rawTherapee/rtengine/diagonalcurves.cc
2020-01-21 00:16:27 +01:00

559 lines
16 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <glib.h>
#include <glib/gstdio.h>
#include "curves.h"
#include <cmath>
#include <vector>
#include "mytime.h"
#include <cstring>
#define CLIPD(a) ((a)>0.0?((a)<1.0?(a):1.0):0.0)
namespace rtengine
{
DiagonalCurve::DiagonalCurve (const std::vector<double>& p, int poly_pn)
{
ppn = poly_pn > 65500 ? 65500 : poly_pn;
if (ppn < 500) {
hashSize = 100; // Arbitrary cut-off value, but multiple of 10
}
if (ppn < 50) {
hashSize = 10; // Arbitrary cut-off value, but multiple of 10
}
if (p.size() < 3) {
kind = DCT_Empty;
} else {
bool identity = true;
kind = (DiagonalCurveType)p[0];
if (kind == DCT_Linear || kind == DCT_Spline || kind == DCT_NURBS || kind == DCT_CatumullRom) {
N = (p.size() - 1) / 2;
x = new double[N];
y = new double[N];
int ix = 1;
for (int i = 0; i < N; i++) {
x[i] = p[ix++];
y[i] = p[ix++];
if (std::fabs(x[i] - y[i]) >= 0.000009) {
// the smallest possible difference between x and y curve point values is ~ 0.00001
// checking against >= 0.000009 is a bit saver than checking against >= 0.00001
identity = false;
}
}
if (x[0] != 0.0 || x[N - 1] != 1.0)
// Special (and very rare) case where all points are on the identity line but
// not reaching the limits
{
identity = false;
}
if(x[0] == 0.0 && x[1] == 0.0)
// Avoid crash when first two points are at x = 0 (git Issue 2888)
{
x[1] = 0.01;
}
if(x[0] == 1.0 && x[1] == 1.0)
// Avoid crash when first two points are at x = 1 (100 in gui) (git Issue 2923)
{
x[0] = 0.99;
}
if (!identity) {
if (kind == DCT_Spline && N > 2) {
spline_cubic_set ();
} else if (kind == DCT_NURBS && N > 2) {
NURBS_set ();
fillHash();
} else if (kind == DCT_CatumullRom && N > 2) {
catmull_rom_set();
} else {
kind = DCT_Linear;
}
}
} else if (kind == DCT_Parametric) {
if ((p.size() == 8 || p.size() == 9) && (p.at(4) != 0.0 || p.at(5) != 0.0 || p.at(6) != 0.0 || p.at(7) != 0.0)) {
identity = false;
x = new double[9];
x[0] = p[0];
for (int i = 1; i < 4; i++) {
x[i] = min(max(p[i], 0.001), 0.99);
}
for (int i = 4; i < 8; i++) {
x[i] = (p[i] + 100.0) / 200.0;
}
if (p.size() < 9) {
x[8] = 1.0;
} else {
x[8] = p[8] / 100.0;
}
mc = -xlog(2.0) / xlog(x[2]);
double mbase = pfull (0.5, x[8], x[6], x[5]);
mfc = mbase <= 1e-14 ? 0.0 : xexp(xlog(mbase) / mc); // value of the curve at the center point
msc = -xlog(2.0) / xlog(x[1] / x[2]);
mhc = -xlog(2.0) / xlog((x[3] - x[2]) / (1 - x[2]));
}
}
if (identity) {
kind = DCT_Empty;
}
}
}
DiagonalCurve::~DiagonalCurve ()
{
delete [] x;
delete [] y;
delete [] ypp;
poly_x.clear();
poly_y.clear();
}
void DiagonalCurve::spline_cubic_set ()
{
double* u = new double[N - 1];
delete [] ypp; // TODO: why do we delete ypp here since it should not be allocated yet?
