370 lines
10 KiB
C++
370 lines
10 KiB
C++
#include "color.h"
|
|
#include "guidedfilter.h"
|
|
#include "iccstore.h"
|
|
#include "imagefloat.h"
|
|
#include "improcfun.h"
|
|
#include "sleef.h"
|
|
#include "StopWatch.h"
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
const std::vector<std::array<float, 3>> colormap = {
|
|
{0.5f, 0.f, 0.5f},
|
|
{0.5f, 0.f, 0.5f},
|
|
{0.5f, 0.f, 0.5f},
|
|
{0.5f, 0.f, 0.5f},
|
|
{0.5f, 0.f, 0.5f},
|
|
{0.5f, 0.f, 0.5f}, // blacks
|
|
{0.f, 0.f, 1.f}, // shadows
|
|
{0.5f, 0.5f, 0.5f}, // midtones
|
|
{1.f, 1.f, 0.f}, // highlights
|
|
{1.f, 0.f, 0.f}, // whites
|
|
{1.f, 0.f, 0.f},
|
|
{1.f, 0.f, 0.f}
|
|
};
|
|
|
|
|
|
void toneEqualizer(
|
|
array2D<float> &R, array2D<float> &G, array2D<float> &B,
|
|
const rtengine::ToneEqualizerParams ¶ms,
|
|
const Glib::ustring &workingProfile,
|
|
double scale,
|
|
bool multithread)
|
|
// adapted from the tone equalizer of darktable
|
|
/*
|
|
Copyright 2019 Alberto Griggio <alberto.griggio@gmail.com>
|
|
Small adaptation to Local Adjustment 10 2019 Jacques Desmis <jdesmis@gmail.com>
|
|
This file is part of darktable,
|
|
copyright (c) 2018 Aurelien Pierre.
|
|
|
|
darktable is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
darktable is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with darktable. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
{
|
|
// BENCHFUN
|
|
|
|
const int W = R.getWidth();
|
|
const int H = R.getHeight();
|
|
array2D<float> Y(W, H);
|
|
|
|
const auto log2 =
|
|
[](float x) -> float {
|
|
static const float l2 = xlogf(2);
|
|
return xlogf(x) / l2;
|
|
};
|
|
|
|
const auto exp2 =
|
|
[](float x) -> float {
|
|
return pow_F(2.f, x);
|
|
};
|
|
// Build the luma channels: band-pass filters with gaussian windows of
|
|
// std 2 EV, spaced by 2 EV
|
|
const float centers[12] = {
|
|
-18.0f, -16.0f, -14.0f, -12.0f, -10.0f, -8.0f, -6.0f,
|
|
-4.0f, -2.0f, 0.0f, 2.0f, 4.0f
|
|
};
|
|
|
|
const auto conv = [&](int v, float lo, float hi) -> float {
|
|
const float f = v < 0 ? lo : hi;
|
|
return exp2(float(v) / 100.f * f);
|
|
};
|
|
const float factors[12] = {
|
|
conv(params.bands[0], 2.f, 3.f), // -18 EV
|
|
conv(params.bands[0], 2.f, 3.f), // -16 EV
|
|
conv(params.bands[0], 2.f, 3.f), // -14 EV
|
|
conv(params.bands[0], 2.f, 3.f), // -12 EV
|
|
conv(params.bands[0], 2.f, 3.f), // -10 EV
|
|
conv(params.bands[0], 2.f, 3.f), // -8 EV
|
|
conv(params.bands[1], 2.f, 3.f), // -6 EV
|
|
conv(params.bands[2], 2.5f, 2.5f), // -4 EV
|
|
conv(params.bands[3], 3.f, 2.f), // -2 EV
|
|
conv(params.bands[4], 3.f, 2.f), // 0 EV
|
|
conv(params.bands[4], 3.f, 2.f), // 2 EV
|
|
conv(params.bands[4], 3.f, 2.f) // 4 EV
|
|
};
|
|
|
|
rtengine::TMatrix ws = rtengine::ICCStore::getInstance()->workingSpaceMatrix(workingProfile);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < H; ++y) {
|
|
for (int x = 0; x < W; ++x) {
|
|
Y[y][x] = rtengine::Color::rgbLuminance(R[y][x], G[y][x], B[y][x], ws);
|
|
}
|
|
}
|
|
|
|
int detail = rtengine::LIM(params.regularization + 5, 0, 5);
|
|
int radius = detail / scale + 0.5;
|
|
float epsilon2 = 0.01f + 0.002f * rtengine::max(detail - 3, 0);
