rawTherapee/rtengine/rtthumbnail.cc

1956 lines
67 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rtengine.h"
#include "rtthumbnail.h"
#include "../rtgui/options.h"
#include "image8.h"
#include <lcms2.h>
#include "curves.h"
#include <glibmm.h>
#include "improcfun.h"
#include "colortemp.h"
#include "mytime.h"
#include "utils.h"
#include "iccstore.h"
#include "iccmatrices.h"
#include "rawimagesource.h"
#include "stdimagesource.h"
#include <glib/gstdio.h>
#include <csetjmp>
#include "rawimage.h"
#include "jpeg.h"
#include "../rtgui/ppversion.h"
#include "improccoordinator.h"
#include <locale.h>
extern Options options;
namespace rtengine
{
using namespace procparams;
Thumbnail* Thumbnail::loadFromImage (const Glib::ustring& fname, int &w, int &h, int fixwh, double wbEq, bool inspectorMode)
{
StdImageSource imgSrc;
if (imgSrc.load(fname)) {
return NULL;
}
ImageIO* img = imgSrc.getImageIO();
Thumbnail* tpp = new Thumbnail ();
unsigned char* data;
img->getEmbeddedProfileData (tpp->embProfileLength, data);
if (data && tpp->embProfileLength) {
tpp->embProfileData = new unsigned char [tpp->embProfileLength];
memcpy (tpp->embProfileData, data, tpp->embProfileLength);
}
tpp->scaleForSave = 8192;
tpp->defGain = 1.0;
tpp->gammaCorrected = false;
tpp->isRaw = 0;
memset (tpp->colorMatrix, 0, sizeof(tpp->colorMatrix));
tpp->colorMatrix[0][0] = 1.0;
tpp->colorMatrix[1][1] = 1.0;
tpp->colorMatrix[2][2] = 1.0;
if (inspectorMode) {
// Special case, meaning that we want a full sized thumbnail image (e.g. for the Inspector feature)
w = img->width;
h = img->height;
tpp->scale = 1.;
} else {
if (fixwh == 1) {
w = h * img->width / img->height;
tpp->scale = (double)img->height / h;
} else {
h = w * img->height / img->width;
tpp->scale = (double)img->width / w;
}
}
// bilinear interpolation
if (tpp->thumbImg) {
delete tpp->thumbImg;
tpp->thumbImg = NULL;
}
if (inspectorMode) {
// we want an Image8
if (img->getType() == rtengine::sImage8) {
// copy the image
Image8 *srcImg = static_cast<Image8*>(img);
Image8 *thImg = new Image8 (w, h);
srcImg->copyData(thImg);
tpp->thumbImg = thImg;
} else {
// copy the image with a conversion
tpp->thumbImg = resizeTo<Image8>(w, h, TI_Bilinear, img);
}
} else {
// we want the same image type than the source file
tpp->thumbImg = resizeToSameType(w, h, TI_Bilinear, img);
// histogram computation
tpp->aeHistCompression = 3;
tpp->aeHistogram(65536 >> tpp->aeHistCompression);
double avg_r = 0;
double avg_g = 0;
double avg_b = 0;
int n = 0;
if (img->getType() == rtengine::sImage8) {
Image8 *image = static_cast<Image8*>(img);
image->computeHistogramAutoWB(avg_r, avg_g, avg_b, n, tpp->aeHistogram, tpp->aeHistCompression);
} else if (img->getType() == sImage16) {
Image16 *image = static_cast<Image16*>(img);
image->computeHistogramAutoWB(avg_r, avg_g, avg_b, n, tpp->aeHistogram, tpp->aeHistCompression);
} else if (img->getType() == sImagefloat) {
Imagefloat *image = static_cast<Imagefloat*>(img);
image->computeHistogramAutoWB(avg_r, avg_g, avg_b, n, tpp->aeHistogram, tpp->aeHistCompression);
} else {
printf("loadFromImage: Unsupported image type \"%s\"!\n", img->getType());
}
if (n > 0) {
ColorTemp cTemp;
tpp->redAWBMul = avg_r / double(n);
tpp->greenAWBMul = avg_g / double(n);
tpp->blueAWBMul = avg_b / double(n);
tpp->wbEqual = wbEq;
cTemp.mul2temp (tpp->redAWBMul, tpp->greenAWBMul, tpp->blueAWBMul, tpp->wbEqual, tpp->autoWBTemp, tpp->autoWBGreen);
}
tpp->init ();
}
return tpp;
}
Thumbnail* Thumbnail::loadQuickFromRaw (const Glib::ustring& fname, RawMetaDataLocation& rml, int &w, int &h, int fixwh, bool rotate, bool inspectorMode)
{
RawImage *ri = new RawImage(fname);
int r = ri->loadRaw(false, false);
if( r ) {
delete ri;
return NULL;
}
rml.exifBase = ri->get_exifBase();
rml.ciffBase = ri->get_ciffBase();
rml.ciffLength = ri->get_ciffLen();
Image8* img = new Image8 ();
// No sample format detection occurred earlier, so we set them here,
// as they are mandatory for the setScanline method
img->setSampleFormat(IIOSF_UNSIGNED_CHAR);
img->setSampleArrangement(IIOSA_CHUNKY);
int err = 1;
// see if it is something we support
if ( ri->is_supportedThumb() ) {
const char* data((const char*)fdata(ri->get_thumbOffset(), ri->get_file()));
if ( (unsigned char)data[1] == 0xd8 ) {
err = img->loadJPEGFromMemory(data, ri->get_thumbLength());
} else if (ri->is_ppmThumb()) {
err = img->loadPPMFromMemory(data, ri->get_thumbWidth(), ri->get_thumbHeight(), ri->get_thumbSwap(), ri->get_thumbBPS());
}
}
// did we succeed?
if ( err ) {
printf("Could not extract thumb from %s\n", fname.data());
delete img;
delete ri;
return NULL;
}
Thumbnail* tpp = new Thumbnail ();
tpp->isRaw = 1;
memset (tpp->colorMatrix, 0, sizeof(tpp->colorMatrix));
tpp->colorMatrix[0][0] = 1.0;
tpp->colorMatrix[1][1] = 1.0;
tpp->colorMatrix[2][2] = 1.0;
if (inspectorMode) {
// Special case, meaning that we want a full sized thumbnail image (e.g. for the Inspector feature)
w = img->width;
h = img->height;
tpp->scale = 1.;
} else {
if (fixwh == 1) {
w = h * img->width / img->height;
tpp->scale = (double)img->height / h;
} else {
h = w * img->height / img->width;
tpp->scale = (double)img->width / w;
}
}
if (tpp->thumbImg) {
delete tpp->thumbImg;
tpp->thumbImg = NULL;
}
if (inspectorMode) {
tpp->thumbImg = img;
} else {
tpp->thumbImg = resizeTo<Image8>(w, h, TI_Nearest, img);
delete img;
}
if (rotate && ri->get_rotateDegree() > 0) {
std::string fname = ri->get_filename();
std::string suffix = fname.length() > 4 ? fname.substr(fname.length() - 3) : "";
for (int i = 0; i < suffix.length(); i++) {
suffix[i] = std::tolower(suffix[i]);
}
// Leaf .mos, Mamiya .mef and Phase One .iiq files have thumbnails already rotated.
