686 lines
26 KiB
C++
686 lines
26 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
* (C) 2010 Emil Martinec <ejmartin@uchicago.edu>
|
|
*
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
|
|
#include "array2D.h"
|
|
#include "cieimage.h"
|
|
#include "color.h"
|
|
#include "curves.h"
|
|
#include "improcfun.h"
|
|
#include "LUT.h"
|
|
#include "opthelper.h"
|
|
#include "rt_math.h"
|
|
#include "settings.h"
|
|
|
|
namespace {
|
|
|
|
float rangeFn(float i) {
|
|
return 1.f / (i + 1000.f);
|
|
}
|
|
|
|
|
|
void dirpyr_channel(const float * const * data_fine, float ** data_coarse, int width, int height, int level, int scale)
|
|
{
|
|
// scale is spacing of directional averaging weights
|
|
// calculate weights, compute directionally weighted average
|
|
|
|
if (level > 1) {
|
|
//generate domain kernel
|
|
// multiplied each value of domker by 1000 to avoid multiplication by 1000 inside the loop
|
|
#ifdef __SSE2__
|
|
const float domkerv[5][5][4] ALIGNED16 = {{{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}},
|
|
{{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}},
|
|
{{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}},
|
|
{{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}},
|
|
{{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}}};
|
|
#endif
|
|
const float domker[5][5] = {{1000, 1000, 1000, 1000, 1000},
|
|
{1000, 2000, 2000, 2000, 1000},
|
|
{1000, 2000, 2000, 2000, 1000},
|
|
{1000, 2000, 2000, 2000, 1000},
|
|
{1000, 1000, 1000, 1000, 1000}};
|
|
constexpr int halfwin = 2;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
const int scalewin = halfwin * scale;
|
|
#ifdef __SSE2__
|
|
const vfloat thousandv = F2V(1000.f);
|
|
#endif
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j;
|
|
for (j = 0; j < scalewin; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = std::max(0, i - scalewin); inbr <= std::min(height - 1, i + scalewin); inbr += scale) {
|
|
for (int jnbr = std::max(0, j - scalewin); jnbr <= j + scalewin; jnbr += scale) {
|
|
const float dirwt = domker[(inbr - i) / scale + halfwin][(jnbr - j)/ scale + halfwin] * rangeFn(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - scalewin - 3; j += 4) {
|
|
vfloat valv = ZEROV;
|
|
vfloat normv = ZEROV;
|
|
const vfloat dftemp1v = LVFU(data_fine[i][j]);
|
|
|
|
for (int inbr = MAX(0, i - scalewin); inbr <= MIN(height - 1, i + scalewin); inbr += scale) {
|
|
const int indexihlp = (inbr - i) / scale + halfwin;
|
|
for (int jnbr = j - scalewin, indexjhlp = 0; jnbr <= j + scalewin; jnbr += scale, ++indexjhlp) {
|
|
const vfloat dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
|
const vfloat dirwtv = LVF(domkerv[indexihlp][indexjhlp]) / (vabsf(dftemp1v - dftemp2v) + thousandv);
|
|
valv += dirwtv * dftemp2v;
|
|
normv += dirwtv;
|
|
}
|
|
}
|
|
STVFU(data_coarse[i][j], valv / normv); //low pass filter
|
|
}
|
|
#endif
|
|
for (; j < width - scalewin; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = std::max(0, i - scalewin); inbr <= std::min(height - 1, i + scalewin); inbr += scale) {
|
|
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
|
const float dirwt = domker[(inbr - i) / scale + halfwin][(jnbr - j)/ scale + halfwin] * rangeFn(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = std::max(0, i - scalewin); inbr <= std::min(height - 1, i + scalewin); inbr += scale) {
|
|
for (int jnbr = j - scalewin; jnbr <= std::min(width - 1, j + scalewin); jnbr += scale) {
|
|
const float dirwt = domker[(inbr - i) / scale + halfwin][(jnbr - j)/ scale + halfwin] * rangeFn(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
}
|
|
}
|
|
} else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
const vfloat thousandv = F2V(1000.0f);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++)
|
|
{
|
|
int j = 0;
|
|
