2017-03-31 20:28:04 +02:00

590 lines
19 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "shmap.h"
#include "gauss.h"
#include "rtengine.h"
#include "rt_math.h"
#include "rawimagesource.h"
#include "jaggedarray.h"
#undef THREAD_PRIORITY_NORMAL
#include "opthelper.h"
namespace rtengine
{
extern const Settings* settings;
SHMap::SHMap (int w, int h, bool multiThread) : max_f(0.f), min_f(0.f), avg(0.f), W(w), H(h), multiThread(multiThread)
{
map = new float*[H];
for (int i = 0; i < H; i++) {
map[i] = new float[W];
}
}
SHMap::~SHMap ()
{
for (int i = 0; i < H; i++) {
delete [] map[i];
}
delete [] map;
}
void SHMap::fillLuminance( Imagefloat * img, float **luminance, double lumi[3] ) // fill with luminance
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) {
luminance[i][j] = lumi[0] * std::max(img->r(i, j), 0.f) + lumi[1] * std::max(img->g(i, j), 0.f) + lumi[2] * std::max(img->b(i, j), 0.f);
}
}
void SHMap::fillLuminanceL( float ** L, float **luminance) // fill with luminance
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) {
luminance[i][j] = std::max(L[i][j], 0.f) ;//we can put here some enhancements Gamma, compression data,...
}
}
void SHMap::update (Imagefloat* img, double radius, double lumi[3], bool hq, int skip)
{
if (!hq) {
fillLuminance( img, map, lumi);
float *buffer = nullptr;
if(radius > 40.) {
// When we pass another buffer to gaussianBlur, it will use iterated boxblur which is less prone to artifacts
buffer = new float[W * H];
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur (map, map, W, H, radius, buffer);
}
delete [] buffer;
}
else {
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//experimental dirpyr shmap
float thresh = (100.f * radius); //1000;
// set up range function
// calculate size of Lookup table. That's possible because from a value k for all i>=k rangefn[i] will be exp(-10)
// So we use this fact and the automatic clip of lut to reduce the size of lut and the number of calculations to fill the lut
// In past this lut had only integer precision with rangefn[i] = 0 for all i>=k
// We set the last element to a small epsilon 1e-15 instead of zero to avoid divisions by zero
const int lutSize = thresh * sqrtf(10.f) + 1;
thresh *= thresh;
LUTf rangefn(lutSize);
for (int i = 0; i < lutSize - 1; i++) {
rangefn[i] = xexpf(-min(10.f, (static_cast<float>(i) * i) / thresh )); //*intfactor;
}
rangefn[lutSize - 1] = 1e-15f;
// We need one temporary buffer
const JaggedArray<float> buffer (W, H);
// the final result has to be in map
// for an even number of levels that means: map => buffer, buffer => map
// for an odd number of levels that means: buffer => map, map => buffer, buffer => map
// so let's calculate the number of levels first
// There are at least two levels
int numLevels = 2;
int scale = 2;
while (skip * scale < 16) {
scale *= 2;
numLevels++;
}
float ** dirpyrlo[2];
if(numLevels & 1) { // odd number of levels, start with buffer
dirpyrlo[0] = buffer;
dirpyrlo[1] = map;
} else { // even number of levels, start with map
dirpyrlo[0] = map;
dirpyrlo[1] = buffer;
}
fillLuminance( img, dirpyrlo[0], lumi);
scale = 1;
int level = 0;
int indx = 0;
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
scale *= 2;
level ++;
indx = 1 - indx;
while (skip * scale < 16) {
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
scale *= 2;
level ++;
indx = 1 - indx;
}
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
}
// update average, minimum, maximum
double _avg = 0.0f; // use double precision to gain precision especially at systems with few cores and big pictures (error for 36 MPixel on single core was about 8% with float)
min_f = 65535;
max_f = 0;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float _min_f = 65535.0f;
float _max_f = 0.0f;
float _val;
#ifdef _OPENMP
#pragma omp for reduction(+:_avg) schedule(dynamic,16) nowait
#endif
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) {
_val = map[i][j];
if (_val < _min_f) {
_min_f = _val;
}
if (_val > _max_f) {
_max_f = _val;
}
_avg += _val;
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
if(_min_f < min_f ) {
min_f = _min_f;
}
if(_max_f > max_f ) {
max_f = _max_f;
}
}
}
_avg /= ((H) * (W));
avg = _avg;
}
void SHMap::updateL (float** L, double radius, bool hq, int skip)
{
if (!hq) {
fillLuminanceL( L, map);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur (map, map, W, H, radius);
}
}
else
{
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//experimental dirpyr shmap
float thresh = (100.f * radius); //1000;
int levrad; // = 16;
levrad = 2; //for retinex - otherwise levrad = 16
// set up range function
// calculate size of Lookup table. That's possible because from a value k for all i>=k rangefn[i] will be exp(-10)
// So we use this fact and the automatic clip of lut to reduce the size of lut and the number of calculations to fill the lut
// In past this lut had only integer precision with rangefn[i] = 0 for all i>=k
// We set the last element to a small epsilon 1e-15 instead of zero to avoid divisions by zero
const int lutSize = (int) thresh * sqrtf(10.f) + 1;
thresh *= thresh;
LUTf rangefn(lutSize);
for (int i = 0; i < lutSize - 1; i++) {
rangefn[i] = xexpf(-min(10.f, (static_cast<float>(i) * i) / thresh )); //*intfactor;
}
rangefn[lutSize - 1] = 1e-15f;
//printf("lut=%d rf5=%f rfm=%f\n thre=%f",lutSize, rangefn[5],rangefn[lutSize-10],thresh );
// We need one temporary buffer
const JaggedArray<float> buffer (W, H);
