Files
rawTherapee/rtengine/dirpyrLab_denoise.cc

655 lines
20 KiB
C++

/*
* This file is part of RawTherapee.
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*
* © 2010 Emil Martinec <ejmartin@uchicago.edu>
*
*/
//#include <rtengine.h>
#include <cstddef>
#include <math.h>
#include <curves.h>
#include <labimage.h>
#include <improcfun.h>
#include <gauss.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#define SQR(x) ((x)*(x))
#define CLIPTO(a,b,c) ((a)>(b)?((a)<(c)?(a):(c)):(b))
#define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000)
#define CLIP(a) (CLIPTO(a,0,65535))
#define DIRWT_L(i1,j1,i,j) (rangefn_L[(int)(data_fine->L[i1][j1]-data_fine->L[i][j]+0x10000)] )
#define DIRWT_AB(i1,j1,i,j) (rangefn_ab[(int)(data_fine->a[i1][j1]-data_fine->a[i][j]+0x10000)] * \
rangefn_ab[(int)(data_fine->L[i1][j1]-data_fine->L[i][j]+0x10000)] * \
rangefn_ab[(int)(data_fine->b[i1][j1]-data_fine->b[i][j]+0x10000)] )
#define NRWT_L(a) (nrwt_l[a] )
#define NRWT_AB (nrwt_ab[(int)((hipass[1]+0x10000))] * nrwt_ab[(int)((hipass[2]+0x10000))])
#define PIX_SORT(a,b) { if ((a)>(b)) {temp=(a);(a)=(b);(b)=temp;} }
#define med3x3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \
p[0]=a0; p[1]=a1; p[2]=a2; p[3]=a3; p[4]=a4; p[5]=a5; p[6]=a6; p[7]=a7; p[8]=a8; \
PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \
PIX_SORT(p[0],p[1]); PIX_SORT(p[3],p[4]); PIX_SORT(p[6],p[7]); \
PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \
PIX_SORT(p[0],p[3]); PIX_SORT(p[5],p[8]); PIX_SORT(p[4],p[7]); \
PIX_SORT(p[3],p[6]); PIX_SORT(p[1],p[4]); PIX_SORT(p[2],p[5]); \
PIX_SORT(p[4],p[7]); PIX_SORT(p[4],p[2]); PIX_SORT(p[6],p[4]); \
PIX_SORT(p[4],p[2]); median=p[4];} //a4 is the median
namespace rtengine {
static const int maxlevel = 4;
//sequence of scales
//static const int scales[8] = {1,2,4,8,16,32,64,128};
//sequence of pitches
//static const int pitches[8] = {1,1,1,1,1,1,1,1};
//sequence of scales
//static const int scales[8] = {1,1,1,1,1,1,1,1};
//sequence of pitches
//static const int pitches[8] = {2,2,2,2,2,2,2,2};
//sequence of scales
//static const int scales[8] = {1,1,2,2,4,4,8,8};
//sequence of pitches
//static const int pitches[8] = {2,1,2,1,2,1,2,1};
//sequence of scales
static const int scales[8] = {1,1,2,4,8,16,32,64};
//sequence of pitches
static const int pitches[8] = {2,1,1,1,1,1,1,1};
//pitch is spacing of subsampling
//scale is spacing of directional averaging weights
//example 1: no subsampling at any level -- pitch=1, scale=2^n
//example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level
//example 3: no subsampling at first level, subsampling by 2 thereafter --
// pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter
void ImProcFunctions :: dirpyrLab_denoise(LabImage * src, LabImage * dst, const int luma, const int chroma, float gam )
{
//float gam = 2.0;//MIN(3.0, 0.1*fabs(c[4])/3.0+0.001);
float gamthresh = 0.03;
float gamslope = exp(log((double)gamthresh)/gam)/gamthresh;
unsigned short * gamcurve = new unsigned short [65536];
for (int i=0; i<65536; i++) {
int g = (int)(CurveFactory::gamma((double)i/65535.0, gam, gamthresh, gamslope, 1.0, 0.0) * 65535.0);
//if (i<500) printf("%d %d \n",i,g);
gamcurve[i] = CLIP(g);
}
//#pragma omp parallel for if (multiThread)
for (int i=0; i<src->H; i++) {
for (int j=0; j<src->W; j++) {
src->L[i][j] = gamcurve[src->L[i][j] ];
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int * rangefn_L = new int [0x20000];
float * nrwt_l = new float [0x10000];
int * rangefn_ab = new int [0x20000];
