rawTherapee/rtengine/CA_correct_RT.cc
2016-10-17 18:49:15 +02:00

1021 lines
55 KiB
C++

////////////////////////////////////////////////////////////////
//
// Chromatic Aberration Auto-correction
//
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
//
//
// code dated: November 26, 2010
//
// CA_correct_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#include "rtengine.h"
#include "rawimagesource.h"
#include "rt_math.h"
#include "median.h"
namespace {
bool LinEqSolve(int nDim, double* pfMatr, double* pfVect, double* pfSolution)
{
//==============================================================================
// return 1 if system not solving, 0 if system solved
// nDim - system dimension
// pfMatr - matrix with coefficients
// pfVect - vector with free members
// pfSolution - vector with system solution
// pfMatr becames trianglular after function call
// pfVect changes after function call
//
// Developer: Henry Guennadi Levkin
//
//==============================================================================
double fMaxElem;
double fAcc;
int i, j, k, m;
for(k = 0; k < (nDim - 1); k++) { // base row of matrix
// search of line with max element
fMaxElem = fabs( pfMatr[k * nDim + k] );
m = k;
for (i = k + 1; i < nDim; i++) {
if(fMaxElem < fabs(pfMatr[i * nDim + k]) ) {
fMaxElem = pfMatr[i * nDim + k];
m = i;
}
}
// permutation of base line (index k) and max element line(index m)
if(m != k) {
for(i = k; i < nDim; i++) {
fAcc = pfMatr[k * nDim + i];
pfMatr[k * nDim + i] = pfMatr[m * nDim + i];
pfMatr[m * nDim + i] = fAcc;
}
fAcc = pfVect[k];
pfVect[k] = pfVect[m];
pfVect[m] = fAcc;
}
if( pfMatr[k * nDim + k] == 0.) {
//linear system has no solution
return false; // needs improvement !!!
}
// triangulation of matrix with coefficients
for(j = (k + 1); j < nDim; j++) { // current row of matrix
fAcc = - pfMatr[j * nDim + k] / pfMatr[k * nDim + k];
for(i = k; i < nDim; i++) {
pfMatr[j * nDim + i] = pfMatr[j * nDim + i] + fAcc * pfMatr[k * nDim + i];
}
pfVect[j] = pfVect[j] + fAcc * pfVect[k]; // free member recalculation
}
}
for(k = (nDim - 1); k >= 0; k--) {
pfSolution[k] = pfVect[k];
for(i = (k + 1); i < nDim; i++) {
pfSolution[k] -= (pfMatr[k * nDim + i] * pfSolution[i]);
}
pfSolution[k] = pfSolution[k] / pfMatr[k * nDim + k];
}
return true;
}
//end of linear equation solver
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
using namespace std;
using namespace rtengine;
void RawImageSource::CA_correct_RT(const double cared, const double cablue, const double caautostrength)
{
// multithreaded and partly vectorized by Ingo Weyrich
constexpr int ts = 128;
constexpr int tsh = ts / 2;
//shifts to location of vertical and diagonal neighbors
constexpr int v1 = ts, v2 = 2 * ts, v3 = 3 * ts, v4 = 4 * ts; //, p1=-ts+1, p2=-2*ts+2, p3=-3*ts+3, m1=ts+1, m2=2*ts+2, m3=3*ts+3;
// Test for RGB cfa
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
if(FC(i, j) == 3) {
printf("CA correction supports only RGB Colour filter arrays\n");
return;
}
volatile double progress = 0.0;
if(plistener) {
plistener->setProgress (progress);
}
const bool autoCA = (cared == 0 && cablue == 0);
// local variables
const int width = W, height = H;
//temporary array to store simple interpolation of G
float *Gtmp = (float (*)) calloc ((height) * (width), sizeof * Gtmp);
// temporary array to avoid race conflicts, only every second pixel needs to be saved here
float *RawDataTmp = (float*) malloc( (height * width + ((height * width) & 1)) * sizeof(float) / 2);
float blockave[2][2] = {{0, 0}, {0, 0}}, blocksqave[2][2] = {{0, 0}, {0, 0}}, blockdenom[2][2] = {{0, 0}, {0, 0}}, blockvar[2][2];
// Because we can't break parallel processing, we need a switch do handle the errors
bool processpasstwo = true;
constexpr int border = 8;
constexpr int border2 = 16;
const int vz1 = (height + border2) % (ts - border2) == 0 ? 1 : 0;
const int hz1 = (width + border2) % (ts - border2) == 0 ? 1 : 0;
const int vblsz = ceil((float)(height + border2) / (ts - border2) + 2 + vz1);
const int hblsz = ceil((float)(width + border2) / (ts - border2) + 2 + hz1);
//block CA shift values and weight assigned to block
float* const blockwt = static_cast<float*>(calloc(vblsz * hblsz * (2 * 2 + 1), sizeof(float)));
float (*blockshifts)[2][2] = (float (*)[2][2])(blockwt + vblsz * hblsz);
double fitparams[2][2][16];
//order of 2d polynomial fit (polyord), and numpar=polyord^2
int polyord = 4, numpar = 16;
constexpr float eps = 1e-5f, eps2 = 1e-10f; //tolerance to avoid dividing by zero
#pragma omp parallel
{
int progresscounter = 0;
//direction of the CA shift in a tile
int GRBdir[2][3];
int shifthfloor[3], shiftvfloor[3], shifthceil[3], shiftvceil[3];
