rawTherapee/rtengine/ipsharpen.cc
luz.paz c3c3ceac79 Misc. typos
Found via `codespell` 
+ removed rtengine/dcraw.patch per discussion in https://github.com/Beep6581/RawTherapee/pull/4395
2018-02-14 14:07:18 -05:00

920 lines
35 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rtengine.h"
#include "improcfun.h"
#include "gauss.h"
#include "bilateral2.h"
#include "rt_math.h"
#include "sleef.c"
#include "opthelper.h"
using namespace std;
namespace rtengine
{
#undef ABS
#define ABS(a) ((a)<0?-(a):(a))
extern const Settings* settings;
void ImProcFunctions::dcdamping (float** aI, float** aO, float damping, int W, int H)
{
const float dampingFac = -2.0 / (damping * damping);
#ifdef __SSE2__
__m128 Iv, Ov, Uv, zerov, onev, fourv, fivev, dampingFacv, Tv, Wv, Lv;
zerov = _mm_setzero_ps( );
onev = F2V( 1.0f );
fourv = F2V( 4.0f );
fivev = F2V( 5.0f );
dampingFacv = F2V( dampingFac );
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < H; i++) {
int j = 0;
#ifdef __SSE2__
for (; j < W - 3; j += 4) {
Iv = LVFU( aI[i][j] );
Ov = LVFU( aO[i][j] );
Lv = xlogf(Iv / Ov);
Wv = Ov - Iv;
Uv = (Ov * Lv + Wv) * dampingFacv;
Uv = vminf(Uv, onev);
Tv = Uv * Uv;
Tv = Tv * Tv;
Uv = Tv * (fivev - Uv * fourv);
Uv = (Wv / Iv) * Uv + onev;
Uv = vselfzero(vmaskf_gt(Iv, zerov), Uv);
Uv = vselfzero(vmaskf_gt(Ov, zerov), Uv);
STVFU( aI[i][j], Uv );
}
#endif
for(; j < W; j++) {
float I = aI[i][j];
float O = aO[i][j];
if (O <= 0.f || I <= 0.f) {
aI[i][j] = 0.f;
continue;
}
float U = (O * xlogf(I / O) - I + O) * dampingFac;
U = min(U, 1.0f);
U = U * U * U * U * (5.f - U * 4.f);
aI[i][j] = (O - I) / I * U + 1.f;
}
}
}
void ImProcFunctions::deconvsharpening (float** luminance, float** tmp, int W, int H, const SharpeningParams &sharpenParam)
{
if (sharpenParam.deconvamount < 1) {
return;
}
float *tmpI[H] ALIGNED16;
tmpI[0] = new float[W * H];
for (int i = 1; i < H; i++) {
tmpI[i] = tmpI[i - 1] + W;
}
for (int i = 0; i < H; i++) {
for(int j = 0; j < W; j++) {
tmpI[i][j] = luminance[i][j];
}
}
float damping = sharpenParam.deconvdamping / 5.0;
bool needdamp = sharpenParam.deconvdamping > 0;
double sigma = sharpenParam.deconvradius / scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
for (int k = 0; k < sharpenParam.deconviter; k++) {
if (!needdamp) {
// apply gaussian blur and divide luminance by result of gaussian blur
gaussianBlur (tmpI, tmp, W, H, sigma, nullptr, GAUSS_DIV, luminance);
} else {
// apply gaussian blur + damping
gaussianBlur (tmpI, tmp, W, H, sigma);
dcdamping (tmp, luminance, damping, W, H);
}
gaussianBlur (tmp, tmpI, W, H, sigma, nullptr, GAUSS_MULT);
} // end for
float p2 = sharpenParam.deconvamount / 100.0;
float p1 = 1.0 - p2;
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) {
luminance[i][j] = luminance[i][j] * p1 + max(tmpI[i][j], 0.0f) * p2;
}
} // end parallel
delete [] tmpI[0];
}
void ImProcFunctions::sharpening (LabImage* lab, float** b2, SharpeningParams &sharpenParam)
{
if (!sharpenParam.enabled) {
return;
}
if (sharpenParam.method == "rld") {
deconvsharpening (lab->L, b2, lab->W, lab->H, sharpenParam);
return;
}
if ((!sharpenParam.enabled) || sharpenParam.amount < 1 || lab->W < 8 || lab->H < 8) {
return;
}
// Rest is UNSHARP MASK
int W = lab->W, H = lab->H;
float** b3 = nullptr;
if (sharpenParam.edgesonly) {
b3 = new float*[H];
for (int i = 0; i < H; i++) {
b3[i] = new float[W];
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
if (!sharpenParam.edgesonly) {
gaussianBlur (lab->L, b2, W, H, sharpenParam.radius / scale);
} else {
bilateral<float, float> (lab->L, (float**)b3, b2, W, H, sharpenParam.edges_radius / scale, sharpenParam.edges_tolerance, multiThread);
gaussianBlur (b3, b2, W, H, sharpenParam.radius / scale);
}
}
float** base = lab->L;
if (sharpenParam.edgesonly) {
base = b3;
}
if (!sharpenParam.halocontrol) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) {
const float upperBound = 2000.f; // WARNING: Duplicated value, it's baaaaaad !
