurve2.Set(tcurve, gamma_, start, slope, mul, add);
delete tcurve;
tcurve = NULL;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create first curve if needed
customToneCurve1.Reset();
if (!curvePoints.empty() && curvePoints[0]>DCT_Linear && curvePoints[0]<DCT_Unchanged) {
tcurve = new DiagonalCurve (curvePoints, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram /*&& histogramCropped*/)
histNeeded = true;
}
if (tcurve) {
if (!tcurve->isIdentity())
customToneCurve1.Set(tcurve, gamma_, start, slope, mul, add);
delete tcurve;
tcurve = NULL;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create curve bw
// curve 2
/* DiagonalCurve* tbwcurve = NULL;
customToneCurvebw2.Reset();
if (!curvePointsbw2.empty() && curvePointsbw2[0]>DCT_Linear && curvePointsbw2[0]<DCT_Unchanged) {
tbwcurve = new DiagonalCurve (curvePointsbw2, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram )
histNeeded = true;
}
if (tbwcurve) {
if (tbwcurve->isIdentity()) {
delete tbwcurve;
tbwcurve = NULL;
}
else
customToneCurvebw2.Set(tbwcurve);
delete tbwcurve;
tbwcurve = NULL;
}
customToneCurvebw1.Reset();
if (!curvePointsbw.empty() && curvePointsbw[0]>DCT_Linear && curvePointsbw[0]<DCT_Unchanged) {
tbwcurve = new DiagonalCurve (curvePointsbw, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram )
histNeeded = true;
}
if (tbwcurve) {
if (tbwcurve->isIdentity()) {
delete tbwcurve;
tbwcurve = NULL;
}
else if (curveModeb != procparams::BlackWhiteParams::TC_MODE_STD_BW) {
customToneCurvebw1.Set(tbwcurve);
delete tbwcurve;
tbwcurve = NULL;
}
}
*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for (int i=0; i<=0xffff; i++) {
float val = dcurve[i];
if (histNeeded) {
float fi=i;
float hval = hlCurve[i]*fi;
hval = dcurve[shCurve[hval]*hval];
//if (needigamma)
// hval = igamma2 (hval);
int hi = (int)(255.0*(hval));
outBeforeCCurveHistogram[hi] += histogram/*Cropped*/[i] ;
}
val = igamma (val, gamma_, start, slope, mul, add);
outCurve[i] = (65535.f * val);
}
if (tcurve) delete tcurve;
/*if (outBeforeCCurveHistogram) {
for (int i=0; i<256; i++) printf("i= %d bchist= %d \n",i,outBeforeCCurveHistogram[i]);
}*/
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void CurveFactory::complexLCurve (double br, double contr, const std::vector<double>& curvePoints,
LUTu & histogram, LUTu & histogramCropped, LUTf & outCurve,
LUTu & outBeforeCCurveHistogram, int skip, bool & utili) {
// curve without contrast
LUTf dcurve(65536,0);
// clear array that stores histogram valid before applying the custom curve
if (outBeforeCCurveHistogram)
outBeforeCCurveHistogram.clear();
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// tone curve base. a: slope (from exp.comp.), b: black, def_mul: max. x value (can be>1), hr,sr: highlight,shadow recovery
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// check if brightness curve is needed
if (br>0.00001 || br<-0.00001) {
utili=true;
std::vector<double> brightcurvePoints;
brightcurvePoints.resize(9);
brightcurvePoints.at(0) = double(DCT_NURBS);
brightcurvePoints.at(1) = 0.; // black point. Value in [0 ; 1] range
brightcurvePoints.at(2) = 0.; // black point. Value in [0 ; 1] range
if (br>0) {
brightcurvePoints.at(3) = 0.1; // toe point
brightcurvePoints.at(4) = 0.1+br/150.0; //value at toe point
brightcurvePoints.at(5) = 0.7; // shoulder point
brightcurvePoints.at(6) = min(1.0,0.7+br/300.0); //value at shoulder point
} else {
brightcurvePoints.at(3) = 0.1-br/150.0; // toe point
brightcurvePoints.at(4) = 0.1; // value at toe point
brightcurvePoints.at(5) = min(1.0,0.7-br/300.0); // shoulder point
brightcurvePoints.at(6) = 0.7; // value at shoulder point
}
brightcurvePoints.at(7) = 1.; // white point
brightcurvePoints.at(8) = 1.; // value at white point
DiagonalCurve* brightcurve = new DiagonalCurve (brightcurvePoints, CURVES_MIN_POLY_POINTS/skip);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Applying brightness curve
for (int i=0; i<32768; i++) { // L values range up to 32767, higher values are for highlight overflow
// change to [0,1] range
float val = (float)i / 32767.0;
// apply brightness curve
val = brightcurve->getVal (val);
// store result in a temporary array
dcurve[i] = CLIPD(val);
}
delete brightcurve;
}
else {
for (int i=0; i<32768; i++) { // L values range up to 32767, higher values are for highlight overflow
// set the identity curve in the temporary array
dcurve[i] = (float)i / 32767.0;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// check if contrast curve is needed
if (contr>0.00001 || contr<-0.00001) {
utili=true;
DiagonalCurve* contrastcurve = NULL;
// compute mean luminance of the image with the curve applied
int sum = 0;
float avg = 0;
//float sqavg = 0;
for (int i=0; i<32768; i++) {
avg += dcurve[i] * histogram[i];
//sqavg += dcurve[i]*dcurve[i] * histogram[i];
sum += histogram[i];
}
if(sum) {
avg /= sum;
//sqavg /= sum;
//float stddev = sqrt(sqavg-avg*avg);
// printf("avg=%f\n",avg);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
std::vector<double> contrastcurvePoints;
contrastcurvePoints.resize(9);
contrastcurvePoints.at(0) = double(DCT_NURBS);