//local quadratic fit to shift data within a tile
float coeff[2][3][2];
//measured CA shift parameters for a tile
float CAshift[2][2];
//polynomial fit coefficients
//residual CA shift amount within a plaquette
float shifthfrac[3], shiftvfrac[3];
//per thread data for evaluation of block CA shift variance
float blockavethr[2][2] = {{0, 0}, {0, 0}}, blocksqavethr[2][2] = {{0, 0}, {0, 0}}, blockdenomthr[2][2] = {{0, 0}, {0, 0}};
// assign working space
constexpr int buffersize = 3 * sizeof(float) * ts * ts + 6 * sizeof(float) * ts * tsh + 8 * 64 + 63;
char *buffer = (char *) malloc(buffersize);
char *data = (char*)( ( uintptr_t(buffer) + uintptr_t(63)) / 64 * 64);
// shift the beginning of all arrays but the first by 64 bytes to avoid cache miss conflicts on CPUs which have <=4-way associative L1-Cache
//rgb data in a tile
float* rgb[3];
rgb[0] = (float (*)) data;
rgb[1] = (float (*)) (data + 1 * sizeof(float) * ts * ts + 1 * 64);
rgb[2] = (float (*)) (data + 2 * sizeof(float) * ts * ts + 2 * 64);
//high pass filter for R/B in vertical direction
float *rbhpfh = (float (*)) (data + 3 * sizeof(float) * ts * ts + 3 * 64);
//high pass filter for R/B in horizontal direction
float *rbhpfv = (float (*)) (data + 3 * sizeof(float) * ts * ts + sizeof(float) * ts * tsh + 4 * 64);
//low pass filter for R/B in horizontal direction
float *rblpfh = (float (*)) (data + 4 * sizeof(float) * ts * ts + 5 * 64);
//low pass filter for R/B in vertical direction
float *rblpfv = (float (*)) (data + 4 * sizeof(float) * ts * ts + sizeof(float) * ts * tsh + 6 * 64);
//low pass filter for colour differences in horizontal direction
float *grblpfh = (float (*)) (data + 5 * sizeof(float) * ts * ts + 7 * 64);
//low pass filter for colour differences in vertical direction
float *grblpfv = (float (*)) (data + 5 * sizeof(float) * ts * ts + sizeof(float) * ts * tsh + 8 * 64);
//colour differences
float *grbdiff = rbhpfh; // there is no overlap in buffer usage => share
//green interpolated to optical sample points for R/B
float *gshift = rbhpfv; // there is no overlap in buffer usage => share
if (autoCA) {
// Main algorithm: Tile loop calculating correction parameters per tile
#pragma omp for collapse(2) schedule(dynamic) nowait
for (int top = -border ; top < height; top += ts - border2)
for (int left = -border; left < width; left += ts - border2) {
memset(buffer, 0, buffersize);
const int vblock = ((top + border) / (ts - border2)) + 1;
const int hblock = ((left + border) / (ts - border2)) + 1;
const int bottom = min(top + ts, height + border);
const int right = min(left + ts, width + border);
const int rr1 = bottom - top;
const int cc1 = right - left;
const int rrmin = top < 0 ? border : 0;
const int rrmax = bottom > height ? height - top : rr1;
const int ccmin = left < 0 ? border : 0;
const int ccmax = right > width ? width - left : cc1;
// rgb from input CFA data
// rgb values should be floating point numbers between 0 and 1
// after white balance multipliers are applied
for (int rr = rrmin; rr < rrmax; rr++)
for (int row = rr + top, cc = ccmin; cc < ccmax; cc++) {
int col = cc + left;
int c = FC(rr, cc);
int indx = row * width + col;
int indx1 = rr * ts + cc;
rgb[c][indx1] = (rawData[row][col]) / 65535.0f;
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//fill borders
if (rrmin > 0) {
for (int rr = 0; rr < border; rr++)
for (int cc = ccmin; cc < ccmax; cc++) {
int c = FC(rr, cc);
rgb[c][rr * ts + cc] = rgb[c][(border2 - rr) * ts + cc];
}
}
if (rrmax < rr1) {
for (int rr = 0; rr < border; rr++)
for (int cc = ccmin; cc < ccmax; cc++) {
int c = FC(rr, cc);
rgb[c][(rrmax + rr)*ts + cc] = (rawData[(height - rr - 2)][left + cc]) / 65535.0f;
}
}
if (ccmin > 0) {
for (int rr = rrmin; rr < rrmax; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][rr * ts + cc] = rgb[c][rr * ts + border2 - cc];
}
}
if (ccmax < cc1) {
for (int rr = rrmin; rr < rrmax; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][rr * ts + ccmax + cc] = (rawData[(top + rr)][(width - cc - 2)]) / 65535.0f;
}
}
//also, fill the image corners
if (rrmin > 0 && ccmin > 0) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rr)*ts + cc] = (rawData[border2 - rr][border2 - cc]) / 65535.0f;
}
}
if (rrmax < rr1 && ccmax < cc1) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rrmax + rr)*ts + ccmax + cc] = (rawData[(height - rr - 2)][(width - cc - 2)]) / 65535.0f;
}
}
if (rrmin > 0 && ccmax < cc1) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rr)*ts + ccmax + cc] = (rawData[(border2 - rr)][(width - cc - 2)]) / 65535.0f;
}
}
if (rrmax < rr1 && ccmin > 0) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rrmax + rr)*ts + cc] = (rawData[(height - rr - 2)][(border2 - cc)]) / 65535.0f;
}
}