float * nrwt_ab = new float [0x20000];
int intfactor = 1024;//16384;
//set up NR weight functions
//gamma correction for chroma in shadows
float nrwtl_norm = ((CurveFactory::gamma((double)65535.0/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)) - \
(CurveFactory::gamma((double)75535.0/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)));
for (int i=0; i<0x10000; i++) {
nrwt_l[i] = ((CurveFactory::gamma((double)i/65535.0, gam, gamthresh, gamslope, 1.0, 0.0) - \
CurveFactory::gamma((double)(i+10000)/65535.0, gam, gamthresh, gamslope, 1.0, 0.0)) )/nrwtl_norm;
//if (i % 100 ==0) printf("%d %f \n",i,nrwt_l[i]);
}
float tonefactor = nrwt_l[32768];
float noise_L = 25.0*luma;
float noisevar_L = 4*SQR(noise_L);
float noise_ab = 25*chroma;
float noisevar_ab = SQR(noise_ab);
//set up range functions
for (int i=0; i<0x20000; i++)
rangefn_L[i] = (int)(( exp(-(double)fabs(i-0x10000) * tonefactor / (1+3*noise_L)) * noisevar_L/((double)(i-0x10000)*(double)(i-0x10000) + noisevar_L))*intfactor);
for (int i=0; i<0x20000; i++)
rangefn_ab[i] = (int)(( exp(-(double)fabs(i-0x10000) * tonefactor / (1+3*noise_ab)) * noisevar_ab/((double)(i-0x10000)*(double)(i-0x10000) + noisevar_ab))*intfactor);
for (int i=0; i<0x20000; i++)
nrwt_ab[i] = ((1+abs(i-0x10000)/(1+8*noise_ab)) * exp(-(double)fabs(i-0x10000)/ (1+8*noise_ab) ) );
//for (int i=0; i<65536; i+=100) printf("%d %d \n",i,gamcurve[i]);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int level;
LabImage * dirpyrLablo[maxlevel];
int w = (int)((src->W-1)/pitches[0])+1;
int h = (int)((src->H-1)/pitches[0])+1;
dirpyrLablo[0] = new LabImage(w, h);
for (level=1; level<maxlevel; level++) {
w = (int)((w-1)/pitches[level])+1;
h = (int)((h-1)/pitches[level])+1;
dirpyrLablo[level] = new LabImage(w, h);
};
//////////////////////////////////////////////////////////////////////////////
// c[0] = luma = noise_L
// c[1] = chroma = noise_ab
// c[2] decrease of noise var with scale
// c[3] radius of domain blur at each level
// c[4] shadow smoothing
// c[5] edge preservation
level = 0;
int scale = scales[level];
int pitch = pitches[level];
//int thresh = 10 * c[8];
//impulse_nr (src, src, m_w1, m_h1, thresh, noisevar);
dirpyr(src, dirpyrLablo[0], 0, rangefn_L, rangefn_ab, pitch, scale, luma, chroma );
level = 1;
while(level < maxlevel)
{
scale = scales[level];
pitch = pitches[level];
dirpyr(dirpyrLablo[level-1], dirpyrLablo[level], level, rangefn_L, rangefn_ab, pitch, scale, luma, chroma );
level ++;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for(int level = maxlevel - 1; level > 0; level--)
{
int scale = scales[level];
int pitch = pitches[level];
idirpyr(dirpyrLablo[level], dirpyrLablo[level-1], level, nrwt_l, nrwt_ab, pitch, scale, luma, chroma );
}
scale = scales[0];
pitch = pitches[0];
idirpyr(dirpyrLablo[0], dst, 0, nrwt_l, nrwt_ab, pitch, scale, luma, chroma );
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
float igam = 1/gam;
float igamthresh = gamthresh*gamslope;
float igamslope = 1/gamslope;
for (int i=0; i<65536; i++) {
int g = (int)(CurveFactory::gamma((float)i/65535.0, igam, igamthresh, igamslope, 1.0, 0.0) * 65535.0);
gamcurve[i] = CLIP(g);
}
for (int i=0; i<dst->H; i++)
for (int j=0; j<dst->W; j++) {
dst->L[i][j] = gamcurve[CLIP(dst->L[i][j]) ];
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for(int i = 0; i < maxlevel; i++)
{
delete dirpyrLablo[i];
}
delete [] rangefn_L;
delete [] rangefn_ab;
delete [] nrwt_l;
delete [] nrwt_ab;