|
|
|
|
if (radius > 0) {
|
|
rtengine::guidedFilterLog(10.f, Y, radius, epsilon2, multithread);
|
|
}
|
|
|
|
if (params.regularization > 0) {
|
|
array2D<float> Y2(W, H);
|
|
constexpr float base_epsilon = 0.02f;
|
|
constexpr float base_posterization = 5.f;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < H; ++y) {
|
|
for (int x = 0; x < W; ++x) {
|
|
float l = rtengine::LIM(log2(rtengine::max(Y[y][x], 1e-9f)), centers[0], centers[11]);
|
|
float ll = round(l * base_posterization) / base_posterization;
|
|
Y2[y][x] = Y[y][x];
|
|
Y[y][x] = exp2(ll);
|
|
}
|
|
}
|
|
|
|
radius = 350.0 / scale;
|
|
epsilon2 = base_epsilon / float(6 - rtengine::min(params.regularization, 5));
|
|
rtengine::guidedFilter(Y2, Y, Y, radius, epsilon2, multithread);
|
|
}
|
|
|
|
const auto gauss =
|
|
[](float b, float x) -> float {
|
|
return xexpf((-rtengine::SQR(x - b) / 4.0f));
|
|
};
|
|
|
|
// For every pixel luminance, the sum of the gaussian masks
|
|
float w_sum = 0.f;
|
|
|
|
for (int i = 0; i < 12; ++i) {
|
|
w_sum += gauss(centers[i], 0.f);
|
|
}
|
|
|
|
const auto process_pixel =
|
|
[&](float y) -> float {
|
|
// convert to log space
|
|
const float luma = rtengine::max(log2(rtengine::max(y, 0.f)), -18.0f);
|
|
|
|
// build the correction as the sum of the contribution of each
|
|
// luminance channel to current pixel
|
|
float correction = 0.0f;
|
|
|
|
for (int c = 0; c < 12; ++c)
|
|
{
|
|
correction += gauss(centers[c], luma) * factors[c];
|
|
}
|
|
|
|
correction /= w_sum;
|
|
|
|
return correction;
|
|
};
|
|
|
|
std::vector<std::array<float, 3>> cur_colormap;
|
|
if (params.show_colormap) {
|
|
rtengine::lcmsMutex->lock();
|
|
cmsHPROFILE in = rtengine::ICCStore::getInstance()->getsRGBProfile();
|
|
cmsHPROFILE out = rtengine::ICCStore::getInstance()->workingSpace(workingProfile);
|
|
cmsHTRANSFORM xform = cmsCreateTransform(in, TYPE_RGB_FLT, out, TYPE_RGB_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE);
|
|
rtengine::lcmsMutex->unlock();
|
|
|
|
for (auto &c : colormap) {
|
|
cur_colormap.push_back(c);
|
|
auto &cc = cur_colormap.back();
|
|
cmsDoTransform(xform, &cc[0], &cc[0], 1);
|
|
}
|
|
|
|
cmsDeleteTransform(xform);
|
|
}
|
|
|
|
const auto process_colormap =
|
|
[&](float y) -> std::array<float, 3>
|
|
{
|
|
std::array<float, 3> ret = { 0.f, 0.f, 0.f };
|
|
|
|
// convert to log space
|
|
const float luma = rtengine::max(log2(rtengine::max(y, 0.f)), -18.0f);
|
|
|
|
// build the correction as the sum of the contribution of each
|
|
// luminance channel to current pixel
|
|
for (int c = 0; c < 12; ++c) {
|
|
float w = gauss(centers[c], luma);
|
|
for (int i = 0; i < 3; ++i) {
|
|
ret[i] += w * cur_colormap[c][i];
|
|
}
|
|
}
|
|
for (int i = 0; i < 3; ++i) {
|
|
ret[i] = rtengine::LIM01(ret[i] / w_sum);
|
|
}
|
|
|
|
return ret;
|
|
};
|
|
|
|
|
|
#ifdef __SSE2__
|
|
vfloat vfactors[12];
|
|
vfloat vcenters[12];
|
|
|
|
for (int i = 0; i < 12; ++i) {
|
|
vfactors[i] = F2V(factors[i]);
|
|
vcenters[i] = F2V(centers[i]);
|
|
}
|
|
|
|
const auto vgauss =
|
|
[](vfloat b, vfloat x) -> vfloat {
|
|
static const vfloat fourv = F2V(4.f);
|
|