float diff = base[i][j] - b2[i][j];
float delta = sharpenParam.threshold.multiply<float, float, float>(
min(ABS(diff), upperBound), // X axis value = absolute value of the difference, truncated to the max value of this field
sharpenParam.amount * diff * 0.01f // Y axis max value
);
lab->L[i][j] = lab->L[i][j] + delta;
}
} else {
float** labCopy = nullptr;
if (!sharpenParam.edgesonly) {
// make a deep copy of lab->L
labCopy = new float*[H];
for( int i = 0; i < H; i++ ) {
labCopy[i] = new float[W];
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for( int i = 0; i < H; i++ )
for( int j = 0; j < W; j++ ) {
labCopy[i][j] = lab->L[i][j];
}
base = labCopy;
}
sharpenHaloCtrl (lab->L, b2, base, W, H, sharpenParam);
if (labCopy) {
for( int i = 0; i < H; i++ ) {
delete[] labCopy[i];
}
delete[] labCopy;
}
}
if (sharpenParam.edgesonly) {
for (int i = 0; i < H; i++) {
delete [] b3[i];
}
delete [] b3;
}
}
void ImProcFunctions::sharpenHaloCtrl (float** luminance, float** blurmap, float** base, int W, int H, const SharpeningParams &sharpenParam)
{
float scale = (100.f - sharpenParam.halocontrol_amount) * 0.01f;
float sharpFac = sharpenParam.amount * 0.01f;
float** nL = base;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 2; i < H - 2; i++) {
float max1 = 0, max2 = 0, min1 = 0, min2 = 0;
for (int j = 2; j < W - 2; j++) {
// compute 3 iterations, only forward
float np1 = 2.f * (nL[i - 2][j] + nL[i - 2][j + 1] + nL[i - 2][j + 2] + nL[i - 1][j] + nL[i - 1][j + 1] + nL[i - 1][j + 2] + nL[i] [j] + nL[i] [j + 1] + nL[i] [j + 2]) / 27.f + nL[i - 1][j + 1] / 3.f;
float np2 = 2.f * (nL[i - 1][j] + nL[i - 1][j + 1] + nL[i - 1][j + 2] + nL[i] [j] + nL[i] [j + 1] + nL[i] [j + 2] + nL[i + 1][j] + nL[i + 1][j + 1] + nL[i + 1][j + 2]) / 27.f + nL[i] [j + 1] / 3.f;
float np3 = 2.f * (nL[i] [j] + nL[i] [j + 1] + nL[i] [j + 2] + nL[i + 1][j] + nL[i + 1][j + 1] + nL[i + 1][j + 2] + nL[i + 2][j] + nL[i + 2][j + 1] + nL[i + 2][j + 2]) / 27.f + nL[i + 1][j + 1] / 3.f;
// Max/Min of all these deltas and the last two max/min
float maxn = max(np1, np2, np3);
float minn = min(np1, np2, np3);
float max_ = max(max1, max2, maxn);
float min_ = min(min1, min2, minn);
// Shift the queue
max1 = max2;
max2 = maxn;
min1 = min2;
min2 = minn;
float labL = luminance[i][j];
if (max_ < labL) {
max_ = labL;
}
if (min_ > labL) {
min_ = labL;
}
// deviation from the environment as measurement
float diff = nL[i][j] - blurmap[i][j];
const float upperBound = 2000.f; // WARNING: Duplicated value, it's baaaaaad !
float delta = sharpenParam.threshold.multiply<float, float, float>(
min(ABS(diff), upperBound), // X axis value = absolute value of the difference
sharpFac * diff // Y axis max value = sharpening.amount * signed difference
);
float newL = labL + delta;
// applying halo control
if (newL > max_) {
newL = max_ + (newL - max_) * scale;
} else if (newL < min_) {
newL = min_ - (min_ - newL) * scale;
}
luminance[i][j] = newL;
}
}
}
// To the extent possible under law, Manuel Llorens <manuelllorens@gmail.com>
// has waived all copyright and related or neighboring rights to this work.