delete [] gamcurve;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
};
void ImProcFunctions::dirpyr(LabImage* data_fine, LabImage* data_coarse, int level, int * rangefn_L, int * rangefn_ab, int pitch, int scale, const int luma, const int chroma )
{
//pitch is spacing of subsampling
//scale is spacing of directional averaging weights
//example 1: no subsampling at any level -- pitch=1, scale=2^n
//example 2: subsampling by 2 every level -- pitch=2, scale=1 at each level
//example 3: no subsampling at first level, subsampling by 2 thereafter --
// pitch =1, scale=1 at first level; pitch=2, scale=2 thereafter
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// calculate weights, compute directionally weighted average
int width = data_fine->W;
int height = data_fine->H;
int halfwin = 3;//MIN(ceil(2*sig),3);
int scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i+=pitch ) { int i1=i/pitch;
for(int j = 0, j1=0; j < width; j+=pitch, j1++)
{
float dirwt_l, dirwt_ab, norm_l, norm_ab;
float Lout, aout, bout;
norm_l = norm_ab = 0;//if we do want to include the input pixel in the sum
Lout = 0;
aout = 0;
bout = 0;
for(int inbr=MAX(0,i-scalewin); inbr<=MIN(height-1,i+scalewin); inbr+=scale) {
for (int jnbr=MAX(0,j-scalewin); jnbr<=MIN(width-1,j+scalewin); jnbr+=scale) {
dirwt_l = DIRWT_L(inbr, jnbr, i, j);
dirwt_ab = DIRWT_AB(inbr, jnbr, i, j);
Lout += dirwt_l*data_fine->L[inbr][jnbr];
aout += dirwt_ab*data_fine->a[inbr][jnbr];
bout += dirwt_ab*data_fine->b[inbr][jnbr];
norm_l += dirwt_l;
norm_ab += dirwt_ab;
}
}
data_coarse->L[i1][j1]=Lout/norm_l;//low pass filter
data_coarse->a[i1][j1]=aout/norm_ab;
data_coarse->b[i1][j1]=bout/norm_ab;
}
}
};
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void ImProcFunctions::idirpyr(LabImage* data_coarse, LabImage* data_fine, int level, float * nrwt_l, float * nrwt_ab, int pitch, int scale, const int luma, const int chroma )
{
int width = data_fine->W;
int height = data_fine->H;
float radius = 1.5;
float temp, median;
//float eps = 0.0;
// c[0] noise_L
// c[1] noise_ab (relative to noise_L)
// c[2] decrease of noise var with scale
// c[3] radius of domain blur at each level
// c[4] shadow smoothing
float noisevar_L = 4*SQR(25.0 * luma);
float noisevar_ab = 2*SQR(100.0 * chroma);
float scalefactor = 1.0/pow(2.0,(level+1)*2);//change the last 2 to 1 for longer tail of higher scale NR
noisevar_L *= scalefactor;
//temporary array to store NR factors
float** nrfactorL = new float*[height];
float** nrfactorab = new float*[height];
for (int i=0; i<height; i++) {
nrfactorL[i] = new float[width];
nrfactorab[i] = new float[width];
}
/*float (*nrfactorL);
float (*nrfactorab);
nrfactorL = (float (*)) calloc ((height)*(width), sizeof(float));
nrfactorab = (float (*)) calloc ((height)*(width), sizeof(float));*/
// for coarsest level, take non-subsampled lopass image and subtract from lopass_fine to generate hipass image
// denoise hipass image, add back into lopass_fine to generate denoised image at fine scale
// now iterate:
// (1) take denoised image at level n, expand and smooth using gradient weights from lopass image at level n-1
// the result is the smoothed image at level n-1
// (2) subtract smoothed image at level n-1 from lopass image at level n-1 to make hipass image at level n-1
// (3) denoise the hipass image at level n-1
// (4) add the denoised image at level n-1 to the smoothed image at level n-1 to make the denoised image at level n-1
// note that the coarsest level amounts to skipping step (1) and doing (2,3,4).