contrastcurvePoints.at(1) = 0.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(2) = 0.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(3) = avg-avg*(0.6-contr/250.0); // toe point
contrastcurvePoints.at(4) = avg-avg*(0.6+contr/250.0); // value at toe point
contrastcurvePoints.at(5) = avg+(1-avg)*(0.6-contr/250.0); // shoulder point
contrastcurvePoints.at(6) = avg+(1-avg)*(0.6+contr/250.0); // value at shoulder point
contrastcurvePoints.at(7) = 1.; // white point
contrastcurvePoints.at(8) = 1.; // value at white point
contrastcurve = new DiagonalCurve (contrastcurvePoints, CURVES_MIN_POLY_POINTS/skip);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
} else {
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// sum has an invalid value (next to 0, producing a division by zero, so we create a fake contrast curve, producing a white image
std::vector<double> contrastcurvePoints;
contrastcurvePoints.resize(5);
contrastcurvePoints.at(0) = double(DCT_NURBS);
contrastcurvePoints.at(1) = 0.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(2) = 1.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(3) = 1.; // white point
contrastcurvePoints.at(4) = 1.; // value at white point
contrastcurve = new DiagonalCurve (contrastcurvePoints, CURVES_MIN_POLY_POINTS/skip);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
// apply contrast enhancement
for (int i=0; i<32768; i++) {
dcurve[i] = contrastcurve->getVal (dcurve[i]);
}
delete contrastcurve;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create a curve if needed
DiagonalCurve* tcurve = NULL;
bool histNeeded = false;
if (!curvePoints.empty() && curvePoints[0]!=0) {
tcurve = new DiagonalCurve (curvePoints, CURVES_MIN_POLY_POINTS/skip);
if (outBeforeCCurveHistogram /*&& histogramCropped*/)
histNeeded = true;
}
if (tcurve && tcurve->isIdentity()) {
delete tcurve;
tcurve = NULL;
}
if (tcurve) {
utili=true;//if active
// L values go up to 32767, last stop is for highlight overflow
for (int i=0; i<32768; i++) {
float val;
if (histNeeded) {
float hval = dcurve[i];
int hi = (int)(255.0*CLIPD(hval));
outBeforeCCurveHistogram[hi]+=histogram/*Cropped*/[i] ;
}
// apply custom/parametric/NURBS curve, if any
val = tcurve->getVal (dcurve[i]);
outCurve[i] = (32767.0 * val);
}
}
else {
// Skip the slow getval method if no curve is used (or an identity curve)
// L values go up to 32767, last stop is for highlight overflow
for (int i=0; i<32768; i++) {
if (histNeeded) {
float hval = dcurve[i];
int hi = (int)(255.0*CLIPD(hval));
outBeforeCCurveHistogram[hi]+=histogram/*Cropped*/[i] ;
}
outCurve[i] = 32767.0*dcurve[i];
}
}
for (int i=32768; i<65536; i++) outCurve[i]=(float)i;
if (tcurve)
delete tcurve;
/*if (outBeforeCCurveHistogram) {
for (int i=0; i<256; i++) printf("i= %d bchist= %d \n",i,outBeforeCCurveHistogram[i]);
}*/
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void CurveFactory::RGBCurve (const std::vector<double>& curvePoints, LUTf & outCurve, int skip) {
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create a curve if needed
DiagonalCurve* tcurve = NULL;
if (!curvePoints.empty() && curvePoints[0]!=0) {
tcurve = new DiagonalCurve (curvePoints, CURVES_MIN_POLY_POINTS/skip);
}
if (tcurve && tcurve->isIdentity()) {
delete tcurve;
tcurve = NULL;
}
if (tcurve) {
if (!outCurve)
outCurve(65536, 0);
for (int i=0; i<65536; i++) {
// apply custom/parametric/NURBS curve, if any
// RGB curves are defined with sRGB gamma, but operate on linear data
float val = float(i)/65535.f;
val = CurveFactory::gamma2 (val);
val = tcurve->getVal(val);
val = CurveFactory::igamma2 (val);
//float val = tcurve->getVal ((float)i/65536.0f);
outCurve[i] = (65536.0f * val);
}
delete tcurve;
}
// let the LUTf empty for identity curves
else {
outCurve.reset();
}
}
void ColorAppearance::Reset() {
lutColCurve.reset();
}
// Fill a LUT with X/Y, ranged 0xffff
void ColorAppearance::Set(Curve *pCurve) {
lutColCurve(65536);
for (int i=0; i<65536; i++) lutColCurve[i] = pCurve->getVal(double(i)/65535.) * 65535.;
}
void ToneCurve::Reset() {
lutToneCurve.reset();
}
// Fill a LUT with X/Y, ranged 0xffff
void ToneCurve::Set(Curve *pCurve, float gamma, float start, float slope, float mul, float add) {
lutToneCurve(65536);
if (gamma <= 0.0 || gamma == 1.) {
for (int i=0; i<65536; i++) lutToneCurve[i] = (float)pCurve->getVal(float(i)/65535.f) * 65535.f;
} else {
// apply gamma, that is 'pCurve' is defined with the given gamma and here we convert it to a curve in linear space
for (int i=0; i<65536; i++) {
float val = float(i)/65535.f;
val = CurveFactory::gamma (val, gamma, start, slope, mul, add);
val = pCurve->getVal(val);
val = CurveFactory::igamma (val, gamma, start, slope, mul, add);
lutToneCurve[i] = val * 65535.f;
}
}
}
void OpacityCurve::Reset() {
lutOpacityCurve.reset();
}
void OpacityCurve::Set(const Curve *pCurve) {
if (pCurve->isIdentity()) {
lutOpacityCurve.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurve(501); // raise this value if the quality suffers from this number of samples
for (int i=0; i<501; i++) lutOpacityCurve[i] = pCurve->getVal(double(i)/500.);
//lutOpacityCurve.dump("opacity");
}
void OpacityCurve::Set(const std::vector<double> &curvePoints, bool &opautili) {