// This work is published from: Spain.
// Thanks to Manuel for this excellent job (Jacques Desmis JDC or frej83)
void ImProcFunctions::MLsharpen (LabImage* lab)
{
// JD: this algorithm maximize clarity of images; it does not play on accutance. It can remove (partially) the effects of the AA filter)
// I think we can use this algorithm alone in most cases, or first to clarify image and if you want a very little USM (unsharp mask sharpening) after...
if (!params->sharpenEdge.enabled) {
return;
}
MyTime t1e, t2e;
t1e.set();
int offset, c, i, j, p, width2;
int width = lab->W, height = lab->H;
float *L, lumH, lumV, lumD1, lumD2, v, contrast, s;
float difL, difR, difT, difB, difLT, difRB, difLB, difRT, wH, wV, wD1, wD2, chmax[3];
float f1, f2, f3, f4;
float templab;
int iii, kkk;
width2 = 2 * width;
const float epsil = 0.01f; //prevent divide by zero
const float eps2 = 0.001f; //prevent divide by zero
float amount;
amount = params->sharpenEdge.amount / 100.0f;
if (amount < 0.00001f) {
return;
}
if (settings->verbose) {
printf ("SharpenEdge amount %f\n", amount);
}
L = new float[width * height];
chmax[0] = 8.0f;
chmax[1] = 3.0f;
chmax[2] = 3.0f;
int channels;
if (params->sharpenEdge.threechannels) {
channels = 0;
} else {
channels = 2;
}
if (settings->verbose) {
printf ("SharpenEdge channels %d\n", channels);
}
int passes = params->sharpenEdge.passes;
if (settings->verbose) {
printf ("SharpenEdge passes %d\n", passes);
}
for (p = 0; p < passes; p++)
for (c = 0; c <= channels; c++) { // c=0 Luminance only
#ifdef _OPENMP
#pragma omp parallel for private(offset) shared(L)
#endif
for (offset = 0; offset < width * height; offset++) {
int ii = offset / width;
int kk = offset - ii * width;
if (c == 0) {
L[offset] = lab->L[ii][kk] / 327.68f; // adjust to RT and to 0..100
} else if (c == 1) {
L[offset] = lab->a[ii][kk] / 327.68f;
} else { /*if (c==2) */
L[offset] = lab->b[ii][kk] / 327.68f;
}
}
#ifdef _OPENMP
#pragma omp parallel for private(j,i,iii,kkk, templab,offset,wH,wV,wD1,wD2,s,lumH,lumV,lumD1,lumD2,v,contrast,f1,f2,f3,f4,difT,difB,difL,difR,difLT,difLB,difRT,difRB) shared(lab,L,amount)
#endif
for(j = 2; j < height - 2; j++)
for(i = 2, offset = j * width + i; i < width - 2; i++, offset++) {
// weight functions
wH = eps2 + fabs(L[offset + 1] - L[offset - 1]);
wV = eps2 + fabs(L[offset + width] - L[offset - width]);
s = 1.0f + fabs(wH - wV) / 2.0f;
wD1 = eps2 + fabs(L[offset + width + 1] - L[offset - width - 1]) / s;
wD2 = eps2 + fabs(L[offset + width - 1] - L[offset - width + 1]) / s;
s = wD1;
wD1 /= wD2;
wD2 /= s;
// initial values
int ii = offset / width;
int kk = offset - ii * width;
if (c == 0) {
lumH = lumV = lumD1 = lumD2 = v = lab->L[ii][kk] / 327.68f;
} else if (c == 1) {
lumH = lumV = lumD1 = lumD2 = v = lab->a[ii][kk] / 327.68f;
} else { /* if (c==2) */
lumH = lumV = lumD1 = lumD2 = v = lab->b[ii][kk] / 327.68f;
}
// contrast detection