if (suffix != "mos" && suffix != "mef" && suffix != "iiq") {
tpp->thumbImg->rotate(ri->get_rotateDegree());
// width/height may have changed after rotating
w = tpp->thumbImg->width;
h = tpp->thumbImg->height;
}
}
if (!inspectorMode) {
tpp->init ();
}
delete ri;
return tpp;
}
#define FISRED(filter,row,col) \
((filter >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)==0 || !filter)
#define FISGREEN(filter,row,col) \
((filter >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)==1 || !filter)
#define FISBLUE(filter,row,col) \
((filter >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)==2 || !filter)
RawMetaDataLocation Thumbnail::loadMetaDataFromRaw (const Glib::ustring& fname)
{
RawMetaDataLocation rml;
rml.exifBase = -1;
rml.ciffBase = -1;
rml.ciffLength = -1;
RawImage ri(fname);
int r = ri.loadRaw(false);
if( !r ) {
rml.exifBase = ri.get_exifBase();
rml.ciffBase = ri.get_ciffBase();
rml.ciffLength = ri.get_ciffLen();
}
return rml;
}
Thumbnail* Thumbnail::loadFromRaw (const Glib::ustring& fname, RawMetaDataLocation& rml, int &w, int &h, int fixwh, double wbEq, bool rotate)
{
RawImage *ri = new RawImage (fname);
int r = ri->loadRaw(1, 0);
if( r ) {
delete ri;
return NULL;
}
int width = ri->get_width();
int height = ri->get_height();
rtengine::Thumbnail* tpp = new rtengine::Thumbnail;
tpp->isRaw = true;
tpp->embProfile = NULL;
tpp->embProfileData = NULL;
tpp->embProfileLength = ri->get_profileLen();
if (ri->get_profileLen())
tpp->embProfile = cmsOpenProfileFromMem(ri->get_profile(),
ri->get_profileLen()); //\ TODO check if mutex is needed
tpp->redMultiplier = ri->get_pre_mul(0);
tpp->greenMultiplier = ri->get_pre_mul(1);
tpp->blueMultiplier = ri->get_pre_mul(2);
ri->scale_colors();
ri->pre_interpolate();
rml.exifBase = ri->get_exifBase();
rml.ciffBase = ri->get_ciffBase();
rml.ciffLength = ri->get_ciffLen();
tpp->camwbRed = tpp->redMultiplier / ri->get_pre_mul(0);
tpp->camwbGreen = tpp->greenMultiplier / ri->get_pre_mul(1);
tpp->camwbBlue = tpp->blueMultiplier / ri->get_pre_mul(2);
tpp->defGain = 1.0 / min(ri->get_pre_mul(0), ri->get_pre_mul(1), ri->get_pre_mul(2));
tpp->gammaCorrected = true;
unsigned filter = ri->get_filters();
int firstgreen = 1;
// locate first green location in the first row
if(ri->getSensorType() == ST_BAYER)
while (!FISGREEN(filter, 1, firstgreen)) {
firstgreen++;
}
int skip = 1;
if (ri->get_FujiWidth() != 0) {
if (fixwh == 1) { // fix height, scale width
skip = ((ri->get_height() - ri->get_FujiWidth()) / sqrt(0.5) - firstgreen - 1) / h;
} else {
skip = (ri->get_FujiWidth() / sqrt(0.5) - firstgreen - 1) / w;
}
} else {
if (fixwh == 1) { // fix height, scale width
skip = (ri->get_height() - firstgreen - 1) / h;
} else {
skip = (ri->get_width() - firstgreen - 1) / w;
}
}
if (skip % 2) {
skip--;
}
if (skip < 1) {
skip = 1;
}
int hskip = skip, vskip = skip;
if (!ri->get_model().compare("D1X")) {
hskip *= 2;
}
int rofs = 0;
int tmpw = (width - 2) / hskip;
int tmph = (height - 2) / vskip;
DCraw::dcrawImage_t image = ri->get_image();
Imagefloat* tmpImg = new Imagefloat(tmpw, tmph);
if (ri->getSensorType() == ST_BAYER) {
// demosaicing! (sort of)
for (int row = 1, y = 0; row < height - 1 && y < tmph; row += vskip, y++) {
rofs = row * width;
for (int col = firstgreen, x = 0; col < width - 1 && x < tmpw; col += hskip, x++) {
int ofs = rofs + col;
int g = image[ofs][1];
int r, b;
if (FISRED(filter, row, col + 1)) {
r = (image[ofs + 1 ][0] + image[ofs - 1 ][0]) >> 1;
b = (image[ofs + width][2] + image[ofs - width][2]) >> 1;
} else {
b = (image[ofs + 1 ][2] + image[ofs - 1 ][2]) >> 1;
r = (image[ofs + width][0] + image[ofs - width][0]) >> 1;
}
tmpImg->r(y, x) = r;
tmpImg->g(y, x) = g;
tmpImg->b(y, x) = b;
}
}
} else if (ri->get_colors() == 1) {
for (int row = 1, y = 0; row < height - 1 && y < tmph; row += vskip, y++) {
rofs = row * width;
for (int col = firstgreen, x = 0; col < width - 1 && x < tmpw; col
+= hskip, x++) {
int ofs = rofs + col;
tmpImg->r(y, x) = tmpImg->g(y, x) = tmpImg->b(y, x) = image[ofs][0];
}
}
} else {
if(ri->getSensorType() == ST_FUJI_XTRANS) {
for( int row = 1, y = 0; row < height - 1 && y < tmph; row += vskip, y++) {
rofs = row * width;
for( int col = 1, x = 0; col < width - 1 && x < tmpw; col += hskip, x++ ) {
int ofs = rofs + col;
float sum[3] = {};
int c;
for(int v = -1; v <= 1; v++) {
for(int h = -1; h <= 1; h++) {
c = ri->XTRANSFC(row + v, col + h);
sum[c] += image[ofs + v * width + h][c];
}
}
c = ri->XTRANSFC(row, col);
switch (c) {
case 0:
tmpImg->r(y, x) = image[ofs][0];
tmpImg->g(y, x) = sum[1] / 5.f;
tmpImg->b(y, x) = sum[2] / 3.f;
break;
case 1:
tmpImg->r(y, x) = sum[0] / 2.f;
tmpImg->g(y, x) = image[ofs][1];
tmpImg->b(y, x) = sum[2] / 2.f;
break;
case 2:
tmpImg->r(y, x) = sum[0] / 3.f;
tmpImg->g(y, x) = sum[1] / 5.f;
tmpImg->b(y, x) = image[ofs][2];
break;
}
}
}
} else {
int iwidth = ri->get_iwidth();
int iheight = ri->get_iheight();
int left_margin = ri->get_leftmargin();
firstgreen += left_margin;
int top_margin = ri->get_topmargin();
for (int row = 1 + top_margin, y = 0; row < iheight + top_margin - 1 && y < tmph; row += vskip, y++) {
rofs = row * iwidth;
for (int col = firstgreen, x = 0; col < iwidth + left_margin - 1 && x < tmpw; col += hskip, x++) {
int ofs = rofs + col;
tmpImg->r(y, x) = image[ofs][0];
tmpImg->g(y, x) = image[ofs][1];
tmpImg->b(y, x) = image[ofs][2];
}
}
}
}
if (ri->get_FujiWidth() != 0) {
int fw = ri->get_FujiWidth() / hskip;
double step = sqrt(0.5);
int wide = fw / step;
int high = (tmph - fw) / step;
Imagefloat* fImg = new Imagefloat(wide, high);
float r, c;
for (int row = 0; row < high; row++)
for (int col = 0; col < wide; col++) {
unsigned ur = r = fw + (row - col) * step;
unsigned uc = c = (row + col) * step;
if (ur > tmph - 2 || uc > tmpw - 2) {
continue;
}
double fr = r - ur;
double fc = c - uc;
fImg->r(row, col) = (tmpImg->r(ur, uc) * (1 - fc) + tmpImg->r(ur, uc + 1) * fc) * (1 - fr) + (tmpImg->r(ur + 1, uc) * (1 - fc) + tmpImg->r(ur + 1, uc + 1) * fc) * fr;
fImg->g(row, col) = (tmpImg->g(ur, uc) * (1 - fc) + tmpImg->g(ur, uc + 1) * fc) * (1 - fr) + (tmpImg->g(ur + 1, uc) * (1 - fc) + tmpImg->g(ur + 1, uc + 1) * fc) * fr;