return xexpf((-rtengine::SQR(x - b) / fourv));
|
|
};
|
|
|
|
vfloat zerov = F2V(0.f);
|
|
vfloat vw_sum = F2V(w_sum);
|
|
|
|
const vfloat noisev = F2V(-18.f);
|
|
const vfloat xlog2v = F2V(xlogf(2.f));
|
|
|
|
const auto vprocess_pixel =
|
|
[&](vfloat y) -> vfloat {
|
|
const vfloat luma = vmaxf(xlogf(vmaxf(y, zerov)) / xlog2v, noisev);
|
|
|
|
vfloat correction = zerov;
|
|
|
|
for (int c = 0; c < 12; ++c)
|
|
{
|
|
correction += vgauss(vcenters[c], luma) * vfactors[c];
|
|
}
|
|
|
|
correction /= vw_sum;
|
|
|
|
return correction;
|
|
};
|
|
|
|
|
|
vfloat v1 = F2V(1.f);
|
|
vfloat v65535 = F2V(65535.f);
|
|
#endif // __SSE2__
|
|
|
|
|
|
if (params.show_colormap) {
|
|
LUTf lut_r(65537), lut_g(65537), lut_b(65537);
|
|
for (int i = 0; i < 65536; ++i) {
|
|
float y = float(i)/65535.f;
|
|
auto rgb = process_colormap(y);
|
|
lut_r[i] = rgb[0];
|
|
lut_g[i] = rgb[1];
|
|
lut_b[i] = rgb[2];
|
|
}
|
|
lut_r[65536] = cur_colormap.back()[0];
|
|
lut_g[65536] = cur_colormap.back()[1];
|
|
lut_b[65536] = cur_colormap.back()[2];
|
|
|
|
#ifdef _OPENMP
|
|
# pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < H; ++y) {
|
|
for (int x = 0; x < W; ++x) {
|
|
float cY = Y[y][x] * 65535.f;
|
|
R[y][x] = lut_r[cY];
|
|
G[y][x] = lut_g[cY];
|
|
B[y][x] = lut_b[cY];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
LUTf lut(65536);
|
|
|
|
for (int i = 0; i < 65536; ++i) {
|
|
float y = float(i) / 65535.f;
|
|
float c = process_pixel(y);
|
|
lut[i] = c;
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < H; ++y) {
|
|
int x = 0;
|
|
|
|
|
|
#ifdef __SSE2__
|
|
|
|
for (; x < W - 3; x += 4) {
|
|
vfloat cY = LVFU(Y[y][x]);
|
|
vmask m = vmaskf_gt(cY, v1);
|
|
vfloat corr;
|
|
|
|
if (_mm_movemask_ps((vfloat)m)) {
|
|
corr = vprocess_pixel(cY);
|
|
} else {
|
|
corr = lut[cY * v65535];
|
|
}
|
|
|
|
STVF(R[y][x], LVF(R[y][x]) * corr);
|
|
STVF(G[y][x], LVF(G[y][x]) * corr);
|
|
STVF(B[y][x], LVF(B[y][x]) * corr);
|
|
}
|
|
|
|
#endif // __SSE2__
|
|
|
|
for (; x < W; ++x) {
|
|
float cY = Y[y][x];
|
|
float corr = cY > 1.f ? process_pixel(cY) : lut[cY * 65535.f];
|
|
R[y][x] *= corr;
|
|
G[y][x] *= corr;
|
|
B[y][x] *= corr;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
void ImProcFunctions::toneEqualizer(
|
|
Imagefloat *rgb,
|
|
const ToneEqualizerParams ¶ms,
|
|
const Glib::ustring &workingProfile,
|
|
double scale,
|
|
bool multiThread)
|
|
{
|
|
if (!params.enabled) {
|
|
return;
|
|
}
|
|
|
|
BENCHFUN
|
|
|
|
const float gain = 1.f / 65535.f * std::pow(2.f, -params.pivot);
|
|
|
|
rgb->multiply(gain, multiThread);
|
|
|
|
const int W = rgb->getWidth();
|
|
const int H = rgb->getHeight();
|
|
|
|
array2D<float> R(W, H, rgb->r.ptrs, ARRAY2D_BYREFERENCE);
|
|
array2D<float> G(W, H, rgb->g.ptrs, ARRAY2D_BYREFERENCE);
|
|
array2D<float> B(W, H, rgb->b.ptrs, ARRAY2D_BYREFERENCE);
|
|
|
|
::toneEqualizer(R, G, B, params, workingProfile, scale, multiThread);
|
|
|
|
rgb->multiply(1.f/gain, multiThread);
|
|
}
|
|
|
|
void ImProcFunctions::toneEqualizer(Imagefloat *rgb)
|
|
{
|
|
toneEqualizer(rgb, params->toneEqualizer, params->icm.workingProfile, scale, multiThread);
|
|
}
|
|
|
|
}
|