ypp = new double [N];
ypp[0] = u[0] = 0.0; /* set lower boundary condition to "natural" */
for (int i = 1; i < N - 1; ++i) {
double sig = (x[i] - x[i - 1]) / (x[i + 1] - x[i - 1]);
double p = sig * ypp[i - 1] + 2.0;
ypp[i] = (sig - 1.0) / p;
u[i] = ((y[i + 1] - y[i])
/ (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]));
u[i] = (6.0 * u[i] / (x[i + 1] - x[i - 1]) - sig * u[i - 1]) / p;
}
ypp[N - 1] = 0.0;
for (int k = N - 2; k >= 0; --k) {
ypp[k] = ypp[k] * ypp[k + 1] + u[k];
}
delete [] u;
}
void DiagonalCurve::NURBS_set ()
{
int nbSubCurvesPoints = N + (N - 3) * 2;
std::vector<double> sc_x(nbSubCurvesPoints); // X sub-curve points ( XP0,XP1,XP2, XP2,XP3,XP4, ...)
std::vector<double> sc_y(nbSubCurvesPoints); // Y sub-curve points ( YP0,YP1,YP2, YP2,YP3,YP4, ...)
std::vector<double> sc_length(N + 2); // Length of the subcurves
double total_length = 0.;
// Create the list of Bezier sub-curves
// NURBS_set is called if N > 2 and non identity only
int j = 0;
int k = 0;
for (int i = 0; i < N - 1;) {
double length;
double dx;
double dy;
// first point (on the curve)
if (!i) {
sc_x[j] = x[i];
sc_y[j++] = y[i++];
} else {
sc_x[j] = (x[i - 1] + x[i]) / 2.;
sc_y[j++] = (y[i - 1] + y[i]) / 2.;
}
// second point (control point)
sc_x[j] = x[i];
sc_y[j] = y[i++];
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length = sqrt(dx * dx + dy * dy);
j++;
// third point (on the curve)
if (i == N - 1) {
sc_x[j] = x[i];
sc_y[j] = y[i];
} else {
sc_x[j] = (x[i - 1] + x[i]) / 2.;
sc_y[j] = (y[i - 1] + y[i]) / 2.;
}
dx = sc_x[j] - sc_x[j - 1];
dy = sc_y[j] - sc_y[j - 1];
length += sqrt(dx * dx + dy * dy);
j++;
// Storing the length of all sub-curves and the total length (to have a better distribution
// of the points along the curve)
sc_length[k++] = length;
total_length += length;
}
poly_x.clear();
poly_y.clear();
unsigned int sc_xsize = j - 1;
// adding the initial horizontal segment, if any
if (x[0] > 0.) {
poly_x.push_back(0.);
poly_y.push_back(y[0]);
}
// adding the initial horizontal segment, if any
// create the polyline with the number of points adapted to the X range of the sub-curve
for (unsigned int i = 0; i < sc_xsize /*sc_x.size()*/; i += 3) {
// TODO: Speeding-up the interface by caching the polyline, instead of rebuilding it at each action on sliders !!!
nbr_points = (int)(((double)(ppn + N - 2) * sc_length[i / 3] ) / total_length);
if (nbr_points < 0) {
for(unsigned int it = 0; it < sc_x.size(); it += 3) { // used unsigned int instead of size_t to avoid %zu in printf
printf("sc_length[%u/3]=%f \n", it, sc_length[it / 3]);
}
printf("NURBS diagonal curve: error detected!\n i=%u nbr_points=%d ppn=%d N=%d sc_length[i/3]=%f total_length=%f", i, nbr_points, ppn, N, sc_length[i / 3], total_length);
exit(0);
}
// increment along the curve, not along the X axis
increment = 1.0 / (double)(nbr_points - 1);
x1 = sc_x[i];
y1 = sc_y[i];
x2 = sc_x[i + 1];
y2 = sc_y[i + 1];
x3 = sc_x[i + 2];
y3 = sc_y[i + 2];
firstPointIncluded = !i;
AddPolygons ();
}
// adding the final horizontal segment, always (see under)
poly_x.push_back(3.0); // 3.0 is a hack for optimization purpose of the getVal method (the last value has to be beyond the normal range)
