rawTherapee/rtengine/eahd_demosaic.cc
2020-02-27 19:56:42 +01:00

448 lines
16 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2018 Gabor Horvath <hgabor@rawtherapee.com> and other RawTherapee contributors
* Split out to own compilation unit and made speedup 2018 Ingo Weyrich (heckflosse67@gmx.de)
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cmath>
#include "color.h"
#include "rawimage.h"
#include "rawimagesource.h"
#include "rawimagesource_i.h"
#include "jaggedarray.h"
#include "iccmatrices.h"
#include "rt_math.h"
#include "../rtgui/multilangmgr.h"
//#define BENCHMARK
#include "StopWatch.h"
using namespace std;
namespace rtengine
{
inline void RawImageSource::interpolate_row_g (float* agh, float* agv, int i)
{
for (int j = 0; j < W; j++) {
if (ri->ISGREEN(i, j)) {
agh[j] = rawData[i][j];
agv[j] = rawData[i][j];
} else {
int gh = 0;
int gv = 0;
if (j > 1 && j < W - 2) {
gh = (-rawData[i][j - 2] + 2 * rawData[i][j - 1] + 2 * rawData[i][j] + 2 * rawData[i][j + 1] - rawData[i][j + 2]) / 4;
int maxgh = max(rawData[i][j - 1], rawData[i][j + 1]);
int mingh = min(rawData[i][j - 1], rawData[i][j + 1]);
if (gh > maxgh) {
gh = maxgh;
} else if (gh < mingh) {
gh = mingh;
}
} else if (j == 0) {
gh = rawData[i][1];
} else if (j == 1) {
gh = (rawData[i][0] + rawData[i][2]) / 2;
} else if (j == W - 1) {
gh = rawData[i][W - 2];
} else if (j == W - 2) {
gh = (rawData[i][W - 1] + rawData[i][W - 3]) / 2;
}
if (i > 1 && i < H - 2) {
gv = (-rawData[i - 2][j] + 2 * rawData[i - 1][j] + 2 * rawData[i][j] + 2 * rawData[i + 1][j] - rawData[i + 2][j]) / 4;
int maxgv = max(rawData[i - 1][j], rawData[i + 1][j]);
int mingv = min(rawData[i - 1][j], rawData[i + 1][j]);
if (gv > maxgv) {
gv = maxgv;
} else if (gv < mingv) {
gv = mingv;
}
} else if (i == 0) {
gv = rawData[1][j];
} else if (i == 1) {
gv = (rawData[0][j] + rawData[2][j]) / 2;
} else if (i == H - 1) {
gv = rawData[H - 2][j];
} else if (i == H - 2) {
gv = (rawData[H - 1][j] + rawData[H - 3][j]) / 2;
}
agh[j] = gh;
agv[j] = gv;
}
}
}
inline void RawImageSource::interpolate_row_rb (float* ar, float* ab, float* pg, float* cg, float* ng, int i)
{
const auto getPg = [pg](int index) {
return
pg
? pg[index]
: 0.f;
};
const auto getNg = [ng](int index) {
return
ng
? ng[index]
: 0.f;
};
float *nonGreen1 = ar;
float *nonGreen2 = ab;
if ((ri->ISBLUE(i, 0) || ri->ISBLUE(i, 1))) {
std::swap(nonGreen1, nonGreen2);
}
int j = FC(i, 0) & 1;
if (j) {
// linear R-G interp. horizontally
float val1;
val1 = cg[0] + rawData[i][1] - cg[1];
nonGreen1[0] = CLIP(val1);
// linear B-G interp. vertically
float val2;
if (i == 0) {
val2 = getNg(0) + rawData[1][0] - cg[0];
} else if (i == H - 1) {
val2 = getPg(0) + rawData[H - 2][0] - cg[0];
} else {
val2 = cg[0] + (rawData[i - 1][0] - getPg(0) + rawData[i + 1][0] - getNg(0)) / 2;
}
nonGreen2[0] = val2;
}
// RGRGR or GRGRGR line
for (; j < W - 1; j += 2) {
// nonGreen of row is simple
nonGreen1[j] = rawData[i][j];
// non green of next row: cross interpolation
float nonGreen = 0.f;
int n = 0;
if (i > 0) {
if (j > 0) {
nonGreen += rawData[i - 1][j - 1] - getPg(j - 1);
n++;
}
nonGreen += rawData[i - 1][j + 1] - getPg(j + 1);
n++;
}
if (i < H - 1) {
if (j > 0) {
nonGreen += rawData[i + 1][j - 1] - getNg(j - 1);
n++;
}
nonGreen += rawData[i + 1][j + 1] - getNg(j + 1);
n++;
}
nonGreen2[j] = cg[j] + nonGreen / std::max(n, 1);
// linear R-G interp. horizontally
float val1;
if (j == W - 2) {
val1 = cg[W - 1] + rawData[i][W - 2] - cg[W - 2];
} else {
val1 = cg[j + 1] + (rawData[i][j] - cg[j] + rawData[i][j + 2] - cg[j + 2]) / 2;
}
