rawTherapee/rtengine/rt_algo.cc
2017-11-25 13:59:39 +01:00

164 lines
5.1 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2017 Ingo Weyrich <heckflosse67@gmx.de>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstddef>
#include <cmath>
#include <cassert>
#include <algorithm>
#include <vector>
#include <cstdint>
#ifdef _OPENMP
#include <omp.h>
#endif
namespace rtengine
{
void findMinMaxPercentile (const float *data, size_t size, float minPrct, float& minOut, float maxPrct, float& maxOut, bool multithread)
{
// we need to find the (minPrct*size) smallest value and the (maxPrct*size) smallest value in data
// We use a histogram based search for speed and to reduce memory usage
// memory usage of this method is histoSize * sizeof(uint32_t) * (t + 1) byte,
// where t is the number of threads and histoSize is in [1;65536]
// The current implementation is not guaranteed to work correctly if size > 2^32 (4294967296)
assert (minPrct <= maxPrct);
if(size == 0) {
return;
}
size_t numThreads = 1;
#ifdef _OPENMP
// Because we have an overhead in the critical region of the main loop for each thread
// we make a rough calculation to reduce the number of threads for small data size
// This also works fine for the minmax loop
if(multithread) {
size_t maxThreads = omp_get_max_threads();
while (size > numThreads * numThreads * 16384 && numThreads < maxThreads) {
++numThreads;
}
}
#endif
// We need min and max value of data to calculate the scale factor for the histogram
float minVal = data[0];
float maxVal = data[0];
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minVal) reduction(max:maxVal) num_threads(numThreads)
#endif
for (size_t i = 1; i < size; ++i) {
minVal = std::min(minVal, data[i]);
maxVal = std::max(maxVal, data[i]);
}
if(std::fabs(maxVal - minVal) == 0.f) { // fast exit, also avoids division by zero in calculation of scale factor
minOut = maxOut = minVal;
return;
}
// caution: currently this works correctly only for histoSize in range[1;65536]
// for small data size (i.e. thumbnails) we reduce the size of the histogram to the size of data
const unsigned int histoSize = std::min(static_cast<size_t>(65536), size);
// calculate scale factor to use full range of histogram
const float scale = (histoSize - 1) / (maxVal - minVal);
// We need one main histogram
std::vector<uint32_t> histo(histoSize, 0);
if(numThreads == 1) {
// just one thread => use main histogram
for (size_t i = 0; i < size; ++i) {
// we have to subtract minVal and multiply with scale to get the data in [0;histosize] range
histo[ (uint16_t) (scale * (data[i] - minVal))]++;
}
} else {
#ifdef _OPENMP
#pragma omp parallel num_threads(numThreads)
#endif
{
// We need one histogram per thread
std::vector<uint32_t> histothr(histoSize, 0);
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (size_t i = 0; i < size; ++i) {
// we have to subtract minVal and multiply with scale to get the data in [0;histosize] range
histothr[ (uint16_t) (scale * (data[i] - minVal))]++;
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
// add per thread histogram to main histogram
#ifdef _OPENMP
#pragma omp simd
#endif
for(size_t i = 0; i < histoSize; ++i) {
histo[i] += histothr[i];
}
}
}
}
size_t k = 0;
size_t count = 0;
// find (minPrct*size) smallest value
const float threshmin = minPrct * size;
while (count < threshmin) {
count += histo[k++];
}
if (k > 0) { // interpolate
size_t count_ = count - histo[k - 1];
float c0 = count - threshmin;
float c1 = threshmin - count_;
minOut = (c1 * k + c0 * (k - 1)) / (c0 + c1);
} else {
minOut = k;
}
// go back to original range
minOut /= scale;
minOut += minVal;
// find (maxPrct*size) smallest value
const float threshmax = maxPrct * size;
while (count < threshmax) {
count += histo[k++];
}
if (k > 0) { // interpolate
size_t count_ = count - histo[k - 1];
float c0 = count - threshmax;
float c1 = threshmax - count_;
maxOut = (c1 * k + c0 * (k - 1)) / (c0 + c1);
} else {
maxOut = k;
}
// go back to original range
maxOut /= scale;
maxOut += minVal;
}
}