rawTherapee/rtengine/rt_math.h
2018-03-23 14:37:57 +01:00

205 lines
4.8 KiB
C++

#pragma once
#include <algorithm>
#include <limits>
#include <cmath>
#include <cstdint>
#include <array>
namespace rtengine
{
constexpr int MAXVAL = 0xffff;
constexpr float MAXVALF = static_cast<float>(MAXVAL); // float version of MAXVAL
constexpr double MAXVALD = static_cast<double>(MAXVAL); // double version of MAXVAL
constexpr double RT_PI = 3.14159265358979323846; // pi
constexpr double RT_PI_2 = 1.57079632679489661923; // pi/2
constexpr double RT_PI_180 = 0.017453292519943295769; // pi/180
constexpr double RT_1_PI = 0.31830988618379067154; // 1/pi
constexpr double RT_2_PI = 0.63661977236758134308; // 2/pi
constexpr double RT_SQRT1_2 = 0.70710678118654752440; // 1/sqrt(2)
constexpr double RT_INFINITY = std::numeric_limits<double>::infinity();
constexpr double RT_NAN = std::numeric_limits<double>::quiet_NaN();
constexpr float RT_PI_F = RT_PI;
constexpr float RT_PI_F_2 = RT_PI_2;
constexpr float RT_PI_F_180 = RT_PI_180;
constexpr float RT_1_PI_F = RT_1_PI;
constexpr float RT_2_PI_F = RT_2_PI;
constexpr float RT_INFINITY_F = std::numeric_limits<float>::infinity();
constexpr float RT_NAN_F = std::numeric_limits<float>::quiet_NaN();
template<typename T>
constexpr T SQR(T x)
{
return x * x;
}
template<typename T>
constexpr const T& min(const T& a)
{
return a;
}
template<typename T>
constexpr const T& min(const T& a, const T& b)
{
return b < a ? b : a;
}
template<typename T, typename... ARGS>
constexpr const T& min(const T& a, const T& b, const ARGS&... args)
{
return min(min(a, b), min(args...));
}
template<typename T>
constexpr const T& max(const T& a)
{
return a;
}
template<typename T>
constexpr const T& max(const T& a, const T& b)
{
return a < b ? b : a;
}
template<typename T, typename... ARGS>
constexpr const T& max(const T& a, const T& b, const ARGS&... args)
{
return max(max(a, b), max(args...));
}
template<typename T>
constexpr const T& LIM(const T& val, const T& low, const T& high)
{
return max(low, min(val, high));
}
template<typename T>
constexpr T LIM01(const T& a)
{
return max(T(0), min(a, T(1)));
}
template<typename T>
constexpr T CLIP(const T& a)
{
return LIM(a, static_cast<T>(0), static_cast<T>(MAXVAL));
}
template <typename T>
constexpr T SGN(const T& a)
{
// returns -1 for a < 0, 0 for a = 0 and +1 for a > 0
return (T(0) < a) - (a < T(0));
}
template<typename T>
constexpr T intp(T a, T b, T c)
{
// calculate a * b + (1 - a) * c
// following is valid:
// intp(a, b+x, c+x) = intp(a, b, c) + x
// intp(a, b*x, c*x) = intp(a, b, c) * x
return a * (b - c) + c;
}
template<typename T>
inline T norm1(const T& x, const T& y)
{
return std::abs(x) + std::abs(y);
}
template<typename T>
inline T norm2(const T& x, const T& y)
{
return std::sqrt(x * x + y * y);
}
template< typename T >
inline T norminf(const T& x, const T& y)
{
return max(std::abs(x), std::abs(y));
}
constexpr int float2uint16range(float d)
{
// clips input to [0;65535] and rounds
return CLIP(d) + 0.5f;
}
constexpr std::uint8_t uint16ToUint8Rounded(std::uint16_t i)
{
return ((i + 128) - ((i + 128) >> 8)) >> 8;
}
template <typename T>
bool invertMatrix(const std::array<std::array<T, 3>, 3> &in, std::array<std::array<T, 3>, 3> &out)
{
const T res00 = in[1][1] * in[2][2] - in[2][1] * in[1][2];
const T res10 = in[2][0] * in[1][2] - in[1][0] * in[2][2];
const T res20 = in[1][0] * in[2][1] - in[2][0] * in[1][1];
const T det = in[0][0] * res00 + in[0][1] * res10 + in[0][2] * res20;
if (std::abs(det) < 1.0e-10) {
return false;
}
out[0][0] = res00 / det;
out[0][1] = (in[2][1] * in[0][2] - in[0][1] * in[2][2]) / det;
out[0][2] = (in[0][1] * in[1][2] - in[1][1] * in[0][2]) / det;
out[1][0] = res10 / det;
out[1][1] = (in[0][0] * in[2][2] - in[2][0] * in[0][2]) / det;
out[1][2] = (in[1][0] * in[0][2] - in[0][0] * in[1][2]) / det;
out[2][0] = res20 / det;
out[2][1] = (in[2][0] * in[0][1] - in[0][0] * in[2][1]) / det;
out[2][2] = (in[0][0] * in[1][1] - in[1][0] * in[0][1]) / det;
return true;
}
template <typename T>
std::array<std::array<T, 3>, 3> dotProduct(const std::array<std::array<T, 3>, 3> &a, const std::array<std::array<T, 3>, 3> &b)
{
std::array<std::array<T, 3>, 3> res;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
res[i][j] = 0;
for (int k = 0; k < 3; ++k) {
res[i][j] += a[i][k] * b[k][j];
}
}
}
return res;
}
template <typename T>
std::array<T, 3> dotProduct(const std::array<std::array<T, 3>, 3> &a, const std::array<T, 3> &b)
{
std::array<T, 3> res;
for (int i = 0; i < 3; ++i) {
res[i] = 0;
for (int k = 0; k < 3; ++k) {
res[i] += a[i][k] * b[k];
}
}
return res;
}
}