fImg->b(row, col) = (tmpImg->b(ur, uc) * (1 - fc) + tmpImg->b(ur, uc + 1) * fc) * (1 - fr) + (tmpImg->b(ur + 1, uc) * (1 - fc) + tmpImg->b(ur + 1, uc + 1) * fc) * fr;
}
delete tmpImg;
tmpImg = fImg;
tmpw = wide;
tmph = high;
}
if (fixwh == 1) { // fix height, scale width
w = tmpw * h / tmph;
} else {
h = tmph * w / tmpw;
}
if (tpp->thumbImg) {
delete tpp->thumbImg;
}
tpp->thumbImg = NULL;
tpp->thumbImg = resizeTo<Image16>(w, h, TI_Bilinear, tmpImg);
delete tmpImg;
if (ri->get_FujiWidth() != 0) {
tpp->scale = (double) (height - ri->get_FujiWidth()) / sqrt(0.5) / h;
} else {
tpp->scale = (double) height / h;
}
// generate histogram for auto exposure
tpp->aeHistCompression = 3;
tpp->aeHistogram(65536 >> tpp->aeHistCompression);
tpp->aeHistogram.clear();
int radd = 4;
int gadd = 4;
int badd = 4;
if (!filter) {
radd = gadd = badd = 1;
}
for (int i = 8; i < height - 8; i++) {
int start, end;
if (ri->get_FujiWidth() != 0) {
int fw = ri->get_FujiWidth();
start = ABS(fw - i) + 8;
end = min(height + width - fw - i, fw + i) - 8;
} else {
start = 8;
end = width - 8;
}
if (ri->get_colors() == 1) {
for (int j = start; j < end; j++) {
tpp->aeHistogram[((int)(image[i * width + j][0])) >> tpp->aeHistCompression] += radd;
tpp->aeHistogram[((int)(image[i * width + j][0])) >> tpp->aeHistCompression] += gadd;
tpp->aeHistogram[((int)(image[i * width + j][0])) >> tpp->aeHistCompression] += badd;
}
} else if(ri->getSensorType() == ST_BAYER) {
for (int j = start; j < end; j++)
if (FISGREEN(filter, i, j)) {
tpp->aeHistogram[((int)(tpp->camwbGreen * image[i * width + j][1])) >> tpp->aeHistCompression] += gadd;
} else if (FISRED(filter, i, j)) {
tpp->aeHistogram[((int)(tpp->camwbRed * image[i * width + j][0])) >> tpp->aeHistCompression] += radd;
} else if (FISBLUE(filter, i, j)) {
tpp->aeHistogram[((int)(tpp->camwbBlue * image[i * width + j][2])) >> tpp->aeHistCompression] += badd;
}
} else if(ri->getSensorType() == ST_FUJI_XTRANS) {
for (int j = start; j < end; j++)
if (ri->ISXTRANSGREEN(i, j)) {
tpp->aeHistogram[((int)(tpp->camwbGreen * image[i * width + j][1])) >> tpp->aeHistCompression] += gadd;
} else if (ri->ISXTRANSRED(i, j)) {
tpp->aeHistogram[((int)(tpp->camwbRed * image[i * width + j][0])) >> tpp->aeHistCompression] += radd;
} else if (ri->ISXTRANSBLUE(i, j)) {
tpp->aeHistogram[((int)(tpp->camwbBlue * image[i * width + j][2])) >> tpp->aeHistCompression] += badd;
}
} else { /* if(ri->getSensorType()==ST_FOVEON) */
for (int j = start; j < end; j++) {
tpp->aeHistogram[((int)(image[i * width + j][0] * 2.f)) >> tpp->aeHistCompression] += radd;
tpp->aeHistogram[((int)(image[i * width + j][1])) >> tpp->aeHistCompression] += gadd;
tpp->aeHistogram[((int)(image[i * width + j][2] * 0.5f)) >> tpp->aeHistCompression] += badd;
}
}
}
// generate autoWB
double avg_r = 0;
double avg_g = 0;
double avg_b = 0;
const float eps = 1e-5; //tolerance to avoid dividing by zero
float rn = eps, gn = eps, bn = eps;
for (int i = 32; i < height - 32; i++) {
int start, end;
if (ri->get_FujiWidth() != 0) {
int fw = ri->get_FujiWidth();
start = ABS(fw - i) + 32;
end = min(height + width - fw - i, fw + i) - 32;
} else {
start = 32;
end = width - 32;
}
if(ri->getSensorType() == ST_BAYER) {
for (int j = start; j < end; j++) {
if (!filter) {
double d = tpp->defGain * image[i * width + j][0];
if (d > 64000.) {
continue;
}
avg_g += d;
avg_r += d;
avg_b += d;
rn++;
gn++;
bn++;
} else if (FISGREEN(filter, i, j)) {
double d = tpp->defGain * image[i * width + j][1];
if (d > 64000.) {
continue;
}
avg_g += d;
gn++;
} else if (FISRED(filter, i, j)) {
double d = tpp->defGain * image[i * width + j][0];
if (d > 64000.) {
continue;
}
avg_r += d;
rn++;
} else if (FISBLUE(filter, i, j)) {
double d = tpp->defGain * image[i * width + j][2];
if (d > 64000.) {
continue;
}
avg_b += d;
bn++;
}
}
} else if(ri->getSensorType() == ST_FUJI_XTRANS) {
for (int j = start; j < end; j++) {
if (ri->ISXTRANSGREEN(i, j)) {
double d = tpp->defGain * image[i * width + j][1];
if (d > 64000.) {
continue;
}
avg_g += d;
gn++;
} else if (ri->ISXTRANSRED(i, j)) {
double d = tpp->defGain * image[i * width + j][0];
if (d > 64000.) {
continue;
}
avg_r += d;
rn++;
} else if (ri->ISXTRANSBLUE(i, j)) {
double d = tpp->defGain * image[i * width + j][2];
if (d > 64000.) {
continue;
}
avg_b += d;
bn++;
}
}
} else { /* if(ri->getSensorType()==ST_FOVEON) */
for (int j = start; j < end; j++) {
double d = tpp->defGain * image[i * width + j][0];
if (d <= 64000.) {
avg_r += d;
rn++;
}
d = tpp->defGain * image[i * width + j][1];
if (d <= 64000.) {
avg_g += d;
gn++;
}
d = tpp->defGain * image[i * width + j][2];
if (d <= 64000.) {
avg_b += d;
bn++;
}
}
}
}
double reds = avg_r / rn * tpp->camwbRed;
double greens = avg_g / gn * tpp->camwbGreen;
double blues = avg_b / bn * tpp->camwbBlue;
tpp->redAWBMul = ri->get_rgb_cam(0, 0) * reds + ri->get_rgb_cam(0, 1) * greens + ri->get_rgb_cam(0, 2) * blues;
tpp->greenAWBMul = ri->get_rgb_cam(1, 0) * reds + ri->get_rgb_cam(1, 1) * greens + ri->get_rgb_cam(1, 2) * blues;
tpp->blueAWBMul = ri->get_rgb_cam(2, 0) * reds + ri->get_rgb_cam(2, 1) * greens + ri->get_rgb_cam(2, 2) * blues;
tpp->wbEqual = wbEq;
ColorTemp cTemp;
cTemp.mul2temp(tpp->redAWBMul, tpp->greenAWBMul, tpp->blueAWBMul, tpp->wbEqual, tpp->autoWBTemp, tpp->autoWBGreen);
if (rotate && ri->get_rotateDegree() > 0) {
tpp->thumbImg->rotate(ri->get_rotateDegree());
}
for (int a = 0; a < 3; a++)
for (int b = 0; b < 3; b++) {
tpp->colorMatrix[a][b] = ri->get_rgb_cam(a, b);
}
tpp->init();
delete ri;
return tpp;
}
#undef FISRED
#undef FISGREEN
#undef FISBLUE
void Thumbnail::init ()
{
RawImageSource::inverse33 (colorMatrix, iColorMatrix);
//colorMatrix is rgb_cam
memset (cam2xyz, 0, sizeof(cam2xyz));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
cam2xyz[i][j] += xyz_sRGB[i][k] * colorMatrix[k][j];
}
camProfile = iccStore->createFromMatrix (cam2xyz, false, "Camera");
}
Thumbnail::Thumbnail () :
camProfile(NULL), thumbImg(NULL),
camwbRed(1.0), camwbGreen(1.0), camwbBlue(1.0),
redAWBMul(-1.0), greenAWBMul(-1.0), blueAWBMul(-1.0),
