rawTherapee/rtengine/iptoneequalizer.cc
Lawrence Lee bd3bd809b5
Port tone equalizer from ART
Merge with local adjustments tone equalizer image processing function
for consistent results.

To-do: Enable for batch editing and add pivot/colormap to the local
adjustments version.
2022-05-01 16:13:27 -07:00

363 lines
10 KiB
C++

#include "color.h"
#include "guidedfilter.h"
#include "iccstore.h"
#include "imagefloat.h"
#include "improcfun.h"
#include "sleef.h"
#include "StopWatch.h"
namespace
{
const std::vector<std::array<float, 3>> colormap = {
{0.5f, 0.f, 0.5f},
{0.5f, 0.f, 0.5f},
{0.5f, 0.f, 0.5f},
{0.5f, 0.f, 0.5f},
{0.5f, 0.f, 0.5f},
{0.5f, 0.f, 0.5f}, // blacks
{0.f, 0.f, 1.f}, // shadows
{0.5f, 0.5f, 0.5f}, // midtones
{1.f, 1.f, 0.f}, // highlights
{1.f, 0.f, 0.f}, // whites
{1.f, 0.f, 0.f},
{1.f, 0.f, 0.f}
};
}
namespace rtengine
{
void ImProcFunctions::toneEqualizer(
array2D<float> &R, array2D<float> &G, array2D<float> &B,
const struct ToneEqualizerParams &params,
const Glib::ustring &workingProfile,
double scale,
bool multithread,
bool show_color_map)
// adapted from the tone equalizer of darktable
/*
Copyright 2019 Alberto Griggio <alberto.griggio@gmail.com>
Small adaptation to Local Adjustment 10 2019 Jacques Desmis <jdesmis@gmail.com>
This file is part of darktable,
copyright (c) 2018 Aurelien Pierre.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
{
// BENCHFUN
const int W = R.getWidth();
const int H = R.getHeight();
array2D<float> Y(W, H);
const auto log2 =
[](float x) -> float {
static const float l2 = xlogf(2);
return xlogf(x) / l2;
};
const auto exp2 =
[](float x) -> float {
return pow_F(2.f, x);
};
// Build the luma channels: band-pass filters with gaussian windows of
// std 2 EV, spaced by 2 EV
const float centers[12] = {
-18.0f, -16.0f, -14.0f, -12.0f, -10.0f, -8.0f, -6.0f,
-4.0f, -2.0f, 0.0f, 2.0f, 4.0f
};
const auto conv = [&](int v, float lo, float hi) -> float {
const float f = v < 0 ? lo : hi;
return exp2(float(v) / 100.f * f);
};
const float factors[12] = {
conv(params.bands[0], 2.f, 3.f), // -18 EV
conv(params.bands[0], 2.f, 3.f), // -16 EV
conv(params.bands[0], 2.f, 3.f), // -14 EV
conv(params.bands[0], 2.f, 3.f), // -12 EV
conv(params.bands[0], 2.f, 3.f), // -10 EV
conv(params.bands[0], 2.f, 3.f), // -8 EV
conv(params.bands[1], 2.f, 3.f), // -6 EV
conv(params.bands[2], 2.5f, 2.5f), // -4 EV
conv(params.bands[3], 3.f, 2.f), // -2 EV
conv(params.bands[4], 3.f, 2.f), // 0 EV
conv(params.bands[4], 3.f, 2.f), // 2 EV
conv(params.bands[4], 3.f, 2.f) // 4 EV
};
TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(workingProfile);
#ifdef _OPENMP
#pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
Y[y][x] = Color::rgbLuminance(R[y][x], G[y][x], B[y][x], ws);
}
}
int detail = LIM(params.regularization + 5, 0, 5);
int radius = detail / scale + 0.5;
float epsilon2 = 0.01f + 0.002f * rtengine::max(detail - 3, 0);
if (radius > 0) {
rtengine::guidedFilterLog(10.f, Y, radius, epsilon2, multithread);
}
if (params.regularization > 0) {
array2D<float> Y2(W, H);
constexpr float base_epsilon = 0.02f;
constexpr float base_posterization = 5.f;
#ifdef _OPENMP
#pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
float l = LIM(log2(rtengine::max(Y[y][x], 1e-9f)), centers[0], centers[11]);
float ll = round(l * base_posterization) / base_posterization;
Y2[y][x] = Y[y][x];
Y[y][x] = exp2(ll);
}
}
radius = 350.0 / scale;
epsilon2 = base_epsilon / float(6 - rtengine::min(params.regularization, 5));
rtengine::guidedFilter(Y2, Y, Y, radius, epsilon2, multithread);
}
const auto gauss =
[](float b, float x) -> float {
return xexpf((-SQR(x - b) / 4.0f));
};
// For every pixel luminance, the sum of the gaussian masks
float w_sum = 0.f;
for (int i = 0; i < 12; ++i) {
w_sum += gauss(centers[i], 0.f);
}
const auto process_pixel =
[&](float y) -> float {
// convert to log space
const float luma = rtengine::max(log2(rtengine::max(y, 0.f)), -18.0f);