// the final result has to be in map
// for an even number of levels that means: map => buffer, buffer => map
// for an odd number of levels that means: buffer => map, map => buffer, buffer => map
// so let's calculate the number of levels first
// There are at least two levels
int numLevels = 2;
int scale = 2;
while (skip * scale < levrad) {
scale *= 2;
numLevels++;
}
//printf("numlev=%d\n",numLevels);
float ** dirpyrlo[2];
if(numLevels & 1) { // odd number of levels, start with buffer
dirpyrlo[0] = buffer;
dirpyrlo[1] = map;
} else { // even number of levels, start with map
dirpyrlo[0] = map;
dirpyrlo[1] = buffer;
}
fillLuminanceL( L, dirpyrlo[0]);
scale = 1;
int level = 0;
int indx = 0;
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
scale *= 2;
level ++;
indx = 1 - indx;
while (skip * scale < levrad) {
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
scale *= 2;
level ++;
indx = 1 - indx;
}
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
}
// update average, minimum, maximum
double _avg = 0.0f; // use double precision to gain precision especially at systems with few cores and big pictures (error for 36 MPixel on single core was about 8% with float)
min_f = 65535;
max_f = 0;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float _min_f = 65535.0f;
float _max_f = 0.0f;
float _val;
#ifdef _OPENMP
#pragma omp for reduction(+:_avg) schedule(dynamic,16) nowait
#endif
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) {
_val = map[i][j];
if (_val < _min_f) {
_min_f = _val;
}
if (_val > _max_f) {
_max_f = _val;
}
_avg += _val;
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
if(_min_f < min_f ) {
min_f = _min_f;
}
if(_max_f > max_f ) {
max_f = _max_f;
}
}
}
_avg /= ((H) * (W));
avg = _avg;
}
void SHMap::forceStat (float max_, float min_, float avg_)
{
max_f = max_;
min_f = min_;
avg = avg_;
}
SSEFUNCTION void SHMap::dirpyr_shmap(float ** data_fine, float ** data_coarse, int width, int height, LUTf & rangefn, int level, int scale)
{
//scale is spacing of directional averaging weights
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// calculate weights, compute directionally weighted average
int scalewin, halfwin;
if(level < 2) {
halfwin = 1;
scalewin = halfwin * scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#if defined( __SSE2__ ) && defined( __x86_64__ )
vfloat dirwtv, valv, normv, dftemp1v, dftemp2v;
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j % scale; jnbr <= j + scalewin; jnbr += scale) {
//printf("dat=%f ",abs(data_fine[inbr][jnbr] - data_fine[i][j]));
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
#if defined( __SSE2__ ) && defined( __x86_64__ )
int inbrMin = max(i - scalewin, i % scale);
for(; j < (width - scalewin) - 3; j += 4) {
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
dftemp1v = LVFU(data_fine[i][j]);
for(int inbr = inbrMin; inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
dftemp2v = LVFU(data_fine[inbr][jnbr]);
dirwtv = ( rangefn[_mm_cvttps_epi32(vabsf(dftemp2v - dftemp1v))] );
valv += dirwtv * dftemp2v;
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv / normv);
}
for(; j < width - scalewin; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = inbrMin; inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
#else
for(; j < width - scalewin; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
#endif
for(; j < width; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j - scalewin; jnbr < width; jnbr += scale) {
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
}
}
} else {
halfwin = 2;
scalewin = halfwin * scale;
int domker[5][5] = {{1, 1, 1, 1, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 1, 1, 1, 1}};
//generate domain kernel
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#if defined( __SSE2__ ) && defined( __x86_64__ )
vfloat dirwtv, valv, normv, dftemp1v, dftemp2v;
float domkerv[5][5][4] ALIGNED16 = {{{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}};
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++) {
float val = 0.f;
float norm = 0.f;
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j % scale; jnbr <= j + scalewin; jnbr += scale) {
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
#if defined( __SSE2__ ) && defined( __x86_64__ )
for(; j < width - scalewin - 3; j += 4) {
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
dftemp1v = LVFU(data_fine[i][j]);
for(int inbr = max(i - scalewin, i % scale); inbr <= MIN(i + scalewin, height - 1); inbr += scale) {
int indexihlp = (inbr - i) / scale + halfwin;
for (int jnbr = j - scalewin, indexjhlp = 0; jnbr <= j + scalewin; jnbr += scale, indexjhlp++) {
dftemp2v = LVFU(data_fine[inbr][jnbr]);
dirwtv = ( LVF(domkerv[indexihlp][indexjhlp]) * rangefn[_mm_cvttps_epi32(vabsf(dftemp2v - dftemp1v))] );
valv += dirwtv * dftemp2v;
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv / normv);
}
for(; j < width - scalewin; j++) {
float val = 0;
float norm = 0;
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
#else
for(; j < width - scalewin; j++) {
float val = 0;
float norm = 0;
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
#endif
for(; j < width; j++) {
float val = 0;
float norm = 0;
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
for (int jnbr = j - scalewin; jnbr < width; jnbr += scale) {
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
val += dirwt * data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val / norm; // low pass filter
}
}
}
}
}
}//end of SHMap