autoWBTemp(2700), autoWBGreen(1.0), wbEqual(-1.0),
embProfileLength(0), embProfileData(NULL), embProfile(NULL),
redMultiplier(1.0), greenMultiplier(1.0), blueMultiplier(1.0),
defGain(1.0),
scaleForSave(8192),
gammaCorrected(false),
aeHistCompression(3)
{
}
Thumbnail::~Thumbnail ()
{
delete thumbImg;
//delete [] aeHistogram;
delete [] embProfileData;
if (embProfile) {
cmsCloseProfile(embProfile);
}
if (camProfile) {
cmsCloseProfile(camProfile);
}
}
// Simple processing of RAW internal JPGs
IImage8* Thumbnail::quickProcessImage (const procparams::ProcParams& params, int rheight, rtengine::TypeInterpolation interp, double& myscale)
{
int rwidth;
if (params.coarse.rotate == 90 || params.coarse.rotate == 270) {
rwidth = rheight;
rheight = thumbImg->height * rwidth / thumbImg->width;
} else {
rwidth = thumbImg->width * rheight / thumbImg->height;
}
Image8* baseImg = resizeTo<Image8>(rwidth, rheight, interp, thumbImg);
if (params.coarse.rotate) {
baseImg->rotate (params.coarse.rotate);
}
if (params.coarse.hflip) {
baseImg->hflip ();
}
if (params.coarse.vflip) {
baseImg->vflip ();
}
return baseImg;
}
// Full thumbnail processing, second stage if complete profile exists
IImage8* Thumbnail::processImage (const procparams::ProcParams& params, int rheight, TypeInterpolation interp, std::string camName,
double focalLen, double focalLen35mm, float focusDist, float shutter, float fnumber, float iso, std::string expcomp_, double& myscale)
{
// check if the WB's equalizer value has changed
if (wbEqual < (params.wb.equal - 5e-4) || wbEqual > (params.wb.equal + 5e-4)) {
wbEqual = params.wb.equal;
// recompute the autoWB
ColorTemp cTemp;
cTemp.mul2temp (redAWBMul, greenAWBMul, blueAWBMul, wbEqual, autoWBTemp, autoWBGreen);
}
// compute WB multipliers
ColorTemp currWB = ColorTemp (params.wb.temperature, params.wb.green, params.wb.equal, params.wb.method);
if (params.wb.method == "Camera") {
//recall colorMatrix is rgb_cam
double cam_r = colorMatrix[0][0] * camwbRed + colorMatrix[0][1] * camwbGreen + colorMatrix[0][2] * camwbBlue;
double cam_g = colorMatrix[1][0] * camwbRed + colorMatrix[1][1] * camwbGreen + colorMatrix[1][2] * camwbBlue;
double cam_b = colorMatrix[2][0] * camwbRed + colorMatrix[2][1] * camwbGreen + colorMatrix[2][2] * camwbBlue;
currWB = ColorTemp (cam_r, cam_g, cam_b, params.wb.equal);
} else if (params.wb.method == "Auto") {
currWB = ColorTemp (autoWBTemp, autoWBGreen, wbEqual, "Custom");
}
double r, g, b;
currWB.getMultipliers (r, g, b);
//iColorMatrix is cam_rgb
double rm = iColorMatrix[0][0] * r + iColorMatrix[0][1] * g + iColorMatrix[0][2] * b;
double gm = iColorMatrix[1][0] * r + iColorMatrix[1][1] * g + iColorMatrix[1][2] * b;
double bm = iColorMatrix[2][0] * r + iColorMatrix[2][1] * g + iColorMatrix[2][2] * b;
rm = camwbRed / rm;
gm = camwbGreen / gm;
bm = camwbBlue / bm;
double mul_lum = 0.299 * rm + 0.587 * gm + 0.114 * bm;
double logDefGain = log(defGain) / log(2.0);
int rmi, gmi, bmi;
// Since HL recovery is not rendered in thumbs
// if (!isRaw || !params.toneCurve.hrenabled) {
logDefGain = 0.0;
rmi = 1024.0 * rm * defGain / mul_lum;
gmi = 1024.0 * gm * defGain / mul_lum;
bmi = 1024.0 * bm * defGain / mul_lum;
/* }
else {
rmi = 1024.0 * rm / mul_lum;
gmi = 1024.0 * gm / mul_lum;
bmi = 1024.0 * bm / mul_lum;
}*/
// The RAW exposure is not reflected since it's done in preprocessing. If we only have e.g. the chached thumb,
// that is already preprocessed. So we simulate the effect here roughly my modifying the exposure accordingly
if (isRaw && fabs(1.0 - params.raw.expos) > 0.001) {
rmi *= params.raw.expos;
gmi *= params.raw.expos;
bmi *= params.raw.expos;
}
// resize to requested width and perform coarse transformation
int rwidth;
if (params.coarse.rotate == 90 || params.coarse.rotate == 270) {
rwidth = rheight;
rheight = int(size_t(thumbImg->height) * size_t(rwidth) / size_t(thumbImg->width));
} else {
rwidth = int(size_t(thumbImg->width) * size_t(rheight) / size_t(thumbImg->height));
}
Imagefloat* baseImg = resizeTo<Imagefloat>(rwidth, rheight, interp, thumbImg);
if (params.coarse.rotate) {
baseImg->rotate (params.coarse.rotate);
rwidth = baseImg->width;
rheight = baseImg->height;
}
if (params.coarse.hflip) {
baseImg->hflip ();
}
if (params.coarse.vflip) {
baseImg->vflip ();
}
// apply white balance and raw white point (simulated)
int val;
unsigned short val_;
for (int i = 0; i < rheight; i++)
for (int j = 0; j < rwidth; j++) {
baseImg->convertTo(baseImg->r(i, j), val_);
val = static_cast<int>(val_) * rmi >> 10;
baseImg->r(i, j) = CLIP(val);
baseImg->convertTo(baseImg->g(i, j), val_);
val = static_cast<int>(val_) * gmi >> 10;
baseImg->g(i, j) = CLIP(val);
baseImg->convertTo(baseImg->b(i, j), val_);
val = static_cast<int>(val_) * bmi >> 10;
baseImg->b(i, j) = CLIP(val);
}
/*
// apply highlight recovery, if needed -- CURRENTLY BROKEN DUE TO INCOMPATIBLE DATA TYPES, BUT HL RECOVERY AREN'T COMPUTED FOR THUMBNAILS ANYWAY...
if (isRaw && params.toneCurve.hrenabled) {
int maxval = 65535 / defGain;
if (params.toneCurve.method=="Luminance" || params.toneCurve.method=="Color")
for (int i=0; i<rheight; i++)
RawImageSource::HLRecovery_Luminance (baseImg->r[i], baseImg->g[i], baseImg->b[i], baseImg->r[i], baseImg->g[i], baseImg->b[i], rwidth, maxval);
else if (params.toneCurve.method=="CIELab blending") {
double icamToD50[3][3];
RawImageSource::inverse33 (cam2xyz, icamToD50);
for (int i=0; i<rheight; i++)
RawImageSource::HLRecovery_CIELab (baseImg->r[i], baseImg->g[i], baseImg->b[i], baseImg->r[i], baseImg->g[i], baseImg->b[i], rwidth, maxval, cam2xyz, icamToD50);
}
}
*/
// if luma denoise has to be done for thumbnails, it should be right here
// perform color space transformation
if (isRaw) {
double pre_mul[3] = { redMultiplier, greenMultiplier, blueMultiplier };
RawImageSource::colorSpaceConversion (baseImg, params.icm, currWB, pre_mul, embProfile, camProfile, cam2xyz, camName );
} else {
StdImageSource::colorSpaceConversion (baseImg, params.icm, embProfile, thumbImg->getSampleFormat());
}
int fw = baseImg->width;
int fh = baseImg->height;
//ColorTemp::CAT02 (baseImg, &params) ;//perhaps not good!