for (; j < scale; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = std::max(0, i - scale); inbr <= std::min(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = std::max(0, j - scale); jnbr <= j + scale; jnbr += scale) {
|
|
const float dirwt = rangeFn(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - scale - 3; j += 4) {
|
|
vfloat valv = ZEROV;
|
|
vfloat normv = ZEROV;
|
|
const vfloat dftemp1v = LVFU(data_fine[i][j]);
|
|
|
|
for (int inbr = MAX(0, i - scale); inbr <= MIN(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
|
|
const vfloat dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
|
const vfloat dirwtv = thousandv / (vabsf(dftemp2v - dftemp1v) + thousandv);
|
|
valv += dirwtv * dftemp2v;
|
|
normv += dirwtv;
|
|
}
|
|
}
|
|
STVFU(data_coarse[i][j], valv / normv); //low pass filter
|
|
}
|
|
#endif
|
|
|
|
for (; j < width - scale; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = std::max(0, i - scale); inbr <= std::min(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
|
|
const float dirwt = rangeFn(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = std::max(0, i - scale); inbr <= std::min(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = j - scale; jnbr <= std::min(width - 1, j + scale); jnbr += scale) {
|
|
const float dirwt = rangeFn(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void fillLut(LUTf &irangefn, int level, double dirpyrThreshold, float mult, float skinprot) {
|
|
|
|
float multbis;
|
|
if (level == 4 && mult > 1.f) {
|
|
multbis = 1.f + 0.65f * (mult - 1.f);
|
|
} else if (level == 5 && mult > 1.f) {
|
|
multbis = 1.f + 0.45f * (mult - 1.f);
|
|
} else {
|
|
multbis = mult; //multbis to reduce artifacts for high values mult
|
|
}
|
|
|
|
const float offs = skinprot == 0.f ? 0.f : -1.f;
|
|
constexpr double noise = 2000.0;
|
|
const float noisehi = 1.33 * noise * dirpyrThreshold / exp(level * log(3.0)), noiselo = 0.66 * noise * dirpyrThreshold / exp(level * log(3.0));
|
|
|
|
for (int i = 0; i < 0x20000; i++) {
|
|
if (abs(i - 0x10000) > noisehi || multbis < 1.f) {
|
|
irangefn[i] = multbis + offs;
|
|
} else {
|
|
if (abs(i - 0x10000) < noiselo) {
|
|
irangefn[i] = 1.f + offs;
|
|
} else {
|
|
irangefn[i] = 1.f + offs + (multbis - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void idirpyr_eq_channel_loc(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult, const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev, bool multiThread)
|
|
{
|
|
LUTf irangefn(0x20000);
|
|
fillLut(irangefn, level, dirpyrThreshold, mult, skinprot);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
const float hipass = data_fine[i][j] - data_coarse[i][j];
|
|
buffer[i][j] += irangefn[hipass + 0x10000] * hipass;
|
|
}
|
|
}
|
|
}
|
|
|
|
void idirpyr_eq_channel(const float * const * data_coarse, const float * const * data_fine, float ** buffer, int width, int height, int level, float mult, const double dirpyrThreshold, const float * const * hue, const float * const * chrom, const double skinprot, float b_l, float t_l, float t_r)
|
|
{
|
|
const float skinprotneg = -skinprot;
|
|
const float factorHard = (1.f - skinprotneg / 100.f);
|
|
|
|
LUTf irangefn(0x20000);
|
|
fillLut(irangefn, level, dirpyrThreshold, mult, skinprot);
|
|
|
|
if (!skinprot) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
const float hipass = data_fine[i][j] - data_coarse[i][j];
|
|
buffer[i][j] += irangefn[hipass + 0x10000] * hipass;
|
|
}
|
|
}
|
|
} else if (skinprot > 0.0) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float scale = 1.f;
|
|
const float hipass = data_fine[i][j] - data_coarse[i][j];
|
|
rtengine::Color::SkinSatCbdl(data_fine[i][j] / 327.68f, hue[i][j], chrom[i][j], skinprot, scale, true, b_l, t_l, t_r);
|
|
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass;
|
|
}
|
|
}
|
|