poly_y.push_back(y[N - 1]);
fillDyByDx();
}
/*****************************************************************************
* Catmull Rom Spline
* (https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline)
*****************************************************************************/
namespace {
inline double pow2(double x)
{
return x*x;
}
inline double catmull_rom_tj(double ti,
double xi, double yi,
double xj, double yj)
{
// see https://github.com/Beep6581/RawTherapee/pull/4701#issuecomment-414054187
static constexpr double alpha = 0.375;
return pow(sqrt(pow2(xj-xi) + pow2(yj-yi)), alpha) + ti;
}
inline void catmull_rom_spline(int n_points,
double p0_x, double p0_y,
double p1_x, double p1_y,
double p2_x, double p2_y,
double p3_x, double p3_y,
std::vector<double> &res_x,
std::vector<double> &res_y)
{
res_x.reserve(n_points);
res_y.reserve(n_points);
double t0 = 0;
double t1 = catmull_rom_tj(t0, p0_x, p0_y, p1_x, p1_y);
double t2 = catmull_rom_tj(t1, p1_x, p1_y, p2_x, p2_y);
double t3 = catmull_rom_tj(t2, p2_x, p2_y, p3_x, p3_y);
double space = (t2-t1) / n_points;
res_x.push_back(p1_x);
res_y.push_back(p1_y);
// special case, a segment at 0 or 1 is computed exactly
if (p1_y == p2_y && (p1_y == 0 || p1_y == 1)) {
for (int i = 1; i < n_points-1; ++i) {
double t = p1_x + space * i;
if (t >= p2_x) {
break;
}
res_x.push_back(t);
res_y.push_back(p1_y);
}
} else {
for (int i = 1; i < n_points-1; ++i) {
double t = t1 + space * i;
double c = (t1 - t)/(t1 - t0);
double d = (t - t0)/(t1 - t0);
double A1_x = c * p0_x + d * p1_x;
double A1_y = c * p0_y + d * p1_y;
c = (t2 - t)/(t2 - t1);
d = (t - t1)/(t2 - t1);
double A2_x = c * p1_x + d * p2_x;
double A2_y = c * p1_y + d * p2_y;
c = (t3 - t)/(t3 - t2);
d = (t - t2)/(t3 - t2);
double A3_x = c * p2_x + d * p3_x;
double A3_y = c * p2_y + d * p3_y;
c = (t2 - t)/(t2 - t0);
d = (t - t0)/(t2 - t0);
double B1_x = c * A1_x + d * A2_x;
double B1_y = c * A1_y + d * A2_y;
c = (t3 - t)/(t3 - t1);
d = (t - t1)/(t3 - t1);
double B2_x = c * A2_x + d * A3_x;
double B2_y = c * A2_y + d * A3_y;
c = (t2 - t)/(t2 - t1);
d = (t - t1)/(t2 - t1);
double C_x = c * B1_x + d * B2_x;
double C_y = c * B1_y + d * B2_y;
res_x.push_back(C_x);
res_y.push_back(C_y);
}
}
res_x.push_back(p2_x);
res_y.push_back(p2_y);
}
inline void catmull_rom_reflect(double px, double py, double cx, double cy,
double &rx, double &ry)
{
#if 0
double dx = px - cx;
double dy = py - cy;
rx = cx - dx;
ry = cy - dy;
#else
// see https://github.com/Beep6581/RawTherapee/pull/4701#issuecomment-414054187
static constexpr double epsilon = 1e-5;
double dx = px - cx;
double dy = py - cy;
rx = cx - dx * 0.01;
ry = dx > epsilon ? (dy / dx) * (rx - cx) + cy : cy;
#endif
}
void catmull_rom_chain(int n_points, int n_cp, double *x, double *y,
std::vector<double> &res_x, std::vector<double> &res_y)
{
double x_first, y_first;
double x_last, y_last;
catmull_rom_reflect(x[1], y[1], x[0], y[0], x_first, y_first);
catmull_rom_reflect(x[n_cp-2], y[n_cp-2], x[n_cp-1], y[n_cp-1], x_last, y_last);
int segments = n_cp - 1;
res_x.reserve(n_points);
res_y.reserve(n_points);
for (int i = 0; i < segments; ++i) {
int n = max(int(n_points * (x[i+1] - x[i]) + 0.5), 2);
catmull_rom_spline(