FlatCurve* tcurve = NULL;
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
tcurve = new FlatCurve (curvePoints, false, CURVES_MIN_POLY_POINTS/2);
tcurve->setIdentityValue(0.);
}
if (tcurve) {
Set(tcurve);opautili=true;
delete tcurve;
tcurve = NULL;
}
}
WavCurve::WavCurve() : sum(0.f) {};
void WavCurve::Reset() {
lutWavCurve.reset();
sum = 0.f;
}
void WavCurve::Set(const Curve &pCurve) {
if (pCurve.isIdentity()) {
Reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutWavCurve(501); // raise this value if the quality suffers from this number of samples
sum=0.f;
for (int i=0; i<501; i++) {
lutWavCurve[i] = pCurve.getVal(double(i)/500.);
if(lutWavCurve[i] < 0.02f)
lutWavCurve[i] = 0.02f;//avoid 0.f for wavelet : under 0.01f quasi no action for each value
sum += lutWavCurve[i];
}
//lutWavCurve.dump("wav");
}
void WavCurve::Set(const std::vector<double> &curvePoints) {
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS/2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveRG::WavOpacityCurveRG(){};
void WavOpacityCurveRG::Reset() {
lutOpacityCurveRG.reset();
}
void WavOpacityCurveRG::Set(const Curve &pCurve) {
if (pCurve.isIdentity()) {
Reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveRG(501); // raise this value if the quality suffers from this number of samples
for (int i=0; i<501; i++) lutOpacityCurveRG[i] = pCurve.getVal(double(i)/500.);
}
void WavOpacityCurveRG::Set(const std::vector<double> &curvePoints) {
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS/2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveBY::WavOpacityCurveBY(){};
void WavOpacityCurveBY::Reset() {
lutOpacityCurveBY.reset();
}
void WavOpacityCurveBY::Set(const Curve &pCurve) {
if (pCurve.isIdentity()) {
lutOpacityCurveBY.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveBY(501); // raise this value if the quality suffers from this number of samples
for (int i=0; i<501; i++) lutOpacityCurveBY[i] = pCurve.getVal(double(i)/500.);
}
void WavOpacityCurveBY::Set(const std::vector<double> &curvePoints) {
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS/2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveW::WavOpacityCurveW(){};
void WavOpacityCurveW::Reset() {
lutOpacityCurveW.reset();
}
void WavOpacityCurveW::Set(const Curve &pCurve) {
if (pCurve.isIdentity()) {
lutOpacityCurveW.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveW(501); // raise this value if the quality suffers from this number of samples
for (int i=0; i<501; i++) lutOpacityCurveW[i] = pCurve.getVal(double(i)/500.);
}
void WavOpacityCurveW::Set(const std::vector<double> &curvePoints) {
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS/2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveWL::WavOpacityCurveWL(){};
void WavOpacityCurveWL::Reset() {
lutOpacityCurveWL.reset();
}
void WavOpacityCurveWL::Set(const Curve &pCurve) {
if (pCurve.isIdentity()) {
lutOpacityCurveWL.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveWL(501); // raise this value if the quality suffers from this number of samples
for (int i=0; i<501; i++) lutOpacityCurveWL[i] = pCurve.getVal(double(i)/500.);
}
void WavOpacityCurveWL::Set(const std::vector<double> &curvePoints) {
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS/2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
NoiseCurve::NoiseCurve() : sum(0.f) {};
void NoiseCurve::Reset() {
lutNoiseCurve.reset();
sum = 0.f;
}
void NoiseCurve::Set(const Curve &pCurve) {
if (pCurve.isIdentity()) {
Reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutNoiseCurve(501); // raise this value if the quality suffers from this number of samples
sum=0.f;
for (int i=0; i<501; i++) {
lutNoiseCurve[i] = pCurve.getVal(double(i)/500.);
if(lutNoiseCurve[i] < 0.01f)
lutNoiseCurve[i] = 0.01f;//avoid 0.f for wavelet : under 0.01f quasi no action for each value
sum += lutNoiseCurve[i]; //minima for Wavelet about 6.f or 7.f quasi no action
}
//lutNoisCurve.dump("Nois");
}
void NoiseCurve::Set(const std::vector<double> &curvePoints) {
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS/2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
void ColorGradientCurve::Reset() {
lut1.reset();
lut2.reset();
lut3.reset();
}
void ColorGradientCurve::SetXYZ(const Curve *pCurve, const double xyz_rgb[3][3], const double rgb_xyz[3][3], float satur, float lumin) {
if (pCurve->isIdentity()) {
lut1.reset();
lut2.reset();
lut3.reset();
return;
}
if (!lut1) {
lut1(501);
lut2(501);
lut3(501);
}
float r, g, b, xx, yy, zz;
float lr1,lr2;
int upperBound = lut1.getUpperBound();
if (pCurve->isIdentity()) {
Color::hsv2rgb(0.5f, satur, lumin, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
for (int i=0; i<=500; ++i) {
// WARNING: set the identity value according to what is set in the GUI
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
}
return;
}
int nPoints = pCurve->getSize();
int ptNum = 0;
double nextX, nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
double prevY = nextY;
double dY = 0.;
low=nextX;
lr1=(0.5f+low)/2.f;//optimize use of gamut in low light..one can optimize more using directly low ?