//end of border fill
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//end of initialization
#ifdef __SSE2__
vfloat onev = F2V(1.f);
vfloat epsv = F2V(eps);
#endif
for (int rr = 3; rr < rr1 - 3; rr++) {
int row = rr + top;
int cc = 3 + (FC(rr,3) & 1);
int indx = rr * ts + cc;
int c = FC(rr,cc);
#ifdef __SSE2__
for (; cc < cc1 - 9; cc+=8, indx+=8) {
//compute directional weights using image gradients
vfloat wtuv = onev / SQRV(epsv + vabsf(LC2VFU(rgb[1][indx + v1]) - LC2VFU(rgb[1][indx - v1])) + vabsf(LC2VFU(rgb[c][indx]) - LC2VFU(rgb[c][indx - v2])) + vabsf(LC2VFU(rgb[1][indx - v1]) - LC2VFU(rgb[1][indx - v3])));
vfloat wtdv = onev / SQRV(epsv + vabsf(LC2VFU(rgb[1][indx - v1]) - LC2VFU(rgb[1][indx + v1])) + vabsf(LC2VFU(rgb[c][indx]) - LC2VFU(rgb[c][indx + v2])) + vabsf(LC2VFU(rgb[1][indx + v1]) - LC2VFU(rgb[1][indx + v3])));
vfloat wtlv = onev / SQRV(epsv + vabsf(LC2VFU(rgb[1][indx + 1]) - LC2VFU(rgb[1][indx - 1])) + vabsf(LC2VFU(rgb[c][indx]) - LC2VFU(rgb[c][indx - 2])) + vabsf(LC2VFU(rgb[1][indx - 1]) - LC2VFU(rgb[1][indx - 3])));
vfloat wtrv = onev / SQRV(epsv + vabsf(LC2VFU(rgb[1][indx - 1]) - LC2VFU(rgb[1][indx + 1])) + vabsf(LC2VFU(rgb[c][indx]) - LC2VFU(rgb[c][indx + 2])) + vabsf(LC2VFU(rgb[1][indx + 1]) - LC2VFU(rgb[1][indx + 3])));
//store in rgb array the interpolated G value at R/B grid points using directional weighted average
STC2VFU(rgb[1][indx], (wtuv * LC2VFU(rgb[1][indx - v1]) + wtdv * LC2VFU(rgb[1][indx + v1]) + wtlv * LC2VFU(rgb[1][indx - 1]) + wtrv * LC2VFU(rgb[1][indx + 1])) / (wtuv + wtdv + wtlv + wtrv));
}
#endif
for (; cc < cc1 - 3; cc+=2, indx+=2) {
//compute directional weights using image gradients
float wtu = 1.f / SQR(eps + fabsf(rgb[1][indx + v1] - rgb[1][indx - v1]) + fabsf(rgb[c][indx] - rgb[c][indx - v2]) + fabsf(rgb[1][indx - v1] - rgb[1][indx - v3]));
float wtd = 1.f / SQR(eps + fabsf(rgb[1][indx - v1] - rgb[1][indx + v1]) + fabsf(rgb[c][indx] - rgb[c][indx + v2]) + fabsf(rgb[1][indx + v1] - rgb[1][indx + v3]));
float wtl = 1.f / SQR(eps + fabsf(rgb[1][indx + 1] - rgb[1][indx - 1]) + fabsf(rgb[c][indx] - rgb[c][indx - 2]) + fabsf(rgb[1][indx - 1] - rgb[1][indx - 3]));
float wtr = 1.f / SQR(eps + fabsf(rgb[1][indx - 1] - rgb[1][indx + 1]) + fabsf(rgb[c][indx] - rgb[c][indx + 2]) + fabsf(rgb[1][indx + 1] - rgb[1][indx + 3]));
//store in rgb array the interpolated G value at R/B grid points using directional weighted average
rgb[1][indx] = (wtu * rgb[1][indx - v1] + wtd * rgb[1][indx + v1] + wtl * rgb[1][indx - 1] + wtr * rgb[1][indx + 1]) / (wtu + wtd + wtl + wtr);
}
if (row > -1 && row < height) {
for(int col = max(left + 3, 0), indx = rr * ts + 3 - (left < 0 ? (left+3) : 0); col < min(cc1 + left - 3, width); col++, indx++) {
Gtmp[row * width + col] = rgb[1][indx];
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef __SSE2__
vfloat zd25v = F2V(0.25f);
#endif
for (int rr = 4; rr < rr1 - 4; rr++) {
int cc = 4 + (FC(rr, 2) & 1), indx = rr * ts + cc, c = FC(rr, cc);
#ifdef __SSE2__
for (; cc < cc1 - 10; cc += 8, indx += 8) {
vfloat rgb1v = LC2VFU(rgb[1][indx]);
vfloat rgbcv = LC2VFU(rgb[c][indx]);
vfloat temp1v = vabsf(vabsf((rgb1v - rgbcv) - (LC2VFU(rgb[1][indx + v4]) - LC2VFU(rgb[c][indx + v4]))) +
vabsf(LC2VFU(rgb[1][indx - v4]) - LC2VFU(rgb[c][indx - v4]) - rgb1v + rgbcv) -
vabsf(LC2VFU(rgb[1][indx - v4]) - LC2VFU(rgb[c][indx - v4]) - LC2VFU(rgb[1][indx + v4]) + LC2VFU(rgb[c][indx + v4])));
STVFU(rbhpfv[indx >> 1], temp1v);
vfloat temp2v = vabsf(vabsf((rgb1v - rgbcv) - (LC2VFU(rgb[1][indx + 4]) - LC2VFU(rgb[c][indx + 4]))) +
vabsf(LC2VFU(rgb[1][indx - 4]) - LC2VFU(rgb[c][indx - 4]) - rgb1v + rgbcv) -
vabsf(LC2VFU(rgb[1][indx - 4]) - LC2VFU(rgb[c][indx - 4]) - LC2VFU(rgb[1][indx + 4]) + LC2VFU(rgb[c][indx + 4])));
STVFU(rbhpfh[indx >> 1], temp2v);
//low and high pass 1D filters of G in vertical/horizontal directions
rgb1v = vmul2f(rgb1v);
vfloat glpfvv = zd25v * (rgb1v + LC2VFU(rgb[1][indx + v2]) + LC2VFU(rgb[1][indx - v2]));
vfloat glpfhv = zd25v * (rgb1v + LC2VFU(rgb[1][indx + 2]) + LC2VFU(rgb[1][indx - 2]));
rgbcv = vmul2f(rgbcv);
STVFU(rblpfv[indx >> 1], epsv + vabsf(glpfvv - zd25v * (rgbcv + LC2VFU(rgb[c][indx + v2]) + LC2VFU(rgb[c][indx - v2]))));
STVFU(rblpfh[indx >> 1], epsv + vabsf(glpfhv - zd25v * (rgbcv + LC2VFU(rgb[c][indx + 2]) + LC2VFU(rgb[c][indx - 2]))));
STVFU(grblpfv[indx >> 1], glpfvv + zd25v * (rgbcv + LC2VFU(rgb[c][indx + v2]) + LC2VFU(rgb[c][indx - v2])));
STVFU(grblpfh[indx >> 1], glpfhv + zd25v * (rgbcv + LC2VFU(rgb[c][indx + 2]) + LC2VFU(rgb[c][indx - 2])));
}
#endif
for (; cc < cc1 - 4; cc += 2, indx += 2) {
rbhpfv[indx >> 1] = fabsf(fabsf((rgb[1][indx] - rgb[c][indx]) - (rgb[1][indx + v4] - rgb[c][indx + v4])) +