} else {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float scale = 1.f;
|
|
const float hipass = data_fine[i][j] - data_coarse[i][j];
|
|
rtengine::Color::SkinSatCbdl(data_fine[i][j] / 327.68f, hue[i][j], chrom[i][j], skinprotneg, scale, false, b_l, t_l, t_r);
|
|
const float correct = irangefn[hipass + 0x10000];
|
|
|
|
if (scale == 1.f) {//image hard
|
|
buffer[i][j] += (1.f + correct * factorHard) * hipass;
|
|
} else { //image soft with scale < 1 ==> skin
|
|
buffer[i][j] += (1.f + correct) * hipass;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void idirpyr_eq_channelcam(const float * const * data_coarse, const float * const * data_fine, float ** buffer, int width, int height, int level, float mult, const double dirpyrThreshold, const float * const * h_p, const float * const * C_p, const double skinprot, float b_l, float t_l, float t_r)
|
|
{
|
|
|
|
const float skinprotneg = -skinprot;
|
|
const float factorHard = 1.f - skinprotneg / 100.f;
|
|
|
|
LUTf irangefn(0x20000);
|
|
fillLut(irangefn, level, dirpyrThreshold, mult, skinprot);
|
|
|
|
if (!skinprot) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
const float hipass = data_fine[i][j] - data_coarse[i][j];
|
|
buffer[i][j] += irangefn[hipass + 0x10000] * hipass;
|
|
}
|
|
}
|
|
} else if (skinprot > 0.0) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
const float hipass = data_fine[i][j] - data_coarse[i][j];
|
|
float scale = 1.f;
|
|
rtengine::Color::SkinSatCbdlCam(data_fine[i][j] / 327.68f, h_p[i][j] , C_p[i][j], skinprot, scale, true, b_l, t_l, t_r);
|
|
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass;
|
|
}
|
|
}
|
|
} else {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
const float hipass = data_fine[i][j] - data_coarse[i][j];
|
|
float scale = 1.f;
|
|
const float correct = irangefn[hipass + 0x10000];
|
|
rtengine::Color::SkinSatCbdlCam(data_fine[i][j] / 327.68f, h_p[i][j], C_p[i][j], skinprotneg, scale, false, b_l, t_l, t_r);
|
|
|
|
if (scale == 1.f) {//image hard
|
|
buffer[i][j] += (1.f + correct * factorHard) * hipass;
|
|
} else { //image soft
|
|
buffer[i][j] += (1.f + correct) * hipass;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
void ImProcFunctions::dirpyr_equalizer(const float * const * src, float ** dst, int srcwidth, int srcheight, const float * const * l_a, const float * const * l_b, const double * mult, const double dirpyrThreshold, const double skinprot, float b_l, float t_l, float t_r, int scaleprev)
|
|
{
|
|
//sequence of scales
|
|
constexpr int maxlevel = 6;
|
|
constexpr int scales[maxlevel] = {1, 2, 4, 8, 16, 32};
|
|
const float atten123 = rtengine::LIM<float>(settings->level123_cbdl, 0.f, 50.f);
|
|
const float atten0 = rtengine::LIM<float>(settings->level0_cbdl, 0.f, 40.f);
|
|
|
|
int lastlevel = maxlevel;
|
|
while (lastlevel > 0 && fabs(mult[lastlevel - 1] - 1) < 0.001) {
|
|
--lastlevel;
|
|
}
|
|
|
|
if (lastlevel == 0) {
|
|
return;
|
|
}
|
|
|
|
float multi[maxlevel];
|
|
|
|
for (int lv = 0; lv < maxlevel; ++lv) {
|
|
if (scales[lv] < scaleprev) {
|
|
const float factor = lv >= 1 ? atten123 : atten0;
|
|
multi[lv] = (factor * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
|
|
} else {
|
|
multi[lv] = mult[lv];
|
|
}
|
|
}
|
|
|
|
multi_array2D<float, maxlevel> dirpyrlo (srcwidth, srcheight);
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, std::max(scales[0] / scaleprev, 1));
|
|
|
|
for (int level = 1; level < lastlevel; ++level) {
|
|
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, std::max(scales[level] / scaleprev, 1));
|
|
}
|
|
|
|
array2D<float> tmpHue, tmpChr;
|
|
|
|
if (skinprot) {
|
|
// precalculate hue and chroma, use SSE, if available
|
|
// by precalculating these values we can greatly reduce the number of calculations in idirpyr_eq_channel()
|
|