contrast = sqrt(fabs(L[offset + 1] - L[offset - 1]) * fabs(L[offset + 1] - L[offset - 1]) + fabs(L[offset + width] - L[offset - width]) * fabs(L[offset + width] - L[offset - width])) / chmax[c];
if (contrast > 1.0f) {
contrast = 1.0f;
}
// new possible values
if (((L[offset] < L[offset - 1]) && (L[offset] > L[offset + 1])) || ((L[offset] > L[offset - 1]) && (L[offset] < L[offset + 1]))) {
f1 = fabs(L[offset - 2] - L[offset - 1]);
f2 = fabs(L[offset - 1] - L[offset]);
f3 = fabs(L[offset - 1] - L[offset - width]) * fabs(L[offset - 1] - L[offset + width]);
f4 = sqrt(fabs(L[offset - 1] - L[offset - width2]) * fabs(L[offset - 1] - L[offset + width2]));
difL = f1 * f2 * f2 * f3 * f3 * f4;
f1 = fabs(L[offset + 2] - L[offset + 1]);
f2 = fabs(L[offset + 1] - L[offset]);
f3 = fabs(L[offset + 1] - L[offset - width]) * fabs(L[offset + 1] - L[offset + width]);
f4 = sqrt(fabs(L[offset + 1] - L[offset - width2]) * fabs(L[offset + 1] - L[offset + width2]));
difR = f1 * f2 * f2 * f3 * f3 * f4;
if ((difR > epsil) && (difL > epsil)) {
lumH = (L[offset - 1] * difR + L[offset + 1] * difL) / (difL + difR);
lumH = v * (1.f - contrast) + lumH * contrast;
}
}
if (((L[offset] < L[offset - width]) && (L[offset] > L[offset + width])) || ((L[offset] > L[offset - width]) && (L[offset] < L[offset + width]))) {
f1 = fabs(L[offset - width2] - L[offset - width]);
f2 = fabs(L[offset - width] - L[offset]);
f3 = fabs(L[offset - width] - L[offset - 1]) * fabs(L[offset - width] - L[offset + 1]);
f4 = sqrt(fabs(L[offset - width] - L[offset - 2]) * fabs(L[offset - width] - L[offset + 2]));
difT = f1 * f2 * f2 * f3 * f3 * f4;
f1 = fabs(L[offset + width2] - L[offset + width]);
f2 = fabs(L[offset + width] - L[offset]);
f3 = fabs(L[offset + width] - L[offset - 1]) * fabs(L[offset + width] - L[offset + 1]);
f4 = sqrt(fabs(L[offset + width] - L[offset - 2]) * fabs(L[offset + width] - L[offset + 2]));
difB = f1 * f2 * f2 * f3 * f3 * f4;
if ((difB > epsil) && (difT > epsil)) {
lumV = (L[offset - width] * difB + L[offset + width] * difT) / (difT + difB);
lumV = v * (1.f - contrast) + lumV * contrast;
}
}
if (((L[offset] < L[offset - 1 - width]) && (L[offset] > L[offset + 1 + width])) || ((L[offset] > L[offset - 1 - width]) && (L[offset] < L[offset + 1 + width]))) {
f1 = fabs(L[offset - 2 - width2] - L[offset - 1 - width]);
f2 = fabs(L[offset - 1 - width] - L[offset]);
f3 = fabs(L[offset - 1 - width] - L[offset - width + 1]) * fabs(L[offset - 1 - width] - L[offset + width - 1]);
f4 = sqrt(fabs(L[offset - 1 - width] - L[offset - width2 + 2]) * fabs(L[offset - 1 - width] - L[offset + width2 - 2]));
difLT = f1 * f2 * f2 * f3 * f3 * f4;
f1 = fabs(L[offset + 2 + width2] - L[offset + 1 + width]);
f2 = fabs(L[offset + 1 + width] - L[offset]);
f3 = fabs(L[offset + 1 + width] - L[offset - width + 1]) * fabs(L[offset + 1 + width] - L[offset + width - 1]);