//lr1=low;
for (int i=0; i<=upperBound; ++i) {
double x = double(i)/double(upperBound);
if (x > nextX) {
++ptNum;
if (ptNum < nPoints) {
prevY = nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
dY = nextY - prevY;
high=nextX;
lr2=(0.5f + high)/2.f;//optimize use of gamut in high light..one can optimize more using directly high ?
//lr2=high;
}
}
if (!ptNum) {
Color::hsv2rgb(float(prevY), satur, lr1, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
}
else if (ptNum >= nPoints) {
Color::hsv2rgb(float(nextY), satur, lr2, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
}
else {
double currY = pCurve->getVal(x) - prevY;
if (dY > 0.000001 || dY < -0.000001) {
float r1, g1, b1, r2, g2, b2, ro, go, bo;
Color::hsv2rgb(float(prevY), satur, lr1, r1, g1, b1);
Color::hsv2rgb(float(nextY), satur, lr2, r2, g2, b2);
bool chr = false;
bool lum = true;
LUTf dum;
float X1,X2,Y1,Y2,Z1,Z2,L1,a_1,b_1,c1,h1;
Color::rgbxyz(r2, g2, b2, X2, Y2, Z2, xyz_rgb);
Color::rgbxyz(r1, g1, b1, X1, Y1, Z1, xyz_rgb);
//I use XYZ to mix color 1 and 2 rather than rgb (gamut) and rather than Lab artifacts
X1 = X1 + (X2-X1)*currY/dY; if(X1<0.f) X1=0.f;//negative value not good
Y1 = Y1 + (Y2-Y1)*currY/dY; if(Y1<0.f) Y1=0.f;
Z1 = Z1 + (Z2-Z1)*currY/dY; if(Z1<0.f) Z1=0.f;
Color::XYZ2Lab(X1, Y1, Z1, L1, a_1, b_1);//prepare to gamut control
Color::Lab2Lch(a_1, b_1, c1, h1);
float Lr=L1/327.68f;
float RR,GG,BB;
#ifndef NDEBUG
bool neg=false;
bool more_rgb=false;
//gamut control : Lab values are in gamut
Color::gamutLchonly(h1,Lr,c1, RR, GG, BB, xyz_rgb, false, 0.15f, 0.96f, neg, more_rgb);
#else
Color::gamutLchonly(h1,Lr,c1, RR, GG, BB, xyz_rgb, false, 0.15f, 0.96f);
#endif
L1=Lr*327.68f;
float a,b,X,Y,Z;
// converting back to rgb
Color::Lch2Lab(c1, h1, a, b);
Color::Lab2XYZ(L1, a, b, X, Y, Z);
lut1[i] = X;
lut2[i] = Y;
lut3[i] = Z;
}
else {
Color::hsv2rgb(float(nextY), satur, lumin, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
}
}
}
/*
#ifndef NDEBUG
lutRed.dump("red");
lutGreen.dump("green");
lutBlue.dump("blue");
#endif
*/
}
void ColorGradientCurve::SetXYZ(const std::vector<double> &curvePoints, const double xyz_rgb[3][3], const double rgb_xyz[3][3], float satur, float lumin) {
FlatCurve* tcurve = NULL;
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
tcurve = new FlatCurve (curvePoints, false, CURVES_MIN_POLY_POINTS/2);
}
if (tcurve) {
SetXYZ(tcurve, xyz_rgb, rgb_xyz, satur, lumin);
delete tcurve;
tcurve = NULL;
}
}
void ColorGradientCurve::SetRGB(const Curve *pCurve, const double xyz_rgb[3][3], const double rgb_xyz[3][3]) {
if (pCurve->isIdentity()) {
lut1.reset();
lut2.reset();
lut3.reset();
return;
}
if (!lut1) {
lut1(501);
lut2(501);
lut3(501);
}
float r, g, b;
int upperBound = lut1.getUpperBound();
int nPoints = pCurve->getSize();
int ptNum = 0;
double nextX, nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
double prevY = nextY;
double dY = 0.;
Color::eInterpolationDirection dir = Color::ID_DOWN;
for (int i=0; i<=upperBound; ++i) {
double x = double(i)/double(upperBound);
if (x > nextX) {
++ptNum;
if (ptNum < nPoints) {
prevY = nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
dY = nextY - prevY;
dir = Color::getHueInterpolationDirection(prevY, nextY, Color::IP_SHORTEST);
}
}
if (!ptNum) {
Color::hsv2rgb(float(prevY), 1.f, 1.f, r, g, b);
lut1[i] = r;
lut2[i] = g;
lut3[i] = b;
}
else if (ptNum >= nPoints) {
Color::hsv2rgb(float(nextY), 1.f, 1.f, r, g, b);
lut1[i] = r;
lut2[i] = g;
lut3[i] = b;
}
else {
double currY = pCurve->getVal(x) - prevY;
if (dY > 0.0000001 || dY < -0.0000001) {
#if 1
float ro, go, bo;
double h2 = Color::interpolateHueHSV(prevY, nextY, currY/dY, dir);
Color::hsv2rgb(h2, 1.f, 1.f, ro, go, bo);
#else
float r1, g1, b1, r2, g2, b2, ro, go, bo;
Color::hsv2rgb(float(prevY), 1., 1., r1, g1, b1);
Color::hsv2rgb(float(nextY), 1., 1., r2, g2, b2);
Color::interpolateRGBColor(currY/dY, r1, g1, b1, r2, g2, b2, Color::CHANNEL_LIGHTNESS|Color::CHANNEL_CHROMATICITY|Color::CHANNEL_HUE, xyz_rgb, rgb_xyz, ro, go, bo);