// but we need two additional buffers for this preprocessing
|
|
tmpHue(srcwidth, srcheight);
|
|
tmpChr(srcwidth, srcheight);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
const vfloat div = F2V(327.68f);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
int j = 0;
|
|
#ifdef __SSE2__
|
|
for (; j < srcwidth - 3; j += 4) {
|
|
const vfloat lav = LVFU(l_a[i][j]);
|
|
const vfloat lbv = LVFU(l_b[i][j]);
|
|
STVFU(tmpHue[i][j], xatan2f(lbv, lav));
|
|
STVFU(tmpChr[i][j], vsqrtf(SQRV(lbv) + SQRV(lav)) / div);
|
|
}
|
|
#endif
|
|
for (; j < srcwidth; j++) {
|
|
tmpHue[i][j] = xatan2f(l_b[i][j], l_a[i][j]);
|
|
tmpChr[i][j] = sqrtf(SQR((l_b[i][j])) + SQR((l_a[i][j]))) / 327.68f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
float** buffer = dirpyrlo[lastlevel - 1];
|
|
|
|
for (int level = lastlevel - 1; level > 0; --level) {
|
|
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi[level], dirpyrThreshold, tmpHue, tmpChr, skinprot, b_l, t_l, t_r);
|
|
}
|
|
|
|
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi[0], dirpyrThreshold, tmpHue, tmpChr, skinprot, b_l, t_l, t_r);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
dst[i][j] = buffer[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImProcFunctions::dirpyr_equalizercam(const CieImage *ncie, float ** src, float ** dst, int srcwidth, int srcheight, const float * const * h_p, const float * const * C_p, const double * mult, const double dirpyrThreshold, const double skinprot, float b_l, float t_l, float t_r, int scaleprev)
|
|
{
|
|
|
|
//sequence of scales
|
|
constexpr int maxlevel = 6;
|
|
constexpr int scales[maxlevel] = {1, 2, 4, 8, 16, 32};
|
|
const float atten123 = rtengine::LIM<float>(settings->level123_cbdl, 0.f, 50.f);
|
|
const float atten0 = rtengine::LIM<float>(settings->level0_cbdl, 0.f, 40.f);
|
|
|
|
int lastlevel = maxlevel;
|
|
while (fabs(mult[lastlevel - 1] - 1) < 0.001 && lastlevel > 0) {
|
|
--lastlevel;
|
|
}
|
|
|
|
if (lastlevel == 0) {
|
|
return;
|
|
}
|
|
|
|
float multi[maxlevel];
|
|
|
|
for (int lv = 0; lv < maxlevel; lv++) {
|
|
if (scales[lv] < scaleprev) {
|
|
const float factor = lv >= 1 ? atten123 : atten0;
|
|
multi[lv] = (factor * ((float) mult[lv] - 1.f) / 100.f) + 1.f;
|
|
} else {
|
|
multi[lv] = mult[lv];
|
|
}
|
|
}
|
|
|
|
multi_array2D<float, maxlevel> dirpyrlo (srcwidth, srcheight);
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, std::max(scales[0] / scaleprev, 1));
|
|
|
|
for (int level = 1; level < lastlevel; ++level) {
|
|
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, std::max(scales[level] / scaleprev, 1));
|
|
}
|
|
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
float ** buffer = dirpyrlo[lastlevel - 1];
|
|
|
|
for (int level = lastlevel - 1; level > 0; --level) {
|
|
idirpyr_eq_channelcam(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi[level], dirpyrThreshold , h_p, C_p, skinprot, b_l, t_l, t_r);
|
|
}
|
|
|
|
idirpyr_eq_channelcam(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi[0], dirpyrThreshold, h_p, C_p, skinprot, b_l, t_l, t_r);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
if (ncie->J_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) {
|
|
dst[i][j] = buffer[i][j];
|
|
} else {
|
|
dst[i][j] = src[i][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImProcFunctions::cbdl_local_temp(float ** src, float ** loctemp, int srcwidth, int srcheight, const float * mult, float kchro, const double dirpyrThreshold, const float mergeL, const float contres, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev, bool multiThread)
|
|
{
|
|
constexpr int maxlevelloc = 6;
|
|
constexpr int scalesloc[maxlevelloc] = {1, 2, 4, 8, 16, 32};
|
|
const float atten123 = rtengine::LIM<float>(settings->level123_cbdl, 0.f, 50.f);
|
|
const float atten0 = rtengine::LIM<float>(settings->level0_cbdl, 0.f, 40.f);