fabsf((rgb[1][indx - v4] - rgb[c][indx - v4]) - (rgb[1][indx] - rgb[c][indx])) -
fabsf((rgb[1][indx - v4] - rgb[c][indx - v4]) - (rgb[1][indx + v4] - rgb[c][indx + v4])));
rbhpfh[indx >> 1] = fabsf(fabsf((rgb[1][indx] - rgb[c][indx]) - (rgb[1][indx + 4] - rgb[c][indx + 4])) +
fabsf((rgb[1][indx - 4] - rgb[c][indx - 4]) - (rgb[1][indx] - rgb[c][indx])) -
fabsf((rgb[1][indx - 4] - rgb[c][indx - 4]) - (rgb[1][indx + 4] - rgb[c][indx + 4])));
//low and high pass 1D filters of G in vertical/horizontal directions
float glpfv = 0.25f * (2.f * rgb[1][indx] + rgb[1][indx + v2] + rgb[1][indx - v2]);
float glpfh = 0.25f * (2.f * rgb[1][indx] + rgb[1][indx + 2] + rgb[1][indx - 2]);
rblpfv[indx >> 1] = eps + fabsf(glpfv - 0.25f * (2.f * rgb[c][indx] + rgb[c][indx + v2] + rgb[c][indx - v2]));
rblpfh[indx >> 1] = eps + fabsf(glpfh - 0.25f * (2.f * rgb[c][indx] + rgb[c][indx + 2] + rgb[c][indx - 2]));
grblpfv[indx >> 1] = glpfv + 0.25f * (2.f * rgb[c][indx] + rgb[c][indx + v2] + rgb[c][indx - v2]);
grblpfh[indx >> 1] = glpfh + 0.25f * (2.f * rgb[c][indx] + rgb[c][indx + 2] + rgb[c][indx - 2]);
}
}
for (int dir = 0; dir < 2; dir++) {
for (int k = 0; k < 3; k++) {
for (int c = 0; c < 2; c++) {
coeff[dir][k][c] = 0;
}
}
}
#ifdef __SSE2__
vfloat zd3125v = F2V(0.3125f);
vfloat zd09375v = F2V(0.09375f);
vfloat zd1v = F2V(0.1f);
vfloat zd125v = F2V(0.125f);
#endif
// along line segments, find the point along each segment that minimizes the colour variance
// averaged over the tile; evaluate for up/down and left/right away from R/B grid point
for (int rr = 8; rr < rr1 - 8; rr++) {
int cc = 8 + (FC(rr, 2) & 1);
int indx = rr * ts + cc;
int c = FC(rr, cc);
#ifdef __SSE2__
vfloat coeff00v = ZEROV;
vfloat coeff01v = ZEROV;
vfloat coeff02v = ZEROV;
vfloat coeff10v = ZEROV;
vfloat coeff11v = ZEROV;
vfloat coeff12v = ZEROV;
for (; cc < cc1 - 14; cc += 8, indx += 8) {
//in linear interpolation, colour differences are a quadratic function of interpolation position;
//solve for the interpolation position that minimizes colour difference variance over the tile
//vertical
vfloat gdiffv = zd3125v * (LC2VFU(rgb[1][indx + ts]) - LC2VFU(rgb[1][indx - ts])) + zd09375v * (LC2VFU(rgb[1][indx + ts + 1]) - LC2VFU(rgb[1][indx - ts + 1]) + LC2VFU(rgb[1][indx + ts - 1]) - LC2VFU(rgb[1][indx - ts - 1]));
vfloat deltgrbv = LC2VFU(rgb[c][indx]) - LC2VFU(rgb[1][indx]);
vfloat gradwtv = vabsf(zd25v * LVFU(rbhpfv[indx >> 1]) + zd125v * (LVFU(rbhpfv[(indx >> 1) + 1]) + LVFU(rbhpfv[(indx >> 1) - 1])) ) * (LVFU(grblpfv[(indx >> 1) - v1]) + LVFU(grblpfv[(indx >> 1) + v1])) / (epsv + zd1v * (LVFU(grblpfv[(indx >> 1) - v1]) + LVFU(grblpfv[(indx >> 1) + v1])) + LVFU(rblpfv[(indx >> 1) - v1]) + LVFU(rblpfv[(indx >> 1) + v1]));
coeff00v += gradwtv * deltgrbv * deltgrbv;
coeff01v += gradwtv * gdiffv * deltgrbv;
coeff02v += gradwtv * gdiffv * gdiffv;
//horizontal
gdiffv = zd3125v * (LC2VFU(rgb[1][indx + 1]) - LC2VFU(rgb[1][indx - 1])) + zd09375v * (LC2VFU(rgb[1][indx + 1 + ts]) - LC2VFU(rgb[1][indx - 1 + ts]) + LC2VFU(rgb[1][indx + 1 - ts]) - LC2VFU(rgb[1][indx - 1 - ts]));
gradwtv = vabsf(zd25v * LVFU(rbhpfh[indx >> 1]) + zd125v * (LVFU(rbhpfh[(indx >> 1) + v1]) + LVFU(rbhpfh[(indx >> 1) - v1])) ) * (LVFU(grblpfh[(indx >> 1) - 1]) + LVFU(grblpfh[(indx >> 1) + 1])) / (epsv + zd1v * (LVFU(grblpfh[(indx >> 1) - 1]) + LVFU(grblpfh[(indx >> 1) + 1])) + LVFU(rblpfh[(indx >> 1) - 1]) + LVFU(rblpfh[(indx >> 1) + 1]));
coeff10v += gradwtv * deltgrbv * deltgrbv;
coeff11v += gradwtv * gdiffv * deltgrbv;
coeff12v += gradwtv * gdiffv * gdiffv;
// In Mathematica,
// f[x_]=Expand[Total[Flatten[
// ((1-x) RotateLeft[Gint,shift1]+x RotateLeft[Gint,shift2]-cfapad)^2[[dv;;-1;;2,dh;;-1;;2]]]]];
// extremum = -.5Coefficient[f[x],x]/Coefficient[f[x],x^2]
}
coeff[0][0][c>>1] += vhadd(coeff00v);
coeff[0][1][c>>1] += vhadd(coeff01v);
coeff[0][2][c>>1] += vhadd(coeff02v);
coeff[1][0][c>>1] += vhadd(coeff10v);
coeff[1][1][c>>1] += vhadd(coeff11v);
coeff[1][2][c>>1] += vhadd(coeff12v);
#endif
for (; cc < cc1 - 8; cc += 2, indx += 2) {
//in linear interpolation, colour differences are a quadratic function of interpolation position;
//solve for the interpolation position that minimizes colour difference variance over the tile
//vertical
float gdiff = 0.3125f * (rgb[1][indx + ts] - rgb[1][indx - ts]) + 0.09375f * (rgb[1][indx + ts + 1] - rgb[1][indx - ts + 1] + rgb[1][indx + ts - 1] - rgb[1][indx - ts - 1]);
float deltgrb = (rgb[c][indx] - rgb[1][indx]);
float gradwt = fabsf(0.25f * rbhpfv[indx >> 1] + 0.125f * (rbhpfv[(indx >> 1) + 1] + rbhpfv[(indx >> 1) - 1]) ) * (grblpfv[(indx >> 1) - v1] + grblpfv[(indx >> 1) + v1]) / (eps + 0.1f * (grblpfv[(indx >> 1) - v1] + grblpfv[(indx >> 1) + v1]) + rblpfv[(indx >> 1) - v1] + rblpfv[(indx >> 1) + v1]);
