rawTherapee/rtengine/ipshadowshighlights.cc
2019-10-31 08:56:38 +01:00

205 lines
7.2 KiB
C++

/* -*- C++ -*-
*
* This file is part of RawTherapee.
*
* Copyright 2018 Alberto Griggio <alberto.griggio@gmail.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include "improcfun.h"
#include "curves.h"
#include "gauss.h"
#include "guidedfilter.h"
#include "iccstore.h"
#include "labimage.h"
#include "opthelper.h"
#include "procparams.h"
#include "sleef.c"
namespace rtengine
{
void ImProcFunctions::shadowsHighlights(LabImage *lab)
{
if (!params->sh.enabled || (!params->sh.highlights && !params->sh.shadows)){
return;
}
const int width = lab->W;
const int height = lab->H;
const bool lab_mode = params->sh.lab;
array2D<float> mask(width, height);
array2D<float> L(width, height);
const float radius = float(params->sh.radius) * 10 / scale;
LUTf f(lab_mode ? 32768 : 65536);
TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile);
TMatrix iws = ICCStore::getInstance()->workingSpaceInverseMatrix(params->icm.workingProfile);
const auto rgb2lab =
[&](float R, float G, float B, float &l, float &a, float &b) -> void
{
float x, y, z;
Color::rgbxyz(R, G, B, x, y, z, ws);
Color::XYZ2Lab(x, y, z, l, a, b);
};
const auto lab2rgb =
[&](float l, float a, float b, float &R, float &G, float &B) -> void
{
float x, y, z;
Color::Lab2XYZ(l, a, b, x, y, z);
Color::xyz2rgb(x, y, z, R, G, B, iws);
};
const auto apply =
[&](int amount, int tonalwidth, bool hl) -> void
{
const float thresh = tonalwidth * 327.68f;
const float scale = hl ? (thresh > 0.f ? 0.9f / thresh : 1.f) : thresh * 0.9f;
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
float l = lab->L[y][x];
float l1 = l / 32768.f;
if (hl) {
mask[y][x] = (l > thresh) ? 1.f : pow4(l * scale);
L[y][x] = 1.f - l1;
} else {
mask[y][x] = l <= thresh ? 1.f : pow4(scale / l);
L[y][x] = l1;
}
}
}
guidedFilter(L, mask, mask, radius, 0.075, multiThread, 4);
const float base = std::pow(4.f, float(amount)/100.f);
const float gamma = hl ? base : 1.f / base;
const float contrast = std::pow(2.f, float(amount)/100.f);
DiagonalCurve sh_contrast({
DCT_NURBS,
0, 0,
0.125, std::pow(0.125 / 0.25, contrast) * 0.25,
0.25, 0.25,
0.375, std::pow(0.375 / 0.25, contrast) * 0.25,
1, 1
});
if(!hl) {
if (lab_mode) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int l = 0; l < 32768; ++l) {
auto val = pow_F(l / 32768.f, gamma);
// get a bit more contrast in the shadows
val = sh_contrast.getVal(val);
f[l] = val * 32768.f;
}
} else {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int c = 0; c < 65536; ++c) {
float l, a, b;
float R = c, G = c, B = c;
rgb2lab(R, G, B, l, a, b);
auto val = pow_F(l / 32768.f, gamma);
// get a bit more contrast in the shadows
val = sh_contrast.getVal(val);
l = val * 32768.f;
lab2rgb(l, a, b, R, G, B);
f[c] = G;
}
}
} else {
if (lab_mode) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int l = 0; l < 32768; ++l) {
auto val = pow_F(l / 32768.f, gamma);
f[l] = val * 32768.f;
}
} else {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int c = 0; c < 65536; ++c) {
float l, a, b;
float R = c, G = c, B = c;
rgb2lab(R, G, B, l, a, b);
auto val = pow_F(l / 32768.f, gamma);
l = val * 32768.f;
lab2rgb(l, a, b, R, G, B);
f[c] = G;
}
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16) if (multiThread)
#endif
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
float l = lab->L[y][x];
float blend = LIM01(mask[y][x]);
float orig = 1.f - blend;
if (l >= 0.f && l < 32768.f) {
if (lab_mode) {
lab->L[y][x] = intp(blend, f[l], l);
if (!hl && l > 1.f) {
// when pushing shadows, scale also the chromaticity
float s = max(lab->L[y][x] / l * 0.5f, 1.f) * blend;
float a = lab->a[y][x];
float b = lab->b[y][x];
lab->a[y][x] = a * s + a * orig;
lab->b[y][x] = b * s + b * orig;
}
} else {
float rgb[3];
lab2rgb(l, lab->a[y][x], lab->b[y][x], rgb[0], rgb[1], rgb[2]);
for (int i = 0; i < 3; ++i) {
float c = rgb[i];
if (!OOG(c)) {
rgb[i] = intp(blend, f[c], c);
}
}
rgb2lab(rgb[0], rgb[1], rgb[2], lab->L[y][x], lab->a[y][x], lab->b[y][x]);
}
}
}
}
};
if (params->sh.highlights > 0) {
apply(params->sh.highlights * 0.7, params->sh.htonalwidth, true);
}
if (params->sh.shadows > 0) {
apply(params->sh.shadows * 0.6, params->sh.stonalwidth, false);
}
}
} // namespace rtengine