// in other words, skip step one if pitch=1
// step (1)
if (pitch==1) {// step (1) not needed
// step (2-3-4)
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
float hipass[3], hpffluct[3], tonefactor;//, nrfactor;
tonefactor = ((NRWT_L(data_coarse->L[i][j])));
//Wiener filter
//luma
if (level<2) {
hipass[0] = data_fine->L[i][j]-data_coarse->L[i][j];
hpffluct[0]=SQR(hipass[0])+0.001;
nrfactorL[i][j] = hpffluct[0]/(hpffluct[0]+noisevar_L);
//hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L);
//data_fine->L[i][j] = CLIP(hipass[0]+data_coarse->L[i][j]);
}
//chroma
hipass[1] = data_fine->a[i][j]-data_coarse->a[i][j];
hipass[2] = data_fine->b[i][j]-data_coarse->b[i][j];
hpffluct[1]=SQR(hipass[1]*tonefactor)+0.001;
hpffluct[2]=SQR(hipass[2]*tonefactor)+0.001;
nrfactorab[i][j] = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB);
/*nrfactor = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB);
hipass[1] *= nrfactor;
hipass[2] *= nrfactor;
data_fine->a[i][j] = hipass[1]+data_coarse->a[i][j];
data_fine->b[i][j] = hipass[2]+data_coarse->b[i][j];*/
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBuffer<double>* buffer = new AlignedBuffer<double> (MAX(width,height));
//gaussHorizontal<float> (nrfactorL, nrfactorL, buffer, width, height, radius, multiThread);
gaussHorizontal<float> (nrfactorab, nrfactorab, buffer, width, height, radius, multiThread);
//gaussVertical<float> (nrfactorL, nrfactorL, buffer, width, height, radius, multiThread);
gaussVertical<float> (nrfactorab, nrfactorab, buffer, width, height, radius, multiThread);
delete buffer;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
float hipass[3],p[9];
//luma
if (level<2) {
if (i>0 && i<height-1 && j>0 && j<width-1) {
med3x3(nrfactorL[i-1][j-1], nrfactorL[i-1][j], nrfactorL[i-1][j+1], \
nrfactorL[i][j-1], nrfactorL[i][j], nrfactorL[i][j+1], \
nrfactorL[i+1][j-1], nrfactorL[i+1][j], nrfactorL[i+1][j+1], median);
} else {
median = nrfactorL[i][j];
}
hipass[0] = median*(data_fine->L[i][j]-data_coarse->L[i][j]);
//hipass[0] = nrfactorL[i][j]*(data_fine->L[i][j]-data_coarse->L[i][j]);
data_fine->L[i][j] = CLIP(hipass[0]+data_coarse->L[i][j]);
}
//chroma
hipass[1] = nrfactorab[i][j]*(data_fine->a[i][j]-data_coarse->a[i][j]);
hipass[2] = nrfactorab[i][j]*(data_fine->b[i][j]-data_coarse->b[i][j]);
data_fine->a[i][j] = hipass[1]+data_coarse->a[i][j];
data_fine->b[i][j] = hipass[2]+data_coarse->b[i][j];
}
} else {//pitch >1; need to fill in data by upsampling
LabImage* smooth;
smooth = new LabImage(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i+=pitch)
{
int ix=i/pitch;
for(int j = 0, jx=0; j < width; j+=pitch, jx++) {
//copy common pixels
smooth->L[i][j] = data_coarse->L[ix][jx];
smooth->a[i][j] = data_coarse->a[ix][jx];
smooth->b[i][j] = data_coarse->b[ix][jx];
}
}
//if (pitch>1) {//pitch=2; step (1) expand coarse image, fill in missing data
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height-1; i+=2)
for(int j = 0; j < width-1; j+=2) {
//do midpoint first
double norm=0.0,wtdsum[3]={0.0,0.0,0.0};
//wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
for(int ix=i; ix<MIN(height,i+3); ix+=2)
for (int jx=j; jx<MIN(width,j+3); jx+=2) {
wtdsum[0] += smooth->L[ix][jx];
wtdsum[1] += smooth->a[ix][jx];
wtdsum[2] += smooth->b[ix][jx];
norm++;
}
norm = 1/norm;
smooth->L[i+1][j+1]=wtdsum[0]*norm;
smooth->a[i+1][j+1]=wtdsum[1]*norm;
smooth->b[i+1][j+1]=wtdsum[2]*norm;
}
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height-1; i+=2)
for(int j = 0; j < width-1; j+=2) {
//now right neighbor