#endif
lut1[i] = ro;
lut2[i] = go;
lut3[i] = bo;
}
else {
Color::hsv2rgb(float(nextY), 1.f, 1.f, r, g, b);
lut1[i] = r;
lut2[i] = g;
lut3[i] = b;
}
}
}
/*
#ifndef NDEBUG
lut1.dump("red");
lut2.dump("green");
lut3.dump("blue");
#endif
*/
}
void ColorGradientCurve::SetRGB(const std::vector<double> &curvePoints, const double xyz_rgb[3][3], const double rgb_xyz[3][3]) {
FlatCurve* tcurve = NULL;
if (!curvePoints.empty() && curvePoints[0]>FCT_Linear && curvePoints[0]<FCT_Unchanged) {
tcurve = new FlatCurve (curvePoints, false, CURVES_MIN_POLY_POINTS/2);
}
if (tcurve) {
SetRGB(tcurve, xyz_rgb, rgb_xyz);
delete tcurve;
tcurve = NULL;
}
}
void ColorGradientCurve::getVal(float index, float &r, float &g, float &b) const {
r = lut1[index*500.f];
g = lut2[index*500.f];
b = lut3[index*500.f];
}
// this is a generic cubic spline implementation, to clean up we could probably use something already existing elsewhere
void PerceptualToneCurve::cubic_spline(const float x[], const float y[], const int len, const float out_x[], float out_y[], const int out_len) {
int i, j;
float **A = (float **)malloc(2 * len * sizeof(*A));
float *As = (float *)calloc(1, 2 * len * 2 * len * sizeof(*As));
float *b = (float *)calloc(1, 2*len*sizeof(*b));
float *c = (float *)calloc(1, 2*len*sizeof(*c));
float *d = (float *)calloc(1, 2*len*sizeof(*d));
for (i = 0; i < 2*len; i++) {
A[i] = &As[2*len*i];
}
for (i = len-1; i > 0; i--) {
b[i] = (y[i] - y[i-1]) / (x[i] - x[i-1]);
d[i-1] = x[i] - x[i-1];
}
for (i = 1; i < len-1; i++) {
A[i][i] = 2 * (d[i-1] + d[i]);
if (i > 1) {
A[i][i-1] = d[i-1];
A[i-1][i] = d[i-1];
}
A[i][len-1] = 6 * (b[i+1] - b[i]);
}
for(i = 1; i < len-2; i++) {
float v = A[i+1][i] / A[i][i];
for(j = 1; j <= len-1; j++) {
A[i+1][j] -= v * A[i][j];
}
}
for(i = len-2; i > 0; i--) {
float acc = 0;
for(j = i; j <= len-2; j++) {
acc += A[i][j]*c[j];
}
c[i] = (A[i][len-1] - acc) / A[i][i];
}
for (i = 0; i < out_len; i++) {
float x_out = out_x[i];
float y_out = 0;
for (j = 0; j < len-1; j++) {
if (x[j] <= x_out && x_out <= x[j+1]) {
float v = x_out - x[j];
y_out = y[j] +
((y[j+1] - y[j]) / d[j] - (2 * d[j] * c[j] + c[j+1] * d[j]) / 6) * v +
(c[j] * 0.5) * v*v +
((c[j+1] - c[j]) / (6 * d[j])) * v*v*v;
}
}
out_y[i] = y_out;
}
free(A);
free(As);
free(b);
free(c);
free(d);
}
// generic function for finding minimum of f(x) in the a-b range using the interval halving method
float PerceptualToneCurve::find_minimum_interval_halving(float (*func)(float x, void *arg), void *arg, float a, float b, float tol, int nmax) {
float L = b - a;
float x = (a + b) * 0.5;
for (int i = 0; i < nmax; i++) {
float f_x = func(x, arg);
if ((b - a) * 0.5 < tol) {
return x;
}
float x1 = a + L/4;
float f_x1 = func(x1, arg);
if (f_x1 < f_x) {
b = x;
x = x1;
} else {
float x2 = b - L/4;
float f_x2 = func(x2, arg);
if (f_x2 < f_x) {
a = x;
x = x2;
} else {
a = x1;
b = x2;
}
}
L = b - a;
}
return x;
}
struct find_tc_slope_fun_arg {
const ToneCurve * tc;
};
float PerceptualToneCurve::find_tc_slope_fun(float k, void *arg)
{
struct find_tc_slope_fun_arg *a = (struct find_tc_slope_fun_arg *)arg;
float areasum = 0;
const int steps = 10;
for (int i = 0; i < steps; i++) {
float x = 0.1 + ((float)i / (steps-1)) * 0.5; // testing (sRGB) range [0.1 - 0.6], ie ignore highligths and dark shadows
float y = CurveFactory::gamma2(a->tc->lutToneCurve[CurveFactory::igamma2(x) * 65535] / 65535.0);
float y1 = k * x;
if (y1 > 1) y1 = 1;
areasum += (y - y1) * (y - y1); // square is a rough approx of (twice) the area, but it's fine for our purposes
}
return areasum;
}
float PerceptualToneCurve::get_curve_val(float x, float range[2], float lut[], size_t lut_size) {
float xm = (x - range[0]) / (range[1] - range[0]) * (lut_size - 1);
if (xm <= 0) {
return lut[0];
}
int idx = (int)xm;
if (idx >= lut_size-1) {
return lut[lut_size-1];
}
float d = xm - (float)idx; // [0 .. 1]
return (1.0 - d) * lut[idx] + d * lut[idx+1];
}
// calculate a single value that represents the contrast of the tone curve
