rawTherapee/rtengine/iplabregions.cc

221 lines
7.1 KiB
C++

/* -*- C++ -*-
*
* This file is part of RawTherapee.
*
* Copyright 2018 Alberto Griggio <alberto.griggio@gmail.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _OPENMP
#include <omp.h>
#endif
#include "improcfun.h"
#include "guidedfilter.h"
#define BENCHMARK
#include "StopWatch.h"
#include "sleef.c"
namespace {
#ifdef __SSE2__
void fastlin2log(float *x, float factor, float base, int w)
{
float baseLog = 1.f / xlogf(base);
vfloat baseLogv = F2V(baseLog);
factor = factor * (base - 1.f);
vfloat factorv = F2V(factor);
vfloat onev = F2V(1.f);
int i = 0;
for (; i < w - 3; i += 4) {
STVFU(x[i], xlogf(LVFU(x[i]) * factorv + onev) * baseLogv);
}
for (; i < w; ++i) {
x[i] = xlogf(x[i] * factor + 1.f) * baseLog;
}
}
#endif
}
namespace rtengine {
void ImProcFunctions::labColorCorrectionRegions(LabImage *lab)
{
if (!params->colorToning.enabled || params->colorToning.method != "LabRegions") {
return;
}
BENCHFUN
int n = params->colorToning.labregions.size();
int show_mask_idx = params->colorToning.labregionsShowMask;
if (show_mask_idx >= n) {
show_mask_idx = -1;
}
std::vector<std::unique_ptr<FlatCurve>> hmask(n);
std::vector<std::unique_ptr<FlatCurve>> cmask(n);
std::vector<std::unique_ptr<FlatCurve>> lmask(n);
const int begin_idx = max(show_mask_idx, 0);
const int end_idx = (show_mask_idx < 0 ? n : show_mask_idx+1);
for (int i = begin_idx; i < end_idx; ++i) {
auto &r = params->colorToning.labregions[i];
if (!r.hueMask.empty() && r.hueMask[0] != FCT_Linear) {
hmask[i].reset(new FlatCurve(r.hueMask, true));
}
if (!r.chromaticityMask.empty() && r.chromaticityMask[0] != FCT_Linear) {
cmask[i].reset(new FlatCurve(r.chromaticityMask, false));
}
if (!r.lightnessMask.empty() && r.lightnessMask[0] != FCT_Linear) {
lmask[i].reset(new FlatCurve(r.lightnessMask, false));
}
}
std::vector<array2D<float>> abmask(n);
std::vector<array2D<float>> Lmask(n);
for (int i = begin_idx; i < end_idx; ++i) {
abmask[i](lab->W, lab->H);
Lmask[i](lab->W, lab->H);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
float cBuffer[lab->W];
float hBuffer[lab->W];
// magic constant c_factor: normally chromaticity is in [0; 42000] (see color.h), but here we use the constant to match how the chromaticity pipette works (see improcfun.cc lines 4705-4706 and color.cc line 1930
constexpr float c_factor = 327.68f / 48000.f;
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int y = 0; y < lab->H; ++y) {
#ifdef __SSE2__
// vectorized precalculation
Color::Lab2Lch(lab->a[y], lab->b[y], cBuffer, hBuffer, lab->W);
fastlin2log(cBuffer, c_factor, 10.f, lab->W);
#endif
for (int x = 0; x < lab->W; ++x) {
float l = lab->L[y][x];
#ifdef __SSE2__
// use precalculated values
float c1 = cBuffer[x];
float h = hBuffer[x];
#else
// magic constant c_factor: normally chromaticity is in [0; 42000] (see color.h), but here we use the constant to match how the chromaticity pipette works (see improcfun.cc lines 4705-4706 and color.cc line 1930
constexpr float c_factor = 327.68f / 48000.f;
float a = lab->a[y][x];
float b = lab->b[y][x];
float c, h;
Color::Lab2Lch(a, b, c, h);
float c1 = xlin2log(c * c_factor, 10.f);
#endif
float h1 = Color::huelab_to_huehsv2(h);
h1 = h1 + 1.f/6.f; // offset the hue because we start from purple instead of red
if (h1 > 1.f) {
h1 -= 1.f;
}
h1 = xlin2log(h1, 3.f);
float l1 = l / 32768.f;
for (int i = begin_idx; i < end_idx; ++i) {
auto &hm = hmask[i];
auto &cm = cmask[i];
auto &lm = lmask[i];
float blend = LIM01((hm ? hm->getVal(h1) : 1.f) * (cm ? cm->getVal(c1) : 1.f) * (lm ? lm->getVal(l1) : 1.f));
Lmask[i][y][x] = abmask[i][y][x] = blend;
}
}
}
}
{
array2D<float> guide(lab->W, lab->H, lab->L);
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < lab->H; ++y) {
for (int x = 0; x < lab->W; ++x) {
guide[y][x] = LIM01(lab->L[y][x] / 32768.f);
}
}
for (int i = begin_idx; i < end_idx; ++i) {
rtengine::guidedFilter(guide, abmask[i], abmask[i], max(int(4 / scale + 0.5), 1), 0.001, multiThread);
rtengine::guidedFilter(guide, Lmask[i], Lmask[i], max(int(25 / scale + 0.5), 1), 0.0001, multiThread);
}
}
if (show_mask_idx >= 0) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < lab->H; ++y) {
for (int x = 0; x < lab->W; ++x) {
auto blend = abmask[show_mask_idx][y][x];
lab->a[y][x] = 0.f;
lab->b[y][x] = blend * 42000.f;
lab->L[y][x] = LIM(lab->L[y][x] + 32768.f * blend, 0.f, 32768.f);
}
}
return;
}
const auto abcoord =
[](float x) -> float
{
return 12000.f * SGN(x) * xlog2lin(std::abs(x), 4.f);
};
float abca[n];
float abcb[n];
float rs[n];
float rl[n];
for (int i = 0; i < n; ++i) {
auto &r = params->colorToning.labregions[i];
abca[i] = abcoord(r.a);
abcb[i] = abcoord(r.b);
rs[i] = 1.f + r.saturation / 100.f;
rl[i] = 1.f + float(r.lightness) / 500.f;
}
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < lab->H; ++y) {
for (int x = 0; x < lab->W; ++x) {
float l = lab->L[y][x];
float a = lab->a[y][x];
float b = lab->b[y][x];
for (int i = 0; i < n; ++i) {
float blend = abmask[i][y][x];
float s = rs[i];
float a_new = LIM(s * (a + abca[i]), -42000.f, 42000.f);
float b_new = LIM(s * (b + abcb[i]), -42000.f, 42000.f);
float l_new = LIM(l * rl[i], 0.f, 32768.f);
l = intp(Lmask[i][y][x], l_new, l);
a = intp(blend, a_new, a);
b = intp(blend, b_new, b);
}
lab->L[y][x] = l;
lab->a[y][x] = a;
lab->b[y][x] = b;
}
}
}
} // namespace rtengine