n, i == 0 ? x_first : x[i-1], i == 0 ? y_first : y[i-1],
x[i], y[i], x[i+1], y[i+1],
i == segments-1 ? x_last : x[i+2],
i == segments-1 ? y_last : y[i+2],
res_x, res_y);
}
}
} // namespace
void DiagonalCurve::catmull_rom_set()
{
int n_points = max(ppn * 65, 65000);
poly_x.clear();
poly_y.clear();
catmull_rom_chain(n_points, N, x, y, poly_x, poly_y);
}
/*****************************************************************************/
double DiagonalCurve::getVal (double t) const
{
switch (kind) {
case DCT_Parametric : {
if (t <= 1e-14) {
return 0.0;
}
double tv = xexp(mc * xlog(t));
double base = pfull (tv, x[8], x[6], x[5]);
double stretched = base <= 1e-14 ? 0.0 : xexp(xlog(base) / mc);
if (t < x[2]) {
// add shadows effect:
double stv = xexp(msc * xlog(stretched / mfc));
double sbase = pfull (stv, x[8], x[7], 0.5);
return mfc * (sbase <= 1e-14 ? 0.0 : xexp(xlog(sbase) / msc));
} else {
// add highlights effect:
double htv = xexp(mhc * xlog((stretched - mfc) / (1 - mfc)));
double hbase = pfull (htv, x[8], 0.5, x[4]);
return mfc + (1 - mfc) * (hbase <= 1e-14 ? 0.0 : xexp(xlog(hbase) / mhc));
}
break;
}
case DCT_Linear :
case DCT_Spline :
{
// values under and over the first and last point
if (t > x[N - 1]) {
return y[N - 1];
} else if (t < x[0]) {
return y[0];
}
// do a binary search for the right interval:
unsigned int k_lo = 0, k_hi = N - 1;
while (k_hi > 1 + k_lo) {
unsigned int k = (k_hi + k_lo) / 2;
if (x[k] > t) {
k_hi = k;
} else {
k_lo = k;
}
}
double h = x[k_hi] - x[k_lo];
// linear
if (kind == DCT_Linear) {
return y[k_lo] + (t - x[k_lo]) * ( y[k_hi] - y[k_lo] ) / h;
}
// spline curve
else { // if (kind==Spline) {
double a = (x[k_hi] - t) / h;
double b = (t - x[k_lo]) / h;
double r = a * y[k_lo] + b * y[k_hi] + ((a * a * a - a) * ypp[k_lo] + (b * b * b - b) * ypp[k_hi]) * (h * h) * 0.1666666666666666666666666666666;
return CLIPD(r);
}
break;
}
case DCT_CatumullRom: {
auto it = std::lower_bound(poly_x.begin(), poly_x.end(), t);
if (it == poly_x.end()) {
return poly_y.back();
}
auto d = it - poly_x.begin();
if (it+1 < poly_x.end() && t - *it > *(it+1) - t) {
++d;
}
return LIM01(*(poly_y.begin() + d));
}
case DCT_NURBS : {
// get the hash table entry by rounding the value (previously multiplied by "hashSize")
unsigned short int i = (unsigned short int)(t * hashSize);
if (UNLIKELY(i > (hashSize + 1))) {
//printf("\nOVERFLOW: hash #%d is used while seeking for value %.8f, corresponding polygon's point #%d (out of %d point) x value: %.8f\n\n", i, t, hash.at(i), poly_x.size(), poly_x[hash.at(i)]);
printf("\nOVERFLOW: hash #%d is used while seeking for value %.8f\n\n", i, t);
return t;
}
unsigned int k_lo;
unsigned int k_hi;
k_lo = hash.at(i).smallerValue;
k_hi = hash.at(i).higherValue;
// do a binary search for the right interval :
while (k_hi > 1 + k_lo) {
unsigned int k = (k_hi + k_lo) / 2;
if (poly_x[k] > t) {
k_hi = k;
} else {
k_lo = k;
}
}
return poly_y[k_lo] + (t - poly_x[k_lo]) * dyByDx[k_lo];
}
case DCT_Empty :
default:
// all other (unknown) kind
return t;
}
}
void DiagonalCurve::getVal (const std::vector<double>& t, std::vector<double>& res) const
{
res.resize (t.size());
for (unsigned int i = 0; i < t.size(); i++) {
res[i] = getVal(t[i]);
}
}
}