float PerceptualToneCurve::calculateToneCurveContrastValue(void) const {
// find linear y = k*x the best approximates the curve, which is the linear scaling/exposure component that does not contribute any contrast
// Note: the analysis is made on the gamma encoded curve, as the LUT is linear we make backwards gamma to
struct find_tc_slope_fun_arg arg = { this };
float k = find_minimum_interval_halving(find_tc_slope_fun, &arg, 0.1, 5.0, 0.01, 20); // normally found in 8 iterations
//fprintf(stderr, "average slope: %f\n", k);
float maxslope = 0;
{
// look at midtone slope
const float xd = 0.07;
const float tx[] = { 0.30, 0.35, 0.40, 0.45 }; // we only look in the midtone range
for (int i = 0; i < sizeof(tx)/sizeof(tx[0]); i++) {
float x0 = tx[i] - xd;
float y0 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x0) * 65535.f] / 65535.f) - k * x0;
float x1 = tx[i] + xd;
float y1 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x1) * 65535.f] / 65535.f) - k * x1;
float slope = 1.0 + (y1 - y0) / (x1 - x0);
if (slope > maxslope) {
maxslope = slope;
}
}
// look at slope at (light) shadows and (dark) highlights
float e_maxslope = 0;
{
const float tx[] = { 0.20, 0.25, 0.50, 0.55 }; // we only look in the midtone range
for (int i = 0; i < sizeof(tx)/sizeof(tx[0]); i++) {
float x0 = tx[i] - xd;
float y0 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x0) * 65535.f] / 65535.f) - k * x0;
float x1 = tx[i] + xd;
float y1 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x1) * 65535.f] / 65535.f) - k * x1;
float slope = 1.0 + (y1 - y0) / (x1 - x0);
if (slope > e_maxslope) {
e_maxslope = slope;
}
}
}
//fprintf(stderr, "%.3f %.3f\n", maxslope, e_maxslope);
// midtone slope is more important for contrast, but weigh in some slope from brights and darks too.
maxslope = maxslope * 0.7 + e_maxslope * 0.3;
}
return maxslope;
}
void PerceptualToneCurve::Apply(float &r, float &g, float &b, PerceptualToneCurveState & state) const {
float x,y,z;
cmsCIEXYZ XYZ;
cmsJCh JCh;
int thread_idx = 0;
#ifdef _OPENMP
thread_idx = omp_get_thread_num();
#endif
if (!state.isProphoto) {
// convert to prophoto space to make sure the same result is had regardless of working color space
float newr = state.Working2Prophoto[0][0]*r + state.Working2Prophoto[0][1]*g + state.Working2Prophoto[0][2]*b;
float newg = state.Working2Prophoto[1][0]*r + state.Working2Prophoto[1][1]*g + state.Working2Prophoto[1][2]*b;
float newb = state.Working2Prophoto[2][0]*r + state.Working2Prophoto[2][1]*g + state.Working2Prophoto[2][2]*b;
r = newr;
g = newg;
b = newb;
}
const AdobeToneCurve& adobeTC = static_cast<const AdobeToneCurve&>((const ToneCurve&)*this);
float ar = r;
float ag = g;
float ab = b;
adobeTC.Apply(ar, ag, ab);
if (ar >= 65535.f && ag >= 65535.f && ab >= 65535.f) {
// clip fast path, will also avoid strange colors of clipped highlights
r = g = b = 65535.f;
return;
}
if (ar <= 0.f && ag <= 0.f && ab <= 0.f) {
r = g = b = 0;
return;
}
// ProPhoto constants for luminance, that is xyz_prophoto[1][]
const float Yr = 0.2880402f;
const float Yg = 0.7118741f;
const float Yb = 0.0000857f;
// we use the Adobe (RGB-HSV hue-stabilized) curve to decide luminance, which generally leads to a less contrasty result
// compared to a pure luminance curve. We do this to be more compatible with the most popular curves.
float oldLuminance = r*Yr + g*Yg + b*Yb;
float newLuminance = ar*Yr + ag*Yg + ab*Yb;
float Lcoef = newLuminance/oldLuminance;
r = LIM<float>(r*Lcoef, 0.f, 65535.f);
g = LIM<float>(g*Lcoef, 0.f, 65535.f);
b = LIM<float>(b*Lcoef, 0.f, 65535.f);
// move to JCh so we can modulate chroma based on the global contrast-related chroma scaling factor
Color::Prophotoxyz(r,g,b,x,y,z);
XYZ = (cmsCIEXYZ){ .X = x * 100.0f/65535, .Y = y * 100.0f/65535, .Z = z * 100.0f/65535 };
cmsCIECAM02Forward(h02[thread_idx], &XYZ, &JCh);
if (!isfinite(JCh.J) || !isfinite(JCh.C) || !isfinite(JCh.h)) {
// this can happen for dark noise colors or colors outside human gamut. Then we just return the curve's result.