|
|
int lastlevel = maxlevelloc;
|
|
|
|
if (settings->verbose) {
|
|
printf("Dirpyr scaleprev=%i\n", scaleprev);
|
|
}
|
|
|
|
while (lastlevel > 0 && fabs(mult[lastlevel - 1] - 1) < 0.001) {
|
|
|
|
lastlevel--;
|
|
//printf("last level to process %d \n",lastlevel);
|
|
}
|
|
|
|
if (lastlevel == 0) {
|
|
return;
|
|
}
|
|
|
|
float multi[6];
|
|
|
|
for (int lv = 0; lv < 6; ++lv) {
|
|
if (scalesloc[lv] < scaleprev) {
|
|
const float factor = lv >= 1 ? atten123 : atten0;
|
|
multi[lv] = (factor * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
|
|
} else {
|
|
multi[lv] = mult[lv];
|
|
}
|
|
}
|
|
|
|
if (settings->verbose) {
|
|
printf("CbDL local mult0=%f 1=%f 2=%f 3=%f 4=%f 5%f\n", multi[0], multi[1], multi[2], multi[3], multi[4], multi[5]);
|
|
}
|
|
|
|
multi_array2D<float, maxlevelloc> dirpyrlo(srcwidth, srcheight);
|
|
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, std::max(scalesloc[0] / scaleprev, 1));
|
|
|
|
|
|
for (int level = 1; level < lastlevel; ++level) {
|
|
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, std::max(scalesloc[level] / scaleprev, 1));
|
|
}
|
|
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
// float ** buffer = dirpyrlo[lastlevel - 1];
|
|
array2D<float> residbuff(srcwidth, srcheight);
|
|
array2D<float> resid5(srcwidth, srcheight);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < srcheight; i++)
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
residbuff[i][j] = 0.f;
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < srcheight; i++)
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
residbuff[i][j] = dirpyrlo[lastlevel - 1][i][j];
|
|
resid5[i][j] = dirpyrlo[lastlevel - 1][i][j];
|
|
}
|
|
|
|
|
|
double avg = 0.f;
|
|
if(contres != 0.f) {
|
|
int ng = 0;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:avg, ng)
|
|
#endif
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
avg += residbuff[i][j];
|
|
ng++;
|
|
}
|
|
}
|
|
avg /= ng;
|
|
avg /= 32768.f;
|
|
avg = LIM01(avg);
|
|
}
|
|
float contreal = 0.3f * contres;
|
|
DiagonalCurve resid_contrast({
|
|
DCT_NURBS,
|
|
0, 0,
|
|
avg - avg * (0.6 - contreal / 250.0), avg - avg * (0.6 + contreal / 250.0),
|
|
avg + (1 - avg) * (0.6 - contreal / 250.0), avg + (1 - avg) * (0.6 + contreal / 250.0),
|
|
1, 1
|
|
});
|
|
|
|
if(contres != 0.f) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < srcheight; i++)
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
float buf = LIM01(residbuff[i][j] / 32768.f);
|
|
buf = resid_contrast.getVal(buf);
|
|
buf *= 32768.f;
|
|
residbuff[i][j] = buf;
|
|
}
|
|
}
|
|
|
|
|
|
for (int level = lastlevel - 1; level > 0; level--) {
|
|
idirpyr_eq_channel_loc(dirpyrlo[level], dirpyrlo[level - 1], residbuff, srcwidth, srcheight, level, multi[level], dirpyrThreshold, nullptr, nullptr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice, scaleprev, multiThread);
|
|
}
|
|
|
|
scale = scalesloc[0];
|
|
|
|
idirpyr_eq_channel_loc(dirpyrlo[0], src, residbuff, srcwidth, srcheight, 0, multi[0], dirpyrThreshold, nullptr, nullptr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice, scaleprev, multiThread);
|
|
|
|
array2D<float> loct(srcwidth, srcheight);
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
loct[i][j] = LIM(residbuff[i][j],0.f,32768.f); // TODO: Really a clip necessary?
|
|
}
|
|
}
|
|
|
|
float clar = 0.01f * mergeL;
|
|
|
|
/*
|
|
if(clar == 0.f) {
|
|
clar = 0.0f;
|
|
}
|
|
// printf("clar=%f \n", clar);
|
|
*/
|
|
if(clar > 0.f) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
loctemp[i][j] = LIM((1.f + clar) * loct[i][j] - clar * resid5[i][j],0.f,32768.f);
|
|
}
|
|
}
|
|
} else {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
loctemp[i][j] = LIM(loct[i][j],0.f,32768.f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|