f4 = sqrt(fabs(L[offset + 1 + width] - L[offset - width2 + 2]) * fabs(L[offset + 1 + width] - L[offset + width2 - 2]));
difRB = f1 * f2 * f2 * f3 * f3 * f4;
if ((difLT > epsil) && (difRB > epsil)) {
lumD1 = (L[offset - 1 - width] * difRB + L[offset + 1 + width] * difLT) / (difLT + difRB);
lumD1 = v * (1.f - contrast) + lumD1 * contrast;
}
}
if (((L[offset] < L[offset + 1 - width]) && (L[offset] > L[offset - 1 + width])) || ((L[offset] > L[offset + 1 - width]) && (L[offset] < L[offset - 1 + width]))) {
f1 = fabs(L[offset - 2 + width2] - L[offset - 1 + width]);
f2 = fabs(L[offset - 1 + width] - L[offset]);
f3 = fabs(L[offset - 1 + width] - L[offset - width - 1]) * fabs(L[offset - 1 + width] - L[offset + width + 1]);
f4 = sqrt(fabs(L[offset - 1 + width] - L[offset - width2 - 2]) * fabs(L[offset - 1 + width] - L[offset + width2 + 2]));
difLB = f1 * f2 * f2 * f3 * f3 * f4;
f1 = fabs(L[offset + 2 - width2] - L[offset + 1 - width]);
f2 = fabs(L[offset + 1 - width] - L[offset]) * fabs(L[offset + 1 - width] - L[offset]);
f3 = fabs(L[offset + 1 - width] - L[offset + width + 1]) * fabs(L[offset + 1 - width] - L[offset - width - 1]);
f4 = sqrt(fabs(L[offset + 1 - width] - L[offset + width2 + 2]) * fabs(L[offset + 1 - width] - L[offset - width2 - 2]));
difRT = f1 * f2 * f2 * f3 * f3 * f4;
if ((difLB > epsil) && (difRT > epsil)) {
lumD2 = (L[offset + 1 - width] * difLB + L[offset - 1 + width] * difRT) / (difLB + difRT);
lumD2 = v * (1.f - contrast) + lumD2 * contrast;
}
}
s = amount;
// avoid sharpening diagonals too much
if (((fabs(wH / wV) < 0.45f) && (fabs(wH / wV) > 0.05f)) || ((fabs(wV / wH) < 0.45f) && (fabs(wV / wH) > 0.05f))) {
s = amount / 3.0f;
}
// final mix
if ((wH != 0.0f) && (wV != 0.0f) && (wD1 != 0.0f) && (wD2 != 0.0f)) {
iii = offset / width;
kkk = offset - iii * width;
float provL = lab->L[iii][kkk] / 327.68f;
if(c == 0) {
if(provL < 92.f) {
templab = v * (1.f - s) + (lumH * wH + lumV * wV + lumD1 * wD1 + lumD2 * wD2) / (wH + wV + wD1 + wD2) * s;
} else {
templab = provL;
}
} else {
templab = v * (1.f - s) + (lumH * wH + lumV * wV + lumD1 * wD1 + lumD2 * wD2) / (wH + wV + wD1 + wD2) * s;
}
if (c == 0) {
lab->L[iii][kkk] = fabs(327.68f * templab); // fabs because lab->L always >0
} else if (c == 1) {
lab->a[iii][kkk] = 327.68f * templab ;
} else if (c == 2) {
lab->b[iii][kkk] = 327.68f * templab ;
}
}
}
}
delete [] L;
t2e.set();
if (settings->verbose) {
printf("SharpenEdge gradient %d usec\n", t2e.etime(t1e));
}
}
// To the extent possible under law, Manuel Llorens <manuelllorens@gmail.com>
// has waived all copyright and related or neighboring rights to this work.
// This code is licensed under CC0 v1.0, see license information at
// http://creativecommons.org/publicdomain/zero/1.0/
//! MicroContrast is a sharpening method developed by Manuel Llorens and documented here: http://www.rawness.es/sharpening/?lang=en
//! <BR>The purpose is maximize clarity of the image without creating halo's.