if (!state.isProphoto) {
float newr = state.Prophoto2Working[0][0]*r + state.Prophoto2Working[0][1]*g + state.Prophoto2Working[0][2]*b;
float newg = state.Prophoto2Working[1][0]*r + state.Prophoto2Working[1][1]*g + state.Prophoto2Working[1][2]*b;
float newb = state.Prophoto2Working[2][0]*r + state.Prophoto2Working[2][1]*g + state.Prophoto2Working[2][2]*b;
r = newr;
g = newg;
b = newb;
}
return;
}
float cmul = state.cmul_contrast; // chroma scaling factor
// depending on color, the chroma scaling factor can be fine-tuned below
{ // decrease chroma scaling sligthly of extremely saturated colors
float saturated_scale_factor = 0.95;
const float lolim = 35; // lower limit, below this chroma all colors will keep original chroma scaling factor
const float hilim = 60; // high limit, above this chroma the chroma scaling factor is multiplied with the saturated scale factor value above
if (JCh.C < lolim) {
// chroma is low enough, don't scale
saturated_scale_factor = 1.0;
} else if (JCh.C < hilim) {
// S-curve transition between low and high limit
float x = (JCh.C - lolim) / (hilim - lolim); // x = [0..1], 0 at lolim, 1 at hilim
if (x < 0.5) {
x = 0.5 * powf(2*x, 2);
} else {
x = 0.5 + 0.5 * (1-powf(1-2*(x-0.5), 2));
}
saturated_scale_factor = 1.0*(1.0-x) + saturated_scale_factor*x;
} else {
// do nothing, high saturation color, keep scale factor
}
cmul *= saturated_scale_factor;
}
{ // increase chroma scaling slightly of shadows
float nL = CurveFactory::gamma2(newLuminance / 65535); // apply gamma so we make comparison and transition with a more perceptual lightness scale
float dark_scale_factor = 1.20;
//float dark_scale_factor = 1.0 + state.debug.p2 / 100.0f;
const float lolim = 0.15;
const float hilim = 0.50;
if (nL < lolim) {
// do nothing, keep scale factor
} else if (nL < hilim) {
// S-curve transition
float x = (nL - lolim) / (hilim - lolim); // x = [0..1], 0 at lolim, 1 at hilim
if (x < 0.5) {
x = 0.5 * powf(2*x, 2);
} else {
x = 0.5 + 0.5 * (1-powf(1-2*(x-0.5), 2));
}
dark_scale_factor = dark_scale_factor*(1.0-x) + 1.0*x;
} else {
dark_scale_factor = 1.0;
}
cmul *= dark_scale_factor;
}
{ // to avoid strange CIECAM02 chroma errors on close-to-shadow-clipping colors we reduce chroma scaling towards 1.0 for black colors
float dark_scale_factor = 1.0 / cmul;
const float lolim = 4;
const float hilim = 7;
if (JCh.J < lolim) {
// do nothing, keep scale factor
} else if (JCh.J < hilim) {
// S-curve transition
float x = (JCh.J - lolim) / (hilim - lolim);
if (x < 0.5) {
x = 0.5 * powf(2*x, 2);
} else {
x = 0.5 + 0.5 * (1-powf(1-2*(x-0.5), 2));
}
dark_scale_factor = dark_scale_factor*(1.0-x) + 1.0*x;
} else {
dark_scale_factor = 1.0;
}
cmul *= dark_scale_factor;
}
JCh.C *= cmul;
cmsCIECAM02Reverse(h02[thread_idx], &JCh, &XYZ);
if (!isfinite(XYZ.X) || !isfinite(XYZ.Y) || !isfinite(XYZ.Z)) {
// can happen for colors on the rim of being outside gamut, that worked without chroma scaling but not with. Then we return only the curve's result.
if (!state.isProphoto) {
float newr = state.Prophoto2Working[0][0]*r + state.Prophoto2Working[0][1]*g + state.Prophoto2Working[0][2]*b;
float newg = state.Prophoto2Working[1][0]*r + state.Prophoto2Working[1][1]*g + state.Prophoto2Working[1][2]*b;
float newb = state.Prophoto2Working[2][0]*r + state.Prophoto2Working[2][1]*g + state.Prophoto2Working[2][2]*b;
r = newr;
g = newg;
b = newb;
}
return;
}
Color::xyz2Prophoto(XYZ.X,XYZ.Y,XYZ.Z,r,g,b);
r *= 655.35;
g *= 655.35;
b *= 655.35;
r = LIM<float>(r, 0.f, 65535.f);
g = LIM<float>(g, 0.f, 65535.f);
b = LIM<float>(b, 0.f, 65535.f);
{ // limit saturation increase in rgb space to avoid severe clipping and flattening in extreme highlights
// we use the RGB-HSV hue-stable "Adobe" curve as reference. For S-curve contrast it increases
// saturation greatly, but desaturates extreme highlights and thus provide a smooth transition to
// the white point. However the desaturation effect is quite strong so we make a weighting
float ah,as,av,h,s,v;
Color::rgb2hsv(ar,ag,ab, ah,as,av);
Color::rgb2hsv(r,g,b, h,s,v);
float sat_scale = as <= 0.0 ? 1.0 : s / as; // saturation scale compared to Adobe curve
float keep = 0.2;
const float lolim = 1.00; // only mix in the Adobe curve if we have increased saturation compared to it
const float hilim = 1.20;