ImProcFunctions ipf (&params, false);
ipf.setScale (sqrt(double(fw * fw + fh * fh)) / sqrt(double(thumbImg->width * thumbImg->width + thumbImg->height * thumbImg->height))*scale);
ipf.updateColorProfiles (params.icm, options.rtSettings.monitorProfile, options.rtSettings.monitorIntent);
LUTu hist16 (65536);
LUTu hist16C (65536);
double gamma = isRaw ? Color::sRGBGamma : 0; // usually in ImageSource, but we don't have that here
ipf.firstAnalysis (baseImg, &params, hist16);
// perform transform
if (ipf.needsTransform()) {
Imagefloat* trImg = new Imagefloat (fw, fh);
int origFW;
int origFH;
double tscale;
getDimensions(origFW, origFH, tscale);
ipf.transform (baseImg, trImg, 0, 0, 0, 0, fw, fh, origFW * tscale + 0.5, origFH * tscale + 0.5, focalLen, focalLen35mm, focusDist, 0, true); // Raw rotate degree not detectable here
delete baseImg;
baseImg = trImg;
}
// update blurmap
SHMap* shmap = NULL;
if (params.sh.enabled) {
shmap = new SHMap (fw, fh, false);
double radius = sqrt (double(fw * fw + fh * fh)) / 2.0;
double shradius = params.sh.radius;
if (!params.sh.hq) {
shradius *= radius / 1800.0;
}
shmap->update (baseImg, shradius, ipf.lumimul, params.sh.hq, 16);
}
// RGB processing
double expcomp = params.toneCurve.expcomp;
int bright = params.toneCurve.brightness;
int contr = params.toneCurve.contrast;
int black = params.toneCurve.black;
int hlcompr = params.toneCurve.hlcompr;
int hlcomprthresh = params.toneCurve.hlcomprthresh;
if (params.toneCurve.autoexp && aeHistogram) {
ipf.getAutoExp (aeHistogram, aeHistCompression, logDefGain, params.toneCurve.clip, expcomp, bright, contr, black, hlcompr, hlcomprthresh);
//ipf.getAutoExp (aeHistogram, aeHistCompression, logDefGain, params.toneCurve.clip, params.toneCurve.expcomp, params.toneCurve.brightness, params.toneCurve.contrast, params.toneCurve.black, params.toneCurve.hlcompr);
}
LUTf curve1 (65536);
LUTf curve2 (65536);
LUTf curve (65536);
LUTf satcurve (65536);
LUTf lhskcurve (65536);
LUTf clcurve (65536);
LUTf clToningcurve (65536);
LUTf cl2Toningcurve (65536);
LUTf rCurve (65536);
LUTf gCurve (65536);
LUTf bCurve (65536);
LUTu dummy;
ToneCurve customToneCurve1, customToneCurve2;
ColorGradientCurve ctColorCurve;
OpacityCurve ctOpacityCurve;
// NoisCurve dnNoisCurve;
ColorAppearance customColCurve1;
ColorAppearance customColCurve2;
ColorAppearance customColCurve3;
ToneCurve customToneCurvebw1;
ToneCurve customToneCurvebw2;
CurveFactory::complexCurve (expcomp, black / 65535.0, hlcompr, hlcomprthresh,
params.toneCurve.shcompr, bright, contr,
params.toneCurve.curveMode, params.toneCurve.curve,
params.toneCurve.curveMode2, params.toneCurve.curve2,
hist16, dummy, curve1, curve2, curve, dummy, customToneCurve1, customToneCurve2, 16);
CurveFactory::RGBCurve (params.rgbCurves.rcurve, rCurve, 16);
CurveFactory::RGBCurve (params.rgbCurves.gcurve, gCurve, 16);
CurveFactory::RGBCurve (params.rgbCurves.bcurve, bCurve, 16);
TMatrix wprof = iccStore->workingSpaceMatrix (params.icm.working);
double wp[3][3] = {
{wprof[0][0], wprof[0][1], wprof[0][2]},
{wprof[1][0], wprof[1][1], wprof[1][2]},
{wprof[2][0], wprof[2][1], wprof[2][2]}
};
TMatrix wiprof = iccStore->workingSpaceInverseMatrix (params.icm.working);
double wip[3][3] = {
{wiprof[0][0], wiprof[0][1], wiprof[0][2]},
{wiprof[1][0], wiprof[1][1], wiprof[1][2]},
{wiprof[2][0], wiprof[2][1], wiprof[2][2]}
};
bool opautili = false;
params.colorToning.getCurves(ctColorCurve, ctOpacityCurve, wp, wip, opautili);
//params.dirpyrDenoise.getCurves(dnNoisCurve, lldenoisutili);
bool clctoningutili = false;
bool llctoningutili = false;
CurveFactory::curveToningCL(clctoningutili, params.colorToning.clcurve, clToningcurve, scale == 1 ? 1 : 16);
CurveFactory::curveToningLL(llctoningutili, params.colorToning.cl2curve, cl2Toningcurve, scale == 1 ? 1 : 16);
CurveFactory::curveBW (params.blackwhite.beforeCurve, params.blackwhite.afterCurve, hist16, dummy, customToneCurvebw1, customToneCurvebw2, 16);
double rrm, ggm, bbm;
float autor, autog, autob;
float satLimit = float(params.colorToning.satProtectionThreshold) / 100.f * 0.7f + 0.3f;
float satLimitOpacity = 1.f - (float(params.colorToning.saturatedOpacity) / 100.f);
if(params.colorToning.enabled && params.colorToning.autosat) { //for colortoning evaluation of saturation settings
float moyS = 0.f;
float eqty = 0.f;
ipf.moyeqt (baseImg, moyS, eqty);//return image : mean saturation and standard dev of saturation
//printf("moy=%f ET=%f\n", moyS,eqty);
float satp = ((moyS + 1.5f * eqty) - 0.3f) / 0.7f; //1.5 sigma ==> 93% pixels with high saturation -0.3 / 0.7 convert to Hombre scale
if(satp >= 0.92f) {
satp = 0.92f; //avoid values too high (out of gamut)
}
if(satp <= 0.15f) {
satp = 0.15f; //avoid too low values
}
satLimit = 100.f * satp;
satLimitOpacity = 100.f * (moyS - 0.85f * eqty); //-0.85 sigma==>20% pixels with low saturation
}
autor = autog = autob = -9000.f; // This will ask to compute the "auto" values for the B&W tool
LabImage* labView = new LabImage (fw, fh);
DCPProfile *dcpProf = NULL;
if (isRaw) {
cmsHPROFILE dummy;
RawImageSource::findInputProfile(params.icm.input, NULL, camName, &dcpProf, dummy);
if (dcpProf != NULL) {
dcpProf->setStep2ApplyState(params.icm.working, params.icm.toneCurve, params.icm.applyLookTable, params.icm.applyBaselineExposureOffset);
}
}
ipf.rgbProc (baseImg, labView, NULL, curve1, curve2, curve, shmap, params.toneCurve.saturation, rCurve, gCurve, bCurve, satLimit , satLimitOpacity, ctColorCurve, ctOpacityCurve, opautili, clToningcurve, cl2Toningcurve, customToneCurve1, customToneCurve2, customToneCurvebw1, customToneCurvebw2, rrm, ggm, bbm, autor, autog, autob, expcomp, hlcompr, hlcomprthresh, dcpProf);
// freeing up some memory
customToneCurve1.Reset();
customToneCurve2.Reset();
ctColorCurve.Reset();
ctOpacityCurve.Reset();
// dnNoisCurve.Reset();
customToneCurvebw1.Reset();
customToneCurvebw2.Reset();
if (shmap) {
delete shmap;
}
// luminance histogram update
hist16.clear();
hist16C.clear();
for (int i = 0; i < fh; i++)
for (int j = 0; j < fw; j++) {
hist16[CLIP((int)((labView->L[i][j])))]++;
hist16C[CLIP((int)sqrt(labView->a[i][j]*labView->a[i][j] + labView->b[i][j]*labView->b[i][j]))]++;
}
// luminance processing
// ipf.EPDToneMap(labView,0,6);
bool utili = false;
bool autili = false;
bool butili = false;
bool ccutili = false;
bool cclutili = false;
bool clcutili = false;
CurveFactory::complexLCurve (params.labCurve.brightness, params.labCurve.contrast, params.labCurve.lcurve,
hist16, hist16, curve, dummy, 16, utili);
CurveFactory::curveCL(clcutili, params.labCurve.clcurve, clcurve, hist16C, dummy, 16);
CurveFactory::complexsgnCurve (1.f, autili, butili, ccutili, cclutili, params.labCurve.chromaticity, params.labCurve.rstprotection,
params.labCurve.acurve, params.labCurve.bcurve, params.labCurve.cccurve, params.labCurve.lccurve, curve1, curve2, satcurve, lhskcurve,
hist16C, hist16C, dummy, dummy,
16);
//ipf.luminanceCurve (labView, labView, curve);
ipf.chromiLuminanceCurve (NULL, 1, labView, labView, curve1, curve2, satcurve, lhskcurve, clcurve, curve, utili, autili, butili, ccutili, cclutili, clcutili, dummy, dummy, dummy, dummy);