//! <BR>Addition from JD : pyramid + pondered contrast with matrix 5x5
//! <BR>2017 Ingo Weyrich : reduced processing time
//! \param luminance : Luminance channel of image
void ImProcFunctions::MLmicrocontrast(float** luminance, int W, int H)
{
if (!params->sharpenMicro.enabled) {
return;
}
const int k = params->sharpenMicro.matrix ? 1 : 2;
// k=2 matrix 5x5 k=1 matrix 3x3
const int width = W, height = H;
const float uniform = params->sharpenMicro.uniformity; //between 0 to 100
const int unif = (int)(uniform / 10.0f); //put unif between 0 to 10
float amount = params->sharpenMicro.amount / 1500.0f; //amount 2000.0 quasi no artifacts ==> 1500 = maximum, after artifacts
if (amount < 0.000001f) {
return;
}
if (k == 1) {
amount *= 2.7f; //25/9 if 3x3
}
if (settings->verbose) {
printf ("Micro-contrast amount %f\n", amount);
printf ("Micro-contrast uniformity %i\n", unif);
}
//modulation uniformity in function of luminance
const float L98[11] = {0.001f, 0.0015f, 0.002f, 0.004f, 0.006f, 0.008f, 0.01f, 0.03f, 0.05f, 0.1f, 0.1f};
const float L95[11] = {0.0012f, 0.002f, 0.005f, 0.01f, 0.02f, 0.05f, 0.1f, 0.12f, 0.15f, 0.2f, 0.25f};
const float L92[11] = {0.01f, 0.015f, 0.02f, 0.06f, 0.10f, 0.13f, 0.17f, 0.25f, 0.3f, 0.32f, 0.35f};
const float L90[11] = {0.015f, 0.02f, 0.04f, 0.08f, 0.12f, 0.15f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f};
const float L87[11] = {0.025f, 0.03f, 0.05f, 0.1f, 0.15f, 0.25f, 0.3f, 0.4f, 0.5f, 0.63f, 0.75f};
const float L83[11] = {0.055f, 0.08f, 0.1f, 0.15f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.75f, 0.85f};
const float L80[11] = {0.15f, 0.2f, 0.25f, 0.3f, 0.35f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f, 0.9f};
const float L75[11] = {0.22f, 0.25f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f, 0.85f, 0.9f, 0.95f};
const float L70[11] = {0.35f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f, 0.97f, 1.0f, 1.0f, 1.0f, 1.0f};
const float L63[11] = {0.55f, 0.6f, 0.7f, 0.8f, 0.85f, 0.9f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
const float L58[11] = {0.75f, 0.77f, 0.8f, 0.9f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
//default 5
//modulation contrast
const float Cont0[11] = {0.05f, 0.1f, 0.2f, 0.25f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f, 0.9f};
const float Cont1[11] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f, 0.9f, 0.95f, 1.0f};
const float Cont2[11] = {0.2f, 0.40f, 0.6f, 0.7f, 0.8f, 0.85f, 0.90f, 0.95f, 1.0f, 1.05f, 1.10f};
const float Cont3[11] = {0.5f, 0.6f, 0.7f, 0.8f, 0.85f, 0.9f, 1.0f, 1.0f, 1.05f, 1.10f, 1.20f};
const float Cont4[11] = {0.8f, 0.85f, 0.9f, 0.95f, 1.0f, 1.05f, 1.10f, 1.150f, 1.2f, 1.25f, 1.40f};
const float Cont5[11] = {1.0f, 1.1f, 1.2f, 1.25f, 1.3f, 1.4f, 1.45f, 1.50f, 1.6f, 1.65f, 1.80f};
const float s = amount;
const float sqrt2 = sqrt(2.0);
const float sqrt1d25 = sqrt(1.25);
float *LM = new float[width * height]; //allocation for Luminance
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int j = 0; j < height; j++)
for(int i = 0, offset = j * width + i; i < width; i++, offset++) {
LM[offset] = luminance[j][i] / 327.68f; // adjust to [0;100] and to RT variables
}
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int j = k; j < height - k; j++)
for(int i = k, offset = j * width + i; i < width - k; i++, offset++) {
float v = LM[offset];
float contrast;
if (k == 1) {
contrast = sqrtf(SQR(LM[offset + 1] - LM[offset - 1]) + SQR(LM[offset + width] - LM[offset - width])) * 0.125f; //for 3x3