coeff[0][0][c>>1] += gradwt * deltgrb * deltgrb;
coeff[0][1][c>>1] += gradwt * gdiff * deltgrb;
coeff[0][2][c>>1] += gradwt * gdiff * gdiff;
//horizontal
gdiff = 0.3125f * (rgb[1][indx + 1] - rgb[1][indx - 1]) + 0.09375f * (rgb[1][indx + 1 + ts] - rgb[1][indx - 1 + ts] + rgb[1][indx + 1 - ts] - rgb[1][indx - 1 - ts]);
gradwt = fabsf(0.25f * rbhpfh[indx >> 1] + 0.125f * (rbhpfh[(indx >> 1) + v1] + rbhpfh[(indx >> 1) - v1]) ) * (grblpfh[(indx >> 1) - 1] + grblpfh[(indx >> 1) + 1]) / (eps + 0.1f * (grblpfh[(indx >> 1) - 1] + grblpfh[(indx >> 1) + 1]) + rblpfh[(indx >> 1) - 1] + rblpfh[(indx >> 1) + 1]);
coeff[1][0][c>>1] += gradwt * deltgrb * deltgrb;
coeff[1][1][c>>1] += gradwt * gdiff * deltgrb;
coeff[1][2][c>>1] += gradwt * gdiff * gdiff;
// In Mathematica,
// f[x_]=Expand[Total[Flatten[
// ((1-x) RotateLeft[Gint,shift1]+x RotateLeft[Gint,shift2]-cfapad)^2[[dv;;-1;;2,dh;;-1;;2]]]]];
// extremum = -.5Coefficient[f[x],x]/Coefficient[f[x],x^2]
}
}
for (int c = 0; c < 2; c++) {
for (int dir = 0; dir < 2; dir++) { // vert/hor
// CAshift[dir][c] are the locations
// that minimize colour difference variances;
// This is the approximate _optical_ location of the R/B pixels
if (coeff[dir][2][c] > eps2) {
CAshift[dir][c] = coeff[dir][1][c] / coeff[dir][2][c];
blockwt[vblock * hblsz + hblock] = coeff[dir][2][c] / (eps + coeff[dir][0][c]) ;
} else {
CAshift[dir][c] = 17.0;
blockwt[vblock * hblsz + hblock] = 0;
}
//data structure = CAshift[vert/hor][colour]
//dir : 0=vert, 1=hor
//offset gives NW corner of square containing the min; dir : 0=vert, 1=hor
if (fabsf(CAshift[dir][c]) < 2.0f) {
blockavethr[dir][c] += CAshift[dir][c];
blocksqavethr[dir][c] += SQR(CAshift[dir][c]);
blockdenomthr[dir][c] += 1;
}
//evaluate the shifts to the location that minimizes CA within the tile
blockshifts[vblock * hblsz + hblock][c][dir] = CAshift[dir][c]; //vert/hor CA shift for R/B
}//vert/hor
}//colour
if(plistener) {
progresscounter++;
if(progresscounter % 8 == 0)
#pragma omp critical (cadetectpass1)
{
progress += (double)(8.0 * (ts - border2) * (ts - border2)) / (2 * height * width);
if (progress > 1.0) {
progress = 1.0;
}
plistener->setProgress(progress);
}
}
}
//end of diagnostic pass
#pragma omp critical (cadetectpass2)
{
for (int dir = 0; dir < 2; dir++)
for (int c = 0; c < 2; c++) {
blockdenom[dir][c] += blockdenomthr[dir][c];
blocksqave[dir][c] += blocksqavethr[dir][c];
blockave[dir][c] += blockavethr[dir][c];
}
}
#pragma omp barrier
#pragma omp single
{
for (int dir = 0; dir < 2; dir++)
for (int c = 0; c < 2; c++) {
if (blockdenom[dir][c]) {
blockvar[dir][c] = blocksqave[dir][c] / blockdenom[dir][c] - SQR(blockave[dir][c] / blockdenom[dir][c]);
} else {
processpasstwo = false;
printf ("blockdenom vanishes \n");
break;
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//now prepare for CA correction pass
//first, fill border blocks of blockshift array
if(processpasstwo) {
for (int vblock = 1; vblock < vblsz - 1; vblock++) { //left and right sides
for (int c = 0; c < 2; c++) {
for (int i = 0; i < 2; i++) {
blockshifts[vblock * hblsz][c][i] = blockshifts[(vblock) * hblsz + 2][c][i];
blockshifts[vblock * hblsz + hblsz - 1][c][i] = blockshifts[(vblock) * hblsz + hblsz - 3][c][i];
}
}
}
for (int hblock = 0; hblock < hblsz; hblock++) { //top and bottom sides
for (int c = 0; c < 2; c++) {
for (int i = 0; i < 2; i++) {
blockshifts[hblock][c][i] = blockshifts[2 * hblsz + hblock][c][i];
blockshifts[(vblsz - 1)*hblsz + hblock][c][i] = blockshifts[(vblsz - 3) * hblsz + hblock][c][i];
}
}
}
//end of filling border pixels of blockshift array
//initialize fit arrays
double polymat[2][2][256], shiftmat[2][2][16];
for (int i = 0; i < 256; i++) {
polymat[0][0][i] = polymat[0][1][i] = polymat[1][0][i] = polymat[1][1][i] = 0;
}
for (int i = 0; i < 16; i++) {
shiftmat[0][0][i] = shiftmat[0][1][i] = shiftmat[1][0][i] = shiftmat[1][1][i] = 0;
}
int numblox[2] = {0, 0};
for (int vblock = 1; vblock < vblsz - 1; vblock++)
for (int hblock = 1; hblock < hblsz - 1; hblock++) {
// block 3x3 median of blockshifts for robustness
for (int c = 0; c < 2; c ++) {
float bstemp[2];
for (int dir = 0; dir < 2; dir++) {
//temporary storage for median filter
const std::array<float, 9> p = {
blockshifts[(vblock - 1) * hblsz + hblock - 1][c][dir],
blockshifts[(vblock - 1) * hblsz + hblock][c][dir],
blockshifts[(vblock - 1) * hblsz + hblock + 1][c][dir],
blockshifts[(vblock) * hblsz + hblock - 1][c][dir],
blockshifts[(vblock) * hblsz + hblock][c][dir],
blockshifts[(vblock) * hblsz + hblock + 1][c][dir],
blockshifts[(vblock + 1) * hblsz + hblock - 1][c][dir],
blockshifts[(vblock + 1) * hblsz + hblock][c][dir],
blockshifts[(vblock + 1) * hblsz + hblock + 1][c][dir]