ipf.vibrance(labView);
if((params.colorappearance.enabled && !params.colorappearance.tonecie) || !params.colorappearance.enabled) {
ipf.EPDToneMap(labView, 5, 6);
}
//if(!params.colorappearance.enabled){ipf.EPDToneMap(labView,5,6);}
CurveFactory::curveLightBrightColor (
params.colorappearance.curveMode, params.colorappearance.curve,
params.colorappearance.curveMode2, params.colorappearance.curve2,
params.colorappearance.curveMode3, params.colorappearance.curve3,
hist16, hist16, dummy,
hist16C, dummy,
customColCurve1,
customColCurve2,
customColCurve3,
16);
if(params.colorappearance.enabled) {
int begh = 0, endh = labView->H;
bool execsharp = false;
float d;
float fnum = fnumber;// F number
float fiso = iso;// ISO
float fspeed = shutter;//speed
char * writ = new char[expcomp_.size() + 1];//convert expcomp_ to char
std::copy(expcomp_.begin(), expcomp_.end(), writ);
writ[expcomp_.size()] = '\0';
float fcomp = atof(writ); //compensation + -
delete[] writ;
float adap;
if(fnum < 0.3f || fiso < 5.f || fspeed < 0.00001f)
//if no exif data or wrong
{
adap = 2000.f;
} else {
float E_V = fcomp + log2 ((fnum * fnum) / fspeed / (fiso / 100.f));
float expo2 = params.toneCurve.expcomp; // exposure compensation in tonecurve ==> direct EV
E_V += expo2;
float expo1;//exposure raw white point
expo1 = log2(params.raw.expos); //log2 ==>linear to EV
E_V += expo1;
adap = powf(2.f, E_V - 3.f); //cd / m2
//end calculation adaptation scene luminosity
}
LUTf CAMBrightCurveJ;
LUTf CAMBrightCurveQ;
float CAMMean;
int sk;
int scale;
sk = 16;
int rtt = 0;
CieImage* cieView = new CieImage (fw, fh);
ipf.ciecam_02float (cieView, adap, begh, endh, 1, 2, labView, &params, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 5, 6, execsharp, d, sk, rtt);
delete cieView;
}
// color processing
//ipf.colorCurve (labView, labView);
// obtain final image
Image8* readyImg = new Image8 (fw, fh);
ipf.lab2monitorRgb (labView, readyImg);
delete labView;
delete baseImg;
// calculate scale
if (params.coarse.rotate == 90 || params.coarse.rotate == 270) {
myscale = scale * thumbImg->width / fh;
} else {
myscale = scale * thumbImg->height / fh;
}
myscale = 1.0 / myscale;
/* // apply crop
if (params.crop.enabled) {
int ix = 0;
for (int i=0; i<fh; i++)
for (int j=0; j<fw; j++)
if (i<params.crop.y/myscale || i>(params.crop.y+params.crop.h)/myscale || j<params.crop.x/myscale || j>(params.crop.x+params.crop.w)/myscale) {
readyImg->data[ix++] /= 3;
readyImg->data[ix++] /= 3;
readyImg->data[ix++] /= 3;
}
else
ix += 3;
}*/
return readyImg;
}
int Thumbnail::getImageWidth (const procparams::ProcParams& params, int rheight, float &ratio)
{
if (thumbImg == NULL) {
return 0; // Can happen if thumb is just building and GUI comes in with resize wishes
}
int rwidth;
if (params.coarse.rotate == 90 || params.coarse.rotate == 270) {
ratio = (float)(thumbImg->height) / (float)(thumbImg->width);
} else {
ratio = (float)(thumbImg->width) / (float)(thumbImg->height);
}
rwidth = (int)(ratio * (float)rheight);
return rwidth;
}
void Thumbnail::getDimensions (int& w, int& h, double& scaleFac)
{
if (thumbImg) {
w = thumbImg->width;
h = thumbImg->height;
scaleFac = scale;
} else {
w = 0;
h = 0;
scale = 1;
}
}
void Thumbnail::getCamWB (double& temp, double& green)
{
double cam_r = colorMatrix[0][0] * camwbRed + colorMatrix[0][1] * camwbGreen + colorMatrix[0][2] * camwbBlue;
double cam_g = colorMatrix[1][0] * camwbRed + colorMatrix[1][1] * camwbGreen + colorMatrix[1][2] * camwbBlue;
double cam_b = colorMatrix[2][0] * camwbRed + colorMatrix[2][1] * camwbGreen + colorMatrix[2][2] * camwbBlue;
ColorTemp currWB = ColorTemp (cam_r, cam_g, cam_b, 1.0); // we do not take the equalizer into account here, because we want camera's WB
temp = currWB.getTemp ();
green = currWB.getGreen ();
}
void Thumbnail::getAutoWB (double& temp, double& green, double equal)
{
if (equal != wbEqual) {
// compute the values depending on equal
ColorTemp cTemp;
wbEqual = equal;
// compute autoWBTemp and autoWBGreen
cTemp.mul2temp(redAWBMul, greenAWBMul, blueAWBMul, wbEqual, autoWBTemp, autoWBGreen);
}
temp = autoWBTemp;
green = autoWBGreen;
}
void Thumbnail::getAutoWBMultipliers (double& rm, double& gm, double& bm)
{
rm = redAWBMul;
gm = greenAWBMul;
bm = blueAWBMul;
}
void Thumbnail::applyAutoExp (procparams::ProcParams& params)
{
if (params.toneCurve.autoexp && aeHistogram) {
ImProcFunctions ipf (&params, false);
ipf.getAutoExp (aeHistogram, aeHistCompression, log(defGain) / log(2.0), params.toneCurve.clip, params.toneCurve.expcomp,
params.toneCurve.brightness, params.toneCurve.contrast, params.toneCurve.black, params.toneCurve.hlcompr, params.toneCurve.hlcomprthresh);
}
}
void Thumbnail::getSpotWB (const procparams::ProcParams& params, int xp, int yp, int rect, double& rtemp, double& rgreen)
{
std::vector<Coord2D> points, red, green, blue;
for (int i = yp - rect; i <= yp + rect; i++)
for (int j = xp - rect; j <= xp + rect; j++) {
points.push_back (Coord2D (j, i));
}
int fw = thumbImg->width, fh = thumbImg->height;
if (params.coarse.rotate == 90 || params.coarse.rotate == 270) {
fw = thumbImg->height;
fh = thumbImg->width;
}
ImProcFunctions ipf (&params, false);
ipf.transCoord (fw, fh, points, red, green, blue);
int tr = getCoarseBitMask(params.coarse);
// calculate spot wb (copy & pasted from stdimagesource)
double reds = 0, greens = 0, blues = 0;
int rn = 0, gn = 0, bn = 0;
thumbImg->getSpotWBData(reds, greens, blues, rn, gn, bn, red, green, blue, tr);
reds = reds / rn * camwbRed;
greens = greens / gn * camwbGreen;
blues = blues / bn * camwbBlue;
double rm = colorMatrix[0][0] * reds + colorMatrix[0][1] * greens + colorMatrix[0][2] * blues;
double gm = colorMatrix[1][0] * reds + colorMatrix[1][1] * greens + colorMatrix[1][2] * blues;
double bm = colorMatrix[2][0] * reds + colorMatrix[2][1] * greens + colorMatrix[2][2] * blues;
ColorTemp ct (rm, gm, bm, params.wb.equal);
rtemp = ct.getTemp ();
rgreen = ct.getGreen ();
}
void Thumbnail::transformPixel (int x, int y, int tran, int& tx, int& ty)
{
int W = thumbImg->width;
int H = thumbImg->height;
int sw = W, sh = H;
if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) {
sw = H;
sh = W;
}
int ppx = x, ppy = y;
if (tran & TR_HFLIP) {
ppx = sw - 1 - x ;
}
if (tran & TR_VFLIP) {
ppy = sh - 1 - y;
}
tx = ppx;
ty = ppy;
if ((tran & TR_ROT) == TR_R180) {
tx = W - 1 - ppx;
ty = H - 1 - ppy;
} else if ((tran & TR_ROT) == TR_R90) {
tx = ppy;
ty = H - 1 - ppx;
} else if ((tran & TR_ROT) == TR_R270) {
tx = W - 1 - ppy;
ty = ppx;
}
tx /= scale;
ty /= scale;
}
unsigned char* Thumbnail::getGrayscaleHistEQ (int trim_width)
{
if (!thumbImg) {
return NULL;
}
if (thumbImg->width < trim_width) {
return NULL;
}
// to utilize the 8 bit color range of the thumbnail we brighten it and apply gamma correction
unsigned char* tmpdata = new unsigned char[thumbImg->height * trim_width];
int ix = 0, max;
if (gammaCorrected) {
// if it's gamma correct (usually a RAW), we have the problem that there is a lot noise etc. that makes the maximum way too high.