} else /* if (k==2) */ contrast = sqrtf(SQR(LM[offset + 1] - LM[offset - 1]) + SQR(LM[offset + width] - LM[offset - width])
+ SQR(LM[offset + 2] - LM[offset - 2]) + SQR(LM[offset + 2 * width] - LM[offset - 2 * width])) * 0.0625f; //for 5x5
contrast = std::min(contrast, 1.f);
//matrix 5x5
float temp = v + 4.f *( v * (s + sqrt2 * s)); //begin 3x3
float temp1 = sqrt2 * s *(LM[offset - width - 1] + LM[offset - width + 1] + LM[offset + width - 1] + LM[offset + width + 1]);
temp1 += s * (LM[offset - width] + LM[offset - 1] + LM[offset + 1] + LM[offset + width]);
temp -= temp1;
// add JD continue 5x5
if (k == 2) {
float temp2 = -(LM[offset + 2 * width] + LM[offset - 2 * width] + LM[offset - 2] + LM[offset + 2]);
temp2 -= sqrt1d25 * (LM[offset + 2 * width - 1] + LM[offset + 2 * width + 1] + LM[offset + width + 2] + LM[offset + width - 2] +
LM[offset - 2 * width - 1] + LM[offset - 2 * width + 1] + LM[offset - width + 2] + LM[offset - width - 2]);
temp2 -= sqrt2 * (LM[offset + 2 * width - 2] + LM[offset + 2 * width + 2] + LM[offset - 2 * width - 2] + LM[offset - 2 * width + 2]);
temp2 += 18.601126159f * v ; // 18.601126159 = 4 + 4 * sqrt(2) + 8 * sqrt(1.25)
temp2 *= 2.f * s;
temp += temp2;
}
temp = std::max(temp, 0.f);
for(int row = j + k, n = SQR(2*k+1) - 1; row >= j - k; row--) {
for(int offset2 = row * width + i + k; offset2 >= row * width + i - k; offset2--) {
if((LM[offset2] - temp) * (v - LM[offset2]) > 0.f) {
temp = intp(0.75f, temp, LM[offset2]);
goto breakout;
}
n--;
}
}
breakout:
if (LM[offset] > 95.0f || LM[offset] < 5.0f) {
contrast *= Cont0[unif]; //+ JD : luminance pyramid to adjust contrast by evaluation of LM[offset]
} else if (LM[offset] > 90.0f || LM[offset] < 10.0f) {
contrast *= Cont1[unif];
} else if (LM[offset] > 80.0f || LM[offset] < 20.0f) {
contrast *= Cont2[unif];
} else if (LM[offset] > 70.0f || LM[offset] < 30.0f) {
contrast *= Cont3[unif];
} else if (LM[offset] > 60.0f || LM[offset] < 40.0f) {
contrast *= Cont4[unif];
} else {
contrast *= Cont5[unif]; //(2.0f/k)*Cont5[unif];
}
contrast = std::min(contrast, 1.f);
float tempL = intp(contrast, LM[offset], temp);
// JD: modulation of microcontrast in function of original Luminance and modulation of luminance
if (tempL > LM[offset]) {
float temp2 = tempL / LM[offset]; //for highlights
temp2 = std::min(temp2, 1.7f); //limit action
temp2 -= 1.f;
if (LM[offset] > 98.0f) {
temp = 0.f;
} else if (LM[offset] > 95.0f) {
temp = L95[unif];
} else if (LM[offset] > 92.0f) {
temp = L92[unif];
} else if (LM[offset] > 90.0f) {
temp = L90[unif];
} else if (LM[offset] > 87.0f) {
temp = L87[unif];
} else if (LM[offset] > 83.0f) {
temp = L83[unif];
} else if (LM[offset] > 80.0f) {
temp = L80[unif];
} else if (LM[offset] > 75.0f) {
temp = L75[unif];
} else if (LM[offset] > 70.0f) {
temp = L70[unif];
} else if (LM[offset] > 63.0f) {
temp = L63[unif];
} else if (LM[offset] > 58.0f) {
temp = L58[unif];
} else if (LM[offset] > 42.0f) {
temp = L58[unif];
} else if (LM[offset] > 37.0f) {
temp = L63[unif];
} else if (LM[offset] > 30.0f) {
temp = L70[unif];
} else if (LM[offset] > 25.0f) {
temp = L75[unif];
} else if (LM[offset] > 20.0f) {
temp = L80[unif];
} else if (LM[offset] > 17.0f) {
temp = L83[unif];
} else if (LM[offset] > 13.0f) {
temp = L87[unif];
} else if (LM[offset] > 10.0f) {
temp = L90[unif];
} else if (LM[offset] > 5.0f) {
temp = L95[unif];
} else {
temp = 0.f;
}
luminance[j][i] *= (temp * temp2 + 1.f);
} else {
float temp4 = LM[offset] / tempL; //
if (temp4 > 1.0f) {