};
bstemp[dir] = median(p);
}
//now prepare coefficient matrix; use only data points within caautostrength/2 std devs of zero
if (SQR(bstemp[0]) > caautostrength * blockvar[0][c] || SQR(bstemp[1]) > caautostrength * blockvar[1][c]) {
continue;
}
numblox[c]++;
for (int dir = 0; dir < 2; dir++) {
double powVblockInit = 1.0;
for (int i = 0; i < polyord; i++) {
double powHblockInit = 1.0;
for (int j = 0; j < polyord; j++) {
double powVblock = powVblockInit;
for (int m = 0; m < polyord; m++) {
double powHblock = powHblockInit;
for (int n = 0; n < polyord; n++) {
polymat[c][dir][numpar * (polyord * i + j) + (polyord * m + n)] += powVblock * powHblock * blockwt[vblock * hblsz + hblock];
powHblock *= hblock;
}
powVblock *= vblock;
}
shiftmat[c][dir][(polyord * i + j)] += powVblockInit * powHblockInit * bstemp[dir] * blockwt[vblock * hblsz + hblock];
powHblockInit *= hblock;
}
powVblockInit *= vblock;
}//monomials
}//dir
}//c
}//blocks
numblox[1] = min(numblox[0], numblox[1]);
//if too few data points, restrict the order of the fit to linear
if (numblox[1] < 32) {
polyord = 2;
numpar = 4;
if (numblox[1] < 10) {
printf ("numblox = %d \n", numblox[1]);
processpasstwo = false;
}
}
if(processpasstwo)
//fit parameters to blockshifts
for (int c = 0; c < 2; c++)
for (int dir = 0; dir < 2; dir++) {
if (!LinEqSolve(numpar, polymat[c][dir], shiftmat[c][dir], fitparams[c][dir])) {
printf("CA correction pass failed -- can't solve linear equations for colour %d direction %d...\n", c, dir);
processpasstwo = false;
}
}
}
//fitparams[polyord*i+j] gives the coefficients of (vblock^i hblock^j) in a polynomial fit for i,j<=4
}
//end of initialization for CA correction pass
//only executed if cared and cablue are zero
}
// Main algorithm: Tile loop
if(processpasstwo) {
#pragma omp for schedule(dynamic) collapse(2) nowait
for (int top = -border; top < height; top += ts - border2)
for (int left = -border; left < width; left += ts - border2) {
memset(buffer, 0, buffersize);
float lblockshifts[2][2];
const int vblock = ((top + border) / (ts - border2)) + 1;
const int hblock = ((left + border) / (ts - border2)) + 1;
const int bottom = min(top + ts, height + border);
const int right = min(left + ts, width + border);
const int rr1 = bottom - top;
const int cc1 = right - left;
const int rrmin = top < 0 ? border : 0;
const int rrmax = bottom > height ? height - top : rr1;
const int ccmin = left < 0 ? border : 0;
const int ccmax = right > width ? width - left : cc1;
// rgb from input CFA data
// rgb values should be floating point number between 0 and 1
// after white balance multipliers are applied
for (int rr = rrmin; rr < rrmax; rr++)
for (int row = rr + top, cc = ccmin; cc < ccmax; cc++) {
int col = cc + left;
int c = FC(rr, cc);
int indx = row * width + col;
int indx1 = rr * ts + cc;
rgb[c][indx1] = (rawData[row][col]) / 65535.0f;
if ((c & 1) == 0) {
rgb[1][indx1] = Gtmp[indx];
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//fill borders
if (rrmin > 0) {
for (int rr = 0; rr < border; rr++)
for (int cc = ccmin; cc < ccmax; cc++) {
int c = FC(rr, cc);
rgb[c][rr * ts + cc] = rgb[c][(border2 - rr) * ts + cc];
rgb[1][rr * ts + cc] = rgb[1][(border2 - rr) * ts + cc];
}
}
if (rrmax < rr1) {
for (int rr = 0; rr < border; rr++)
for (int cc = ccmin; cc < ccmax; cc++) {
int c = FC(rr, cc);
rgb[c][(rrmax + rr)*ts + cc] = (rawData[(height - rr - 2)][left + cc]) / 65535.0f;
rgb[1][(rrmax + rr)*ts + cc] = Gtmp[(height - rr - 2) * width + left + cc];
}
}
if (ccmin > 0) {
for (int rr = rrmin; rr < rrmax; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][rr * ts + cc] = rgb[c][rr * ts + border2 - cc];
rgb[1][rr * ts + cc] = rgb[1][rr * ts + border2 - cc];
}
}
if (ccmax < cc1) {
for (int rr = rrmin; rr < rrmax; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][rr * ts + ccmax + cc] = (rawData[(top + rr)][(width - cc - 2)]) / 65535.0f;
rgb[1][rr * ts + ccmax + cc] = Gtmp[(top + rr) * width + (width - cc - 2)];
}
}
//also, fill the image corners
if (rrmin > 0 && ccmin > 0) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rr)*ts + cc] = (rawData[border2 - rr][border2 - cc]) / 65535.0f;
rgb[1][(rr)*ts + cc] = Gtmp[(border2 - rr) * width + border2 - cc];
}
}
if (rrmax < rr1 && ccmax < cc1) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rrmax + rr)*ts + ccmax + cc] = (rawData[(height - rr - 2)][(width - cc - 2)]) / 65535.0f;
rgb[1][(rrmax + rr)*ts + ccmax + cc] = Gtmp[(height - rr - 2) * width + (width - cc - 2)];
}
}
if (rrmin > 0 && ccmax < cc1) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rr)*ts + ccmax + cc] = (rawData[(border2 - rr)][(width - cc - 2)]) / 65535.0f;
rgb[1][(rr)*ts + ccmax + cc] = Gtmp[(border2 - rr) * width + (width - cc - 2)];