// Strategy is limit a certain percent of pixels so the overall picture quality when scaling to 8 bit is way better
const double BurnOffPct = 0.03; // *100 = percent pixels that may be clipped
// Calc the histogram
unsigned int* hist16 = new unsigned int [65536];
memset(hist16, 0, sizeof(int) * 65536);
if (thumbImg->getType() == sImage8) {
Image8 *image = static_cast<Image8*>(thumbImg);
image->calcGrayscaleHist(hist16);
} else if (thumbImg->getType() == sImage16) {
Image16 *image = static_cast<Image16*>(thumbImg);
image->calcGrayscaleHist(hist16);
} else if (thumbImg->getType() == sImagefloat) {
Imagefloat *image = static_cast<Imagefloat*>(thumbImg);
image->calcGrayscaleHist(hist16);
} else {
printf("getGrayscaleHistEQ #1: Unsupported image type \"%s\"!\n", thumbImg->getType());
}
// Go down till we cut off that many pixels
unsigned long cutoff = thumbImg->height * thumbImg->height * 4 * BurnOffPct;
int max_;
unsigned long sum = 0;
for (max_ = 65535; max_ > 16384 && sum < cutoff; max_--) {
sum += hist16[max_];
}
delete[] hist16;
scaleForSave = 65535 * 8192 / max_;
// Correction and gamma to 8 Bit
if (thumbImg->getType() == sImage8) {
Image8 *image = static_cast<Image8*>(thumbImg);
for (int i = 0; i < thumbImg->height; i++)
for (int j = (thumbImg->width - trim_width) / 2; j < trim_width + (thumbImg->width - trim_width) / 2; j++) {
unsigned short r_, g_, b_;
image->convertTo(image->r(i, j), r_);
image->convertTo(image->g(i, j), g_);
image->convertTo(image->b(i, j), b_);
int r = Color::gammatabThumb[min(r_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
int g = Color::gammatabThumb[min(g_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
int b = Color::gammatabThumb[min(b_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16;
}
} else if (thumbImg->getType() == sImage16) {
Image16 *image = static_cast<Image16*>(thumbImg);
for (int i = 0; i < thumbImg->height; i++)
for (int j = (thumbImg->width - trim_width) / 2; j < trim_width + (thumbImg->width - trim_width) / 2; j++) {
unsigned short r_, g_, b_;
image->convertTo(image->r(i, j), r_);
image->convertTo(image->g(i, j), g_);
image->convertTo(image->b(i, j), b_);
int r = Color::gammatabThumb[min(r_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
int g = Color::gammatabThumb[min(g_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
int b = Color::gammatabThumb[min(b_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16;
}
} else if (thumbImg->getType() == sImagefloat) {
Imagefloat *image = static_cast<Imagefloat*>(thumbImg);
for (int i = 0; i < thumbImg->height; i++)
for (int j = (thumbImg->width - trim_width) / 2; j < trim_width + (thumbImg->width - trim_width) / 2; j++) {
unsigned short r_, g_, b_;
image->convertTo(image->r(i, j), r_);
image->convertTo(image->g(i, j), g_);
image->convertTo(image->b(i, j), b_);
int r = Color::gammatabThumb[min(r_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
int g = Color::gammatabThumb[min(g_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
int b = Color::gammatabThumb[min(b_, static_cast<unsigned short>(max_)) * scaleForSave >> 13];
tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16;
}
}
} else {
// If it's not gamma corrected (usually a JPG) we take the normal maximum
max = 0;
if (thumbImg->getType() == sImage8) {
Image8 *image = static_cast<Image8*>(thumbImg);
unsigned char max_ = 0;
for (int row = 0; row < image->height; row++)
for (int col = 0; col < image->width; col++) {
if (image->r(row, col) > max_) {
max_ = image->r(row, col);
}
if (image->g(row, col) > max_) {
max_ = image->g(row, col);
}
if (image->b(row, col) > max_) {
max_ = image->b(row, col);
}
}
image->convertTo(max_, max);
if (max < 16384) {
max = 16384;
}
scaleForSave = 65535 * 8192 / max;
// Correction and gamma to 8 Bit
for (int i = 0; i < image->height; i++)
for (int j = (image->width - trim_width) / 2; j < trim_width + (image->width - trim_width) / 2; j++) {
unsigned short rtmp, gtmp, btmp;
image->convertTo(image->r(i, j), rtmp);
image->convertTo(image->g(i, j), gtmp);
image->convertTo(image->b(i, j), btmp);
int r = rtmp * scaleForSave >> 21;
int g = gtmp * scaleForSave >> 21;
int b = btmp * scaleForSave >> 21;
tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16;
}
} else if (thumbImg->getType() == sImage16) {
Image16 *image = static_cast<Image16*>(thumbImg);
unsigned short max_ = 0;
for (int row = 0; row < image->height; row++)
for (int col = 0; col < image->width; col++) {
if (image->r(row, col) > max_) {
max_ = image->r(row, col);
}
if (image->g(row, col) > max_) {
max_ = image->g(row, col);
}
if (image->b(row, col) > max_) {
max_ = image->b(row, col);
}
}
image->convertTo(max_, max);
if (max < 16384) {
max = 16384;
}
scaleForSave = 65535 * 8192 / max;
// Correction and gamma to 8 Bit
for (int i = 0; i < image->height; i++)
for (int j = (image->width - trim_width) / 2; j < trim_width + (image->width - trim_width) / 2; j++) {
unsigned short rtmp, gtmp, btmp;
image->convertTo(image->r(i, j), rtmp);
image->convertTo(image->g(i, j), gtmp);
image->convertTo(image->b(i, j), btmp);
int r = rtmp * scaleForSave >> 21;
int g = gtmp * scaleForSave >> 21;
int b = btmp * scaleForSave >> 21;
tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16;
}
} else if (thumbImg->getType() == sImagefloat) {
Imagefloat *image = static_cast<Imagefloat*>(thumbImg);
float max_ = 0.f;
for (int row = 0; row < image->height; row++)
for (int col = 0; col < image->width; col++) {
if (image->r(row, col) > max_) {
max_ = image->r(row, col);
}
if (image->g(row, col) > max_) {
max_ = image->g(row, col);
}
if (image->b(row, col) > max_) {
max_ = image->b(row, col);
}
}
image->convertTo(max_, max);
if (max < 16384) {
max = 16384;
}
scaleForSave = 65535 * 8192 / max;
// Correction and gamma to 8 Bit
for (int i = 0; i < image->height; i++)
for (int j = (image->width - trim_width) / 2; j < trim_width + (image->width - trim_width) / 2; j++) {
unsigned short rtmp, gtmp, btmp;
image->convertTo(image->r(i, j), rtmp);
image->convertTo(image->g(i, j), gtmp);
image->convertTo(image->b(i, j), btmp);
int r = rtmp * scaleForSave >> 21;
int g = gtmp * scaleForSave >> 21;
int b = btmp * scaleForSave >> 21;
tmpdata[ix++] = (r * 19595 + g * 38469 + b * 7472) >> 16;
}
} else {
printf("getGrayscaleHistEQ #2: Unsupported image type \"%s\"!\n", thumbImg->getType());
}
}
// histogram equalization
unsigned int hist[256] = {0};
for (int i = 0; i < ix; i++) {
hist[tmpdata[i]]++;
}
int cdf = 0, cdf_min = -1;
for (int i = 0; i < 256; i++) {
cdf += hist[i];
if (cdf > 0 && cdf_min == -1) {
cdf_min = cdf;
}
if (cdf_min != -1) {
hist[i] = (cdf - cdf_min) * 255 / ((thumbImg->height * trim_width) - cdf_min);
}
}
for (int i = 0; i < ix; i++) {
tmpdata[i] = hist[tmpdata[i]];
}
return tmpdata;
}
bool Thumbnail::writeImage (const Glib::ustring& fname, int format)
{
if (!thumbImg) {
return false;
}
Glib::ustring fullFName = fname + ".rtti";
FILE* f = g_fopen (fullFName.c_str (), "wb");
if (!f) {
return false;
}
fwrite (thumbImg->getType(), sizeof (char), strlen(thumbImg->getType()), f);
fputc ('\n', f);
guint32 w = guint32(thumbImg->width);
guint32 h = guint32(thumbImg->height);
fwrite (&w, sizeof (guint32), 1, f);
fwrite (&h, sizeof (guint32), 1, f);
if (thumbImg->getType() == sImage8) {
Image8 *image = static_cast<Image8*>(thumbImg);
image->writeData(f);
} else if (thumbImg->getType() == sImage16) {
Image16 *image = static_cast<Image16*>(thumbImg);
image->writeData(f);
} else if (thumbImg->getType() == sImagefloat) {
Imagefloat *image = static_cast<Imagefloat*>(thumbImg);
image->writeData(f);
}
//thumbImg->writeData(f);
fclose (f);
return true;
}
bool Thumbnail::readImage (const Glib::ustring& fname)
{
if (thumbImg) {
delete thumbImg;
thumbImg = NULL;
}
Glib::ustring fullFName = fname + ".rtti";
if (!Glib::file_test (fullFName, Glib::FILE_TEST_EXISTS)) {
return false;
}
FILE* f = g_fopen (fullFName.c_str (), "rb");
if (!f) {
return false;
}
char imgType[31]; // 30 -> arbitrary size, but should be enough for all image type's name
fgets(imgType, 30, f);
imgType[strlen(imgType) - 1] = '\0'; // imgType has a \n trailing character, so we overwrite it by the \0 char
guint32 width, height;
fread (&width, 1, sizeof (guint32), f);
fread (&height, 1, sizeof (guint32), f);
bool success = false;
if (!strcmp(imgType, sImage8)) {
Image8 *image = new Image8(width, height);
image->readData(f);
thumbImg = image;
success = true;
} else if (!strcmp(imgType, sImage16)) {
Image16 *image = new Image16(width, height);
image->readData(f);
thumbImg = image;
success = true;
} else if (!strcmp(imgType, sImagefloat)) {
Imagefloat *image = new Imagefloat(width, height);
image->readData(f);
thumbImg = image;
success = true;
} else {
printf("readImage: Unsupported image type \"%s\"!\n", imgType);
}
fclose(f);
return success;
}
bool Thumbnail::readData (const Glib::ustring& fname)
{
setlocale(LC_NUMERIC, "C"); // to set decimal point to "."