temp4 = std::min(temp4, 1.7f); //limit action
temp4 -= 1.f;
if (LM[offset] < 2.0f) {
temp = L98[unif];
} else if (LM[offset] < 5.0f) {
temp = L95[unif];
} else if (LM[offset] < 8.0f) {
temp = L92[unif];
} else if (LM[offset] < 10.0f) {
temp = L90[unif];
} else if (LM[offset] < 13.0f) {
temp = L87[unif];
} else if (LM[offset] < 17.0f) {
temp = L83[unif];
} else if (LM[offset] < 20.0f) {
temp = L80[unif];
} else if (LM[offset] < 25.0f) {
temp = L75[unif];
} else if (LM[offset] < 30.0f) {
temp = L70[unif];
} else if (LM[offset] < 37.0f) {
temp = L63[unif];
} else if (LM[offset] < 42.0f) {
temp = L58[unif];
} else if (LM[offset] < 58.0f) {
temp = L58[unif];
} else if (LM[offset] < 63.0f) {
temp = L63[unif];
} else if (LM[offset] < 70.0f) {
temp = L70[unif];
} else if (LM[offset] < 75.0f) {
temp = L75[unif];
} else if (LM[offset] < 80.0f) {
temp = L80[unif];
} else if (LM[offset] < 83.0f) {
temp = L83[unif];
} else if (LM[offset] < 87.0f) {
temp = L87[unif];
} else if (LM[offset] < 90.0f) {
temp = L90[unif];
} else if (LM[offset] < 95.0f) {
temp = L95[unif];
} else {
temp = 0.f;
}
luminance[j][i] /= (temp * temp4 + 1.f);
}
}
}
}
delete [] LM;
}
void ImProcFunctions::MLmicrocontrast(LabImage* lab)
{
MLmicrocontrast(lab->L, lab->W, lab->H);
}
void ImProcFunctions::MLmicrocontrastcam(CieImage* ncie)
{
MLmicrocontrast(ncie->sh_p, ncie->W, ncie->H);
}
void ImProcFunctions::sharpeningcam (CieImage* ncie, float** b2)
{
if ((!params->sharpening.enabled) || params->sharpening.amount < 1 || ncie->W < 8 || ncie->H < 8) {
return;
}
if (params->sharpening.method == "rld") {
deconvsharpening (ncie->sh_p, b2, ncie->W, ncie->H, params->sharpening);
return;
}
// Rest is UNSHARP MASK
int W = ncie->W, H = ncie->H;
float** b3 = nullptr;
if (params->sharpening.edgesonly) {
b3 = new float*[H];
for (int i = 0; i < H; i++) {
b3[i] = new float[W];
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
if (!params->sharpening.edgesonly) {
gaussianBlur (ncie->sh_p, b2, W, H, params->sharpening.radius / scale);
} else {
bilateral<float, float> (ncie->sh_p, (float**)b3, b2, W, H, params->sharpening.edges_radius / scale, params->sharpening.edges_tolerance, multiThread);
gaussianBlur (b3, b2, W, H, params->sharpening.radius / scale);
}
}
float** base = ncie->sh_p;
if (params->sharpening.edgesonly) {
base = b3;
}
if (!params->sharpening.halocontrol) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) {
const float upperBound = 2000.f; // WARNING: Duplicated value, it's baaaaaad !
float diff = base[i][j] - b2[i][j];
float delta = params->sharpening.threshold.multiply<float, float, float>(
min(ABS(diff), upperBound), // X axis value = absolute value of the difference, truncated to the max value of this field
params->sharpening.amount * diff * 0.01f // Y axis max value
);
if(ncie->J_p[i][j] > 8.0f && ncie->J_p[i][j] < 92.0f) {
ncie->sh_p[i][j] = ncie->sh_p[i][j] + delta;
}
}
} else {
float** ncieCopy = nullptr;
if (!params->sharpening.edgesonly) {
// make deep copy of ncie->sh_p
ncieCopy = new float*[H];
for( int i = 0; i < H; i++ ) {
ncieCopy[i] = new float[W];
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for( int i = 0; i < H; i++ )
for( int j = 0; j < W; j++ ) {
ncieCopy[i][j] = ncie->sh_p[i][j];
}
base = ncieCopy;
}
sharpenHaloCtrl (ncie->sh_p, b2, base, W, H, params->sharpening);
if(ncieCopy) {
for( int i = 0; i < H; i++ ) {
delete[] ncieCopy[i];
}
delete[] ncieCopy;
}
}
if (params->sharpening.edgesonly) {
for (int i = 0; i < H; i++) {
delete [] b3[i];
}
delete [] b3;
}
}
}