if (j+1==width) continue;
double norm=0.0,wtdsum[3]={0.0,0.0,0.0};
for (int jx=j; jx<MIN(width,j+3); jx+=2) {
wtdsum[0] += smooth->L[i][jx];
wtdsum[1] += smooth->a[i][jx];
wtdsum[2] += smooth->b[i][jx];
norm++;
}
for (int ix=MAX(0,i-1); ix<MIN(height,i+2); ix+=2) {
wtdsum[0] += smooth->L[ix][j+1];
wtdsum[1] += smooth->a[ix][j+1];
wtdsum[2] += smooth->b[ix][j+1];
norm++;
}
norm = 1/norm;
smooth->L[i][j+1]=wtdsum[0]*norm;
smooth->a[i][j+1]=wtdsum[1]*norm;
smooth->b[i][j+1]=wtdsum[2]*norm;
//now down neighbor
if (i+1==height) continue;
norm=0.0;wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
for (int ix=i; ix<MIN(height,i+3); ix+=2) {
wtdsum[0] += smooth->L[ix][j];
wtdsum[1] += smooth->a[ix][j];
wtdsum[2] += smooth->b[ix][j];
norm++;
}
for (int jx=MAX(0,j-1); jx<MIN(width,j+2); jx+=2) {
wtdsum[0] += smooth->L[i+1][jx];
wtdsum[1] += smooth->a[i+1][jx];
wtdsum[2] += smooth->b[i+1][jx];
norm++;
}
norm=1/norm;
smooth->L[i+1][j]=wtdsum[0]*norm;
smooth->a[i+1][j]=wtdsum[1]*norm;
smooth->b[i+1][j]=wtdsum[2]*norm;
}
// step (2-3-4)
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
float hipass[3], hpffluct[3], tonefactor;//, nrfactor;
tonefactor = (NRWT_L(smooth->L[i][j]));
//Wiener filter
//luma
if (level<2) {
hipass[0] = data_fine->L[i][j]-smooth->L[i][j];
hpffluct[0]=SQR(hipass[0])+0.001;
nrfactorL[i][j] = hpffluct[0]/(hpffluct[0]+noisevar_L);
//hipass[0] *= hpffluct[0]/(hpffluct[0]+noisevar_L);
//data_fine->L[i][j] = CLIP(hipass[0]+smooth->L[i][j]);
}
//chroma
hipass[1] = data_fine->a[i][j]-smooth->a[i][j];
hipass[2] = data_fine->b[i][j]-smooth->b[i][j];
hpffluct[1]=SQR(hipass[1]*tonefactor)+0.001;
hpffluct[2]=SQR(hipass[2]*tonefactor)+0.001;
nrfactorab[i][j] = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB);
/*nrfactor = (hpffluct[1]+hpffluct[2]) /((hpffluct[1]+hpffluct[2]) + noisevar_ab * NRWT_AB);
hipass[1] *= nrfactor;
hipass[2] *= nrfactor;
data_fine->a[i][j] = hipass[1]+smooth->a[i][j];
data_fine->b[i][j] = hipass[2]+smooth->b[i][j];*/
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBuffer<double>* buffer = new AlignedBuffer<double> (MAX(width,height));
//gaussHorizontal<float> (nrfactorL, nrfactorL, buffer, width, height, radius, multiThread);
gaussHorizontal<float> (nrfactorab, nrfactorab, buffer, width, height, radius, multiThread);
//gaussVertical<float> (nrfactorL, nrfactorL, buffer, width, height, radius, multiThread);
gaussVertical<float> (nrfactorab, nrfactorab, buffer, width, height, radius, multiThread);
delete buffer;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
float hipass[3],p[9];
//luma
if (level<2) {
if (i>0 && i<height-1 && j>0 && j<width-1) {
med3x3(nrfactorL[i-1][j-1], nrfactorL[i-1][j], nrfactorL[i-1][j+1], \
nrfactorL[i][j-1], nrfactorL[i][j], nrfactorL[i][j+1], \
nrfactorL[i+1][j-1], nrfactorL[i+1][j], nrfactorL[i+1][j+1], median);
} else {
median = nrfactorL[i][j];
}
hipass[0] = median*(data_fine->L[i][j]-smooth->L[i][j]);
//hipass[0] = nrfactorL[i][j]*(data_fine->L[i][j]-smooth->L[i][j]);
data_fine->L[i][j] = CLIP(hipass[0]+smooth->L[i][j]);
}
//chroma
hipass[1] = nrfactorab[i][j]*(data_fine->a[i][j]-smooth->a[i][j]);
hipass[2] = nrfactorab[i][j]*(data_fine->b[i][j]-smooth->b[i][j]);
data_fine->a[i][j] = hipass[1]+smooth->a[i][j];
data_fine->b[i][j] = hipass[2]+smooth->b[i][j];
}
} // end parallel
delete smooth;
}//end of pitch>1
for (int i=0; i<height; i++) {
delete [] nrfactorL[i];
delete [] nrfactorab[i];
}
delete [] nrfactorL;
delete [] nrfactorab;
};
#undef DIRWT_L
#undef DIRWT_AB
#undef NRWT_L
#undef NRWT_AB
}