Glib::KeyFile keyFile;
try {
MyMutex::MyLock thmbLock(thumbMutex);
try {
keyFile.load_from_file (fname);
} catch (Glib::Error&) {
return false;
}
if (keyFile.has_group ("LiveThumbData")) {
if (keyFile.has_key ("LiveThumbData", "CamWBRed")) {
camwbRed = keyFile.get_double ("LiveThumbData", "CamWBRed");
}
if (keyFile.has_key ("LiveThumbData", "CamWBGreen")) {
camwbGreen = keyFile.get_double ("LiveThumbData", "CamWBGreen");
}
if (keyFile.has_key ("LiveThumbData", "CamWBBlue")) {
camwbBlue = keyFile.get_double ("LiveThumbData", "CamWBBlue");
}
if (keyFile.has_key ("LiveThumbData", "RedAWBMul")) {
redAWBMul = keyFile.get_double ("LiveThumbData", "RedAWBMul");
}
if (keyFile.has_key ("LiveThumbData", "GreenAWBMul")) {
greenAWBMul = keyFile.get_double ("LiveThumbData", "GreenAWBMul");
}
if (keyFile.has_key ("LiveThumbData", "BlueAWBMul")) {
blueAWBMul = keyFile.get_double ("LiveThumbData", "BlueAWBMul");
}
if (keyFile.has_key ("LiveThumbData", "AEHistCompression")) {
aeHistCompression = keyFile.get_integer ("LiveThumbData", "AEHistCompression");
}
if (keyFile.has_key ("LiveThumbData", "RedMultiplier")) {
redMultiplier = keyFile.get_double ("LiveThumbData", "RedMultiplier");
}
if (keyFile.has_key ("LiveThumbData", "GreenMultiplier")) {
greenMultiplier = keyFile.get_double ("LiveThumbData", "GreenMultiplier");
}
if (keyFile.has_key ("LiveThumbData", "BlueMultiplier")) {
blueMultiplier = keyFile.get_double ("LiveThumbData", "BlueMultiplier");
}
if (keyFile.has_key ("LiveThumbData", "Scale")) {
scale = keyFile.get_double ("LiveThumbData", "Scale");
}
if (keyFile.has_key ("LiveThumbData", "DefaultGain")) {
defGain = keyFile.get_double ("LiveThumbData", "DefaultGain");
}
if (keyFile.has_key ("LiveThumbData", "ScaleForSave")) {
scaleForSave = keyFile.get_integer ("LiveThumbData", "ScaleForSave");
}
if (keyFile.has_key ("LiveThumbData", "GammaCorrected")) {
gammaCorrected = keyFile.get_boolean ("LiveThumbData", "GammaCorrected");
}
if (keyFile.has_key ("LiveThumbData", "ColorMatrix")) {
std::vector<double> cm = keyFile.get_double_list ("LiveThumbData", "ColorMatrix");
int ix = 0;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) {
colorMatrix[i][j] = cm[ix++];
}
}
}
return true;
} catch (Glib::Error &err) {
if (options.rtSettings.verbose) {
printf("Thumbnail::readData / Error code %d while reading values from \"%s\":\n%s\n", err.code(), fname.c_str(), err.what().c_str());
}
} catch (...) {
if (options.rtSettings.verbose) {
printf("Thumbnail::readData / Unknown exception while trying to load \"%s\"!\n", fname.c_str());
}
}
return false;
}
bool Thumbnail::writeData (const Glib::ustring& fname)
{
MyMutex::MyLock thmbLock(thumbMutex);
Glib::ustring keyData;
try {
Glib::KeyFile keyFile;
try {
keyFile.load_from_file (fname);
} catch (Glib::Error&) {}
keyFile.set_double ("LiveThumbData", "CamWBRed", camwbRed);
keyFile.set_double ("LiveThumbData", "CamWBGreen", camwbGreen);
keyFile.set_double ("LiveThumbData", "CamWBBlue", camwbBlue);
keyFile.set_double ("LiveThumbData", "RedAWBMul", redAWBMul);
keyFile.set_double ("LiveThumbData", "GreenAWBMul", greenAWBMul);
keyFile.set_double ("LiveThumbData", "BlueAWBMul", blueAWBMul);
keyFile.set_integer ("LiveThumbData", "AEHistCompression", aeHistCompression);
keyFile.set_double ("LiveThumbData", "RedMultiplier", redMultiplier);
keyFile.set_double ("LiveThumbData", "GreenMultiplier", greenMultiplier);
keyFile.set_double ("LiveThumbData", "BlueMultiplier", blueMultiplier);
keyFile.set_double ("LiveThumbData", "Scale", scale);
keyFile.set_double ("LiveThumbData", "DefaultGain", defGain);
keyFile.set_integer ("LiveThumbData", "ScaleForSave", scaleForSave);
keyFile.set_boolean ("LiveThumbData", "GammaCorrected", gammaCorrected);
Glib::ArrayHandle<double> cm ((double*)colorMatrix, 9, Glib::OWNERSHIP_NONE);
keyFile.set_double_list ("LiveThumbData", "ColorMatrix", cm);
keyData = keyFile.to_data ();
} catch (Glib::Error& err) {
if (options.rtSettings.verbose) {
printf("Thumbnail::writeData / Error code %d while reading values from \"%s\":\n%s\n", err.code(), fname.c_str(), err.what().c_str());
}
} catch (...) {
if (options.rtSettings.verbose) {
printf("Thumbnail::writeData / Unknown exception while trying to save \"%s\"!\n", fname.c_str());
}
}
if (keyData.empty ()) {
return false;
}
FILE *f = g_fopen (fname.c_str (), "wt");
if (!f) {
if (options.rtSettings.verbose) {
printf("Thumbnail::writeData / Error: unable to open file \"%s\" with write access!\n", fname.c_str());
}
return false;
} else {
fprintf (f, "%s", keyData.c_str ());
fclose (f);
}
return true;
}
bool Thumbnail::readEmbProfile (const Glib::ustring& fname)
{
FILE* f = g_fopen (fname.c_str (), "rb");
if (!f) {
embProfileData = NULL;
embProfile = NULL;
embProfileLength = 0;
} else {
fseek (f, 0, SEEK_END);
embProfileLength = ftell (f);
fseek (f, 0, SEEK_SET);
embProfileData = new unsigned char[embProfileLength];
fread (embProfileData, 1, embProfileLength, f);
fclose (f);
embProfile = cmsOpenProfileFromMem (embProfileData, embProfileLength);
return true;
}
return false;
}
bool Thumbnail::writeEmbProfile (const Glib::ustring& fname)
{
if (embProfileData) {
FILE* f = g_fopen(fname.c_str (), "wb");
if (f) {
fwrite (embProfileData, 1, embProfileLength, f);
fclose (f);
return true;
}
}
return false;
}
bool Thumbnail::readAEHistogram (const Glib::ustring& fname)
{
FILE* f = g_fopen (fname.c_str (), "rb");
if (!f) {
aeHistogram(0);
} else {
aeHistogram(65536 >> aeHistCompression);
fread (&aeHistogram[0], 1, (65536 >> aeHistCompression)*sizeof(aeHistogram[0]), f);
fclose (f);
return true;
}
return false;
}
bool Thumbnail::writeAEHistogram (const Glib::ustring& fname)
{
if (aeHistogram) {
FILE* f = g_fopen (fname.c_str (), "wb");
if (f) {
fwrite (&aeHistogram[0], 1, (65536 >> aeHistCompression)*sizeof(aeHistogram[0]), f);
fclose (f);
return true;
}
}
return false;
}
unsigned char* Thumbnail::getImage8Data()
{
if (thumbImg && thumbImg->getType() == rtengine::sImage8) {
Image8* img8 = static_cast<Image8*>(thumbImg);
return img8->data;
}
return NULL;
}
}