// build the correction as the sum of the contribution of each
// luminance channel to current pixel
float correction = 0.0f;
for (int c = 0; c < 12; ++c)
{
correction += gauss(centers[c], luma) * factors[c];
}
correction /= w_sum;
return correction;
};
std::vector<std::array<float, 3>> cur_colormap;
if (show_color_map) {
lcmsMutex->lock();
cmsHPROFILE in = ICCStore::getInstance()->getsRGBProfile();
cmsHPROFILE out = ICCStore::getInstance()->workingSpace(workingProfile);
cmsHTRANSFORM xform = cmsCreateTransform(in, TYPE_RGB_FLT, out, TYPE_RGB_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE);
lcmsMutex->unlock();
for (auto &c : colormap) {
cur_colormap.push_back(c);
auto &cc = cur_colormap.back();
cmsDoTransform(xform, &cc[0], &cc[0], 1);
}
cmsDeleteTransform(xform);
}
const auto process_colormap =
[&](float y) -> std::array<float, 3>
{
std::array<float, 3> ret = { 0.f, 0.f, 0.f };
// convert to log space
const float luma = max(log2(max(y, 0.f)), -18.0f);
// build the correction as the sum of the contribution of each
// luminance channel to current pixel
for (int c = 0; c < 12; ++c) {
float w = gauss(centers[c], luma);
for (int i = 0; i < 3; ++i) {
ret[i] += w * cur_colormap[c][i];
}
}
for (int i = 0; i < 3; ++i) {
ret[i] = LIM01(ret[i] / w_sum);
}
return ret;
};
#ifdef __SSE2__
vfloat vfactors[12];
vfloat vcenters[12];
for (int i = 0; i < 12; ++i) {
vfactors[i] = F2V(factors[i]);
vcenters[i] = F2V(centers[i]);
}
const auto vgauss =
[](vfloat b, vfloat x) -> vfloat {
static const vfloat fourv = F2V(4.f);
return xexpf((-SQR(x - b) / fourv));
};
vfloat zerov = F2V(0.f);
vfloat vw_sum = F2V(w_sum);
const vfloat noisev = F2V(-18.f);
const vfloat xlog2v = F2V(xlogf(2.f));
const auto vprocess_pixel =
[&](vfloat y) -> vfloat {
const vfloat luma = vmaxf(xlogf(vmaxf(y, zerov)) / xlog2v, noisev);
vfloat correction = zerov;
for (int c = 0; c < 12; ++c)
{
correction += vgauss(vcenters[c], luma) * vfactors[c];
}
correction /= vw_sum;
return correction;
};
vfloat v1 = F2V(1.f);
vfloat v65535 = F2V(65535.f);
#endif // __SSE2__
if (show_color_map) {
LUTf lut_r(65537), lut_g(65537), lut_b(65537);
for (int i = 0; i < 65536; ++i) {
float y = float(i)/65535.f;
auto rgb = process_colormap(y);
lut_r[i] = rgb[0];
lut_g[i] = rgb[1];
lut_b[i] = rgb[2];
}
lut_r[65536] = cur_colormap.back()[0];
lut_g[65536] = cur_colormap.back()[1];
lut_b[65536] = cur_colormap.back()[2];
#ifdef _OPENMP
# pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
float cY = Y[y][x] * 65535.f;
R[y][x] = lut_r[cY];
G[y][x] = lut_g[cY];
B[y][x] = lut_b[cY];
}
}
return;
}
LUTf lut(65536);
for (int i = 0; i < 65536; ++i) {
float y = float(i) / 65535.f;
float c = process_pixel(y);
lut[i] = c;
}
#ifdef _OPENMP
#pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
int x = 0;
#ifdef __SSE2__
for (; x < W - 3; x += 4) {
vfloat cY = LVFU(Y[y][x]);
vmask m = vmaskf_gt(cY, v1);
vfloat corr;
if (_mm_movemask_ps((vfloat)m)) {
corr = vprocess_pixel(cY);
} else {
corr = lut[cY * v65535];
}
STVF(R[y][x], LVF(R[y][x]) * corr);
STVF(G[y][x], LVF(G[y][x]) * corr);
STVF(B[y][x], LVF(B[y][x]) * corr);
}
#endif // __SSE2__
for (; x < W; ++x) {
float cY = Y[y][x];
float corr = cY > 1.f ? process_pixel(cY) : lut[cY * 65535.f];
R[y][x] *= corr;
G[y][x] *= corr;
B[y][x] *= corr;
}
}
}
bool ImProcFunctions::toneEqualizer(Imagefloat *rgb)
{
if (!params->toneEqualizer.enabled) {
return false;
}
BENCHFUN
const float gain = 1.f / 65535.f * std::pow(2.f, -params->toneEqualizer.pivot);
rgb->multiply(gain, multiThread);
const int W = rgb->getWidth();
const int H = rgb->getHeight();
array2D<float> R(W, H, rgb->r.ptrs, ARRAY2D_BYREFERENCE);
array2D<float> G(W, H, rgb->g.ptrs, ARRAY2D_BYREFERENCE);
array2D<float> B(W, H, rgb->b.ptrs, ARRAY2D_BYREFERENCE);
bool show_color_map = params->toneEqualizer.show_colormap;
toneEqualizer(R, G, B, params->toneEqualizer, params->icm.workingProfile, scale, multiThread, show_color_map);
rgb->multiply(1.f/gain, multiThread);
return show_color_map;
}
}