}
}
if (rrmax < rr1 && ccmin > 0) {
for (int rr = 0; rr < border; rr++)
for (int cc = 0; cc < border; cc++) {
int c = FC(rr, cc);
rgb[c][(rrmax + rr)*ts + cc] = (rawData[(height - rr - 2)][(border2 - cc)]) / 65535.0f;
rgb[1][(rrmax + rr)*ts + cc] = Gtmp[(height - rr - 2) * width + (border2 - cc)];
}
}
//end of border fill
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (!autoCA) {
//manual CA correction; use red/blue slider values to set CA shift parameters
for (int rr = 3; rr < rr1 - 3; rr++)
for (int row = rr + top, cc = 3, indx = rr * ts + cc; cc < cc1 - 3; cc++, indx++) {
int col = cc + left;
int c = FC(rr, cc);
if (c != 1) {
//compute directional weights using image gradients
float wtu = 1.0 / SQR(eps + fabsf(rgb[1][(rr + 1) * ts + cc] - rgb[1][(rr - 1) * ts + cc]) + fabsf(rgb[c][(rr) * ts + cc] - rgb[c][(rr - 2) * ts + cc]) + fabsf(rgb[1][(rr - 1) * ts + cc] - rgb[1][(rr - 3) * ts + cc]));
float wtd = 1.0 / SQR(eps + fabsf(rgb[1][(rr - 1) * ts + cc] - rgb[1][(rr + 1) * ts + cc]) + fabsf(rgb[c][(rr) * ts + cc] - rgb[c][(rr + 2) * ts + cc]) + fabsf(rgb[1][(rr + 1) * ts + cc] - rgb[1][(rr + 3) * ts + cc]));
float wtl = 1.0 / SQR(eps + fabsf(rgb[1][(rr) * ts + cc + 1] - rgb[1][(rr) * ts + cc - 1]) + fabsf(rgb[c][(rr) * ts + cc] - rgb[c][(rr) * ts + cc - 2]) + fabsf(rgb[1][(rr) * ts + cc - 1] - rgb[1][(rr) * ts + cc - 3]));
float wtr = 1.0 / SQR(eps + fabsf(rgb[1][(rr) * ts + cc - 1] - rgb[1][(rr) * ts + cc + 1]) + fabsf(rgb[c][(rr) * ts + cc] - rgb[c][(rr) * ts + cc + 2]) + fabsf(rgb[1][(rr) * ts + cc + 1] - rgb[1][(rr) * ts + cc + 3]));
//store in rgb array the interpolated G value at R/B grid points using directional weighted average
rgb[1][indx] = (wtu * rgb[1][indx - v1] + wtd * rgb[1][indx + v1] + wtl * rgb[1][indx - 1] + wtr * rgb[1][indx + 1]) / (wtu + wtd + wtl + wtr);
}
if (row > -1 && row < height && col > -1 && col < width) {
Gtmp[row * width + col] = rgb[1][indx];
}
}
float hfrac = -((float)(hblock - 0.5) / (hblsz - 2) - 0.5);
float vfrac = -((float)(vblock - 0.5) / (vblsz - 2) - 0.5) * height / width;
lblockshifts[0][0] = 2 * vfrac * cared;
lblockshifts[0][1] = 2 * hfrac * cared;
lblockshifts[1][0] = 2 * vfrac * cablue;
lblockshifts[1][1] = 2 * hfrac * cablue;
} else {
//CA auto correction; use CA diagnostic pass to set shift parameters
lblockshifts[0][0] = lblockshifts[0][1] = 0;
lblockshifts[1][0] = lblockshifts[1][1] = 0;
double powVblock = 1.0;
for (int i = 0; i < polyord; i++) {
double powHblock = powVblock;
for (int j = 0; j < polyord; j++) {
//printf("i= %d j= %d polycoeff= %f \n",i,j,fitparams[0][0][polyord*i+j]);
lblockshifts[0][0] += powHblock * fitparams[0][0][polyord * i + j];
lblockshifts[0][1] += powHblock * fitparams[0][1][polyord * i + j];
lblockshifts[1][0] += powHblock * fitparams[1][0][polyord * i + j];
lblockshifts[1][1] += powHblock * fitparams[1][1][polyord * i + j];
powHblock *= hblock;
}
powVblock *= vblock;
}
constexpr float bslim = 3.99; //max allowed CA shift
lblockshifts[0][0] = LIM(lblockshifts[0][0], -bslim, bslim);
lblockshifts[0][1] = LIM(lblockshifts[0][1], -bslim, bslim);
lblockshifts[1][0] = LIM(lblockshifts[1][0], -bslim, bslim);
lblockshifts[1][1] = LIM(lblockshifts[1][1], -bslim, bslim);
}//end of setting CA shift parameters
for (int c = 0; c < 3; c += 2) {
//some parameters for the bilinear interpolation
shiftvfloor[c] = floor((float)lblockshifts[c>>1][0]);
shiftvceil[c] = ceil((float)lblockshifts[c>>1][0]);
shiftvfrac[c] = lblockshifts[c>>1][0] - shiftvfloor[c];
shifthfloor[c] = floor((float)lblockshifts[c>>1][1]);
shifthceil[c] = ceil((float)lblockshifts[c>>1][1]);
shifthfrac[c] = lblockshifts[c>>1][1] - shifthfloor[c];
GRBdir[0][c] = lblockshifts[c>>1][0] > 0 ? 2 : -2;
GRBdir[1][c] = lblockshifts[c>>1][1] > 0 ? 2 : -2;
}
for (int rr = 4; rr < rr1 - 4; rr++) {
int cc = 4 + (FC(rr, 2) & 1);
int c = FC(rr, cc);
#ifdef __SSE2__
vfloat shifthfracv = F2V(shifthfrac[c]);
vfloat shiftvfracv = F2V(shiftvfrac[c]);
for (; cc < cc1 - 10; cc += 8) {
//perform CA correction using colour ratios or colour differences
vfloat Ginthfloorv = vintpf(shifthfracv, LC2VFU(rgb[1][(rr + shiftvfloor[c]) * ts + cc + shifthceil[c]]), LC2VFU(rgb[1][(rr + shiftvfloor[c]) * ts + cc + shifthfloor[c]]));
vfloat Ginthceilv = vintpf(shifthfracv, LC2VFU(rgb[1][(rr + shiftvceil[c]) * ts + cc + shifthceil[c]]), LC2VFU(rgb[1][(rr + shiftvceil[c]) * ts + cc + shifthfloor[c]]));
//Gint is bilinear interpolation of G at CA shift point
vfloat Gintv = vintpf(shiftvfracv, Ginthceilv, Ginthfloorv);
//determine R/B at grid points using colour differences at shift point plus interpolated G value at grid point
//but first we need to interpolate G-R/G-B to grid points...