if (sat_scale < lolim) {
// saturation is low enough, don't desaturate
keep = 1.0;
} else if (sat_scale < hilim) {
// S-curve transition
float x = (sat_scale - lolim) / (hilim - lolim); // x = [0..1], 0 at lolim, 1 at hilim
if (x < 0.5) {
x = 0.5 * powf(2*x, 2);
} else {
x = 0.5 + 0.5 * (1-powf(1-2*(x-0.5), 2));
}
keep = 1.0*(1.0-x) + keep*x;
} else {
// do nothing, very high increase, keep minimum amount
}
if (keep < 1.0) {
// mix in some of the Adobe curve result
r = r * keep + (1.0 - keep) * ar;
g = g * keep + (1.0 - keep) * ag;
b = b * keep + (1.0 - keep) * ab;
}
}
if (!state.isProphoto) {
float newr = state.Prophoto2Working[0][0]*r + state.Prophoto2Working[0][1]*g + state.Prophoto2Working[0][2]*b;
float newg = state.Prophoto2Working[1][0]*r + state.Prophoto2Working[1][1]*g + state.Prophoto2Working[1][2]*b;
float newb = state.Prophoto2Working[2][0]*r + state.Prophoto2Working[2][1]*g + state.Prophoto2Working[2][2]*b;
r = newr;
g = newg;
b = newb;
}
}
cmsContext * PerceptualToneCurve::c02;
cmsHANDLE * PerceptualToneCurve::h02;
float PerceptualToneCurve::cf_range[2];
float PerceptualToneCurve::cf[1000];
void PerceptualToneCurve::init() {
{ // init ciecam02 state, used for chroma scalings
cmsViewingConditions vc;
vc.whitePoint = *cmsD50_XYZ();
vc.whitePoint.X *= 100;
vc.whitePoint.Y *= 100;
vc.whitePoint.Z *= 100;
vc.Yb = 20;
vc.La = 20;
vc.surround = AVG_SURROUND;
vc.D_value = 1.0;
int thread_count = 1;
#ifdef _OPENMP
thread_count = omp_get_max_threads();
#endif
h02 = (cmsHANDLE *)malloc(sizeof(h02[0]) * (thread_count + 1));
c02 = (cmsContext *)malloc(sizeof(c02[0]) * (thread_count + 1));
h02[thread_count] = NULL;
c02[thread_count] = NULL;
// little cms requires one state per thread, for thread safety
for (int i = 0; i < thread_count; i++) {
c02[i] = cmsCreateContext(NULL, NULL);
h02[i] = cmsCIECAM02Init(c02[i], &vc);
}
}
{ // init contrast-value-to-chroma-scaling conversion curve
// contrast value in the left column, chroma scaling in the right. Handles for a spline.
// Put the columns in a file (without commas) and you can plot the spline with gnuplot: "plot 'curve.txt' smooth csplines"
// A spline can easily get overshoot issues so if you fine-tune the values here make sure that the resulting spline is smooth afterwards, by
// plotting it for example.
const float p[] = {
0.60, 0.70, // lowest contrast
0.70, 0.80,
0.90, 0.94,
0.99, 1.00,
1.00, 1.00, // 1.0 (linear curve) to 1.0, no scaling
1.07, 1.00,
1.08, 1.00,
1.11, 1.02,
1.20, 1.08,
1.30, 1.12,
1.80, 1.20,
2.00, 1.22 // highest contrast
};
const size_t in_len = sizeof(p)/sizeof(p[0])/2;
float in_x[in_len];
float in_y[in_len];
for (size_t i = 0; i < in_len; i++) {
in_x[i]= p[2*i+0];
in_y[i]= p[2*i+1];
}
const size_t out_len = sizeof(cf)/sizeof(cf[0]);
float out_x[out_len];
for (size_t i = 0; i < out_len; i++) {
out_x[i] = in_x[0] + (in_x[in_len-1] - in_x[0]) * (float)i / (out_len-1);
}
cubic_spline(in_x, in_y, in_len, out_x, cf, out_len);
cf_range[0] = in_x[0];
cf_range[1] = in_x[in_len-1];
}
}
void PerceptualToneCurve::cleanup() {
for (int i = 0; h02[i] != NULL; i++) {
cmsCIECAM02Done(h02[i]);
cmsDeleteContext(c02[i]);
}
free(h02);
free(c02);
}
void PerceptualToneCurve::initApplyState(PerceptualToneCurveState & state, Glib::ustring workingSpace) const {
// Get the curve's contrast value, and convert to a chroma scaling
const float contrast_value = calculateToneCurveContrastValue();
state.cmul_contrast = get_curve_val(contrast_value, cf_range, cf, sizeof(cf)/sizeof(cf[0]));
//fprintf(stderr, "contrast value: %f => chroma scaling %f\n", contrast_value, state.cmul_contrast);
// Create state for converting to/from prophoto (if necessary)
if (workingSpace == "ProPhoto") {
state.isProphoto = true;
} else {
state.isProphoto = false;
TMatrix Work = iccStore->workingSpaceMatrix(workingSpace);
memset(state.Working2Prophoto, 0, sizeof(state.Working2Prophoto));
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<3; k++)
state.Working2Prophoto[i][j] += prophoto_xyz[i][k] * Work[k][j];
Work = iccStore->workingSpaceInverseMatrix (workingSpace);
memset(state.Prophoto2Working, 0, sizeof(state.Prophoto2Working));
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<3; k++)
state.Prophoto2Working[i][j] += Work[i][k] * xyz_prophoto[k][j];
}
}
}