STVFU(grbdiff[((rr)*ts + cc) >> 1], Gintv - LC2VFU(rgb[c][(rr) * ts + cc]));
STVFU(gshift[((rr)*ts + cc) >> 1], Gintv);
}
#endif
for (; cc < cc1 - 4; cc += 2) {
//perform CA correction using colour ratios or colour differences
float Ginthfloor = intp(shifthfrac[c], rgb[1][(rr + shiftvfloor[c]) * ts + cc + shifthceil[c]], rgb[1][(rr + shiftvfloor[c]) * ts + cc + shifthfloor[c]]);
float Ginthceil = intp(shifthfrac[c], rgb[1][(rr + shiftvceil[c]) * ts + cc + shifthceil[c]], rgb[1][(rr + shiftvceil[c]) * ts + cc + shifthfloor[c]]);
//Gint is bilinear interpolation of G at CA shift point
float Gint = intp(shiftvfrac[c], Ginthceil, Ginthfloor);
//determine R/B at grid points using colour differences at shift point plus interpolated G value at grid point
//but first we need to interpolate G-R/G-B to grid points...
grbdiff[((rr)*ts + cc) >> 1] = Gint - rgb[c][(rr) * ts + cc];
gshift[((rr)*ts + cc) >> 1] = Gint;
}
}
shifthfrac[0] /= 2.f;
shifthfrac[2] /= 2.f;
shiftvfrac[0] /= 2.f;
shiftvfrac[2] /= 2.f;
// this loop does not deserve vectorization in mainly because the most expensive part with the divisions does not happen often (less than 1/10 in my tests)
for (int rr = 8; rr < rr1 - 8; rr++)
for (int cc = 8 + (FC(rr, 2) & 1), c = FC(rr, cc), indx = rr * ts + cc; cc < cc1 - 8; cc += 2, indx += 2) {
float grbdiffold = rgb[1][indx] - rgb[c][indx];
//interpolate colour difference from optical R/B locations to grid locations
float grbdiffinthfloor = intp(shifthfrac[c], grbdiff[(indx - GRBdir[1][c]) >> 1], grbdiff[indx >> 1]);
float grbdiffinthceil = intp(shifthfrac[c], grbdiff[((rr - GRBdir[0][c]) * ts + cc - GRBdir[1][c]) >> 1], grbdiff[((rr - GRBdir[0][c]) * ts + cc) >> 1]);
//grbdiffint is bilinear interpolation of G-R/G-B at grid point
float grbdiffint = intp(shiftvfrac[c], grbdiffinthceil, grbdiffinthfloor);
//now determine R/B at grid points using interpolated colour differences and interpolated G value at grid point
float RBint = rgb[1][indx] - grbdiffint;
if (fabsf(RBint - rgb[c][indx]) < 0.25f * (RBint + rgb[c][indx])) {
if (fabsf(grbdiffold) > fabsf(grbdiffint) ) {
rgb[c][indx] = RBint;
}
} else {
//gradient weights using difference from G at CA shift points and G at grid points
float p0 = 1.0f / (eps + fabsf(rgb[1][indx] - gshift[indx >> 1]));
float p1 = 1.0f / (eps + fabsf(rgb[1][indx] - gshift[(indx - GRBdir[1][c]) >> 1]));
float p2 = 1.0f / (eps + fabsf(rgb[1][indx] - gshift[((rr - GRBdir[0][c]) * ts + cc) >> 1]));
float p3 = 1.0f / (eps + fabsf(rgb[1][indx] - gshift[((rr - GRBdir[0][c]) * ts + cc - GRBdir[1][c]) >> 1]));
grbdiffint = (p0 * grbdiff[indx >> 1] + p1 * grbdiff[(indx - GRBdir[1][c]) >> 1] +
p2 * grbdiff[((rr - GRBdir[0][c]) * ts + cc) >> 1] + p3 * grbdiff[((rr - GRBdir[0][c]) * ts + cc - GRBdir[1][c]) >> 1]) / (p0 + p1 + p2 + p3) ;
//now determine R/B at grid points using interpolated colour differences and interpolated G value at grid point
if (fabsf(grbdiffold) > fabsf(grbdiffint) ) {
rgb[c][indx] = rgb[1][indx] - grbdiffint;
}
}
//if colour difference interpolation overshot the correction, just desaturate
if (grbdiffold * grbdiffint < 0) {
rgb[c][indx] = rgb[1][indx] - 0.5f * (grbdiffold + grbdiffint);
}
}
// copy CA corrected results to temporary image matrix
for (int rr = border; rr < rr1 - border; rr++) {
int c = FC(rr + top, left + border + FC(rr + top, 2) & 1);
for (int row = rr + top, cc = border + (FC(rr, 2) & 1), indx = (row * width + cc + left) >> 1; cc < cc1 - border; cc += 2, indx++) {
int col = cc + left;
RawDataTmp[indx] = 65535.0f * rgb[c][(rr) * ts + cc] + 0.5f;
}
}
if(plistener) {
progresscounter++;
if(progresscounter % 8 == 0)
#pragma omp critical (cacorrect)
{
progress += (double)(8.0 * (ts - border2) * (ts - border2)) / (2 * height * width);
if (progress > 1.0) {
progress = 1.0;
}
plistener->setProgress(progress);
}
}
}
#pragma omp barrier
// copy temporary image matrix back to image matrix
#pragma omp for
for(int row = 0; row < height; row++)
for(int col = 0 + (FC(row, 0) & 1), indx = (row * width + col) >> 1; col < width; col += 2, indx++) {
rawData[row][col] = RawDataTmp[indx];
}
}
// clean up
free(buffer);
}
free(Gtmp);
free(blockwt);
free(RawDataTmp);
if(plistener) {
plistener->setProgress(1.0);
}
}