nonGreen1[j + 1] = CLIP(val1);
// linear B-G interp. vertically
float val2;
if (i == 0) {
val2 = getNg(j + 1) + rawData[1][j + 1] - cg[j + 1];
} else if (i == H - 1) {
val2 = getPg(j + 1) + rawData[H - 2][j + 1] - cg[j + 1];
} else {
val2 = cg[j + 1] + (rawData[i - 1][j + 1] - getPg(j + 1) + rawData[i + 1][j + 1] - getNg(j + 1)) / 2;
}
nonGreen2[j + 1] = val2;
}
if(j == W - 1) {
// nonGreen of row is simple
nonGreen1[j] = rawData[i][j];
// non green of next row: cross interpolation
float nonGreen = 0.f;
int n = 0;
if (i > 0) {
nonGreen += rawData[i - 1][j - 1] - getPg(j - 1);
n++;
}
if (i < H - 1) {
nonGreen += rawData[i + 1][j - 1] - getNg(j - 1);
n++;
}
nonGreen2[j] = cg[j] + nonGreen / std::max(n, 1);
}
}
#define DIST(a,b) (std::fabs(a-b))
void RawImageSource::eahd_demosaic ()
{
BENCHFUN
if (plistener) {
plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), M("TP_RAW_EAHD")));
plistener->setProgress (0.0);
}
// prepare constants for cielab conversion
//TODO: revisit after conversion to D50 illuminant
const float lc00 = (0.412453 * imatrices.rgb_cam[0][0] + 0.357580 * imatrices.rgb_cam[0][1] + 0.180423 * imatrices.rgb_cam[0][2]) ;// / 0.950456;
const float lc01 = (0.412453 * imatrices.rgb_cam[1][0] + 0.357580 * imatrices.rgb_cam[1][1] + 0.180423 * imatrices.rgb_cam[1][2]) ;// / 0.950456;
const float lc02 = (0.412453 * imatrices.rgb_cam[2][0] + 0.357580 * imatrices.rgb_cam[2][1] + 0.180423 * imatrices.rgb_cam[2][2]) ;// / 0.950456;
const float lc10 = 0.212671 * imatrices.rgb_cam[0][0] + 0.715160 * imatrices.rgb_cam[0][1] + 0.072169 * imatrices.rgb_cam[0][2];
const float lc11 = 0.212671 * imatrices.rgb_cam[1][0] + 0.715160 * imatrices.rgb_cam[1][1] + 0.072169 * imatrices.rgb_cam[1][2];
const float lc12 = 0.212671 * imatrices.rgb_cam[2][0] + 0.715160 * imatrices.rgb_cam[2][1] + 0.072169 * imatrices.rgb_cam[2][2];
const float lc20 = (0.019334 * imatrices.rgb_cam[0][0] + 0.119193 * imatrices.rgb_cam[0][1] + 0.950227 * imatrices.rgb_cam[0][2]) ;// / 1.088754;
const float lc21 = (0.019334 * imatrices.rgb_cam[1][0] + 0.119193 * imatrices.rgb_cam[1][1] + 0.950227 * imatrices.rgb_cam[1][2]) ;// / 1.088754;
const float lc22 = (0.019334 * imatrices.rgb_cam[2][0] + 0.119193 * imatrices.rgb_cam[2][1] + 0.950227 * imatrices.rgb_cam[2][2]) ;// / 1.088754;
const float wp[3][3] = {{lc00, lc01, lc02}, {lc10, lc11, lc12}, {lc20, lc21, lc22}};
// end of cielab preparation
JaggedArray<float>
rh (W, 3), gh (W, 4), bh (W, 3),
rv (W, 3), gv (W, 4), bv (W, 3),
lLh (W, 3), lah (W, 3), lbh (W, 3),
lLv (W, 3), lav (W, 3), lbv (W, 3);
JaggedArray<uint16_t> homh (W, 3), homv (W, 3);
// interpolate first two lines
interpolate_row_g (gh[0], gv[0], 0);
interpolate_row_g (gh[1], gv[1], 1);
interpolate_row_g (gh[2], gv[2], 2);
interpolate_row_rb (rh[0], bh[0], nullptr, gh[0], gh[1], 0);
interpolate_row_rb (rv[0], bv[0], nullptr, gv[0], gv[1], 0);
interpolate_row_rb (rh[1], bh[1], gh[0], gh[1], gh[2], 1);
interpolate_row_rb (rv[1], bv[1], gv[0], gv[1], gv[2], 1);
Color::RGB2Lab(rh[0], gh[0], bh[0], lLh[0], lah[0], lbh[0], wp, W);
Color::RGB2Lab(rv[0], gv[0], bv[0], lLv[0], lav[0], lbv[0], wp, W);
Color::RGB2Lab(rh[1], gh[1], bh[1], lLh[1], lah[1], lbh[1], wp, W);
Color::RGB2Lab(rv[1], gv[1], bv[1], lLv[1], lav[1], lbv[1], wp, W);
for (int j = 0; j < W; j++) {
homh[0][j] = 0;
homv[0][j] = 0;
homh[1][j] = 0;
homv[1][j] = 0;
}
float dLmaph[9];
float dLmapv[9];
float dCamaph[9];
float dCamapv[9];
float dCbmaph[9];
float dCbmapv[9];
for (int i = 1; i < H - 1; i++) {
int mod[3] = {(i-1) % 3, i % 3, (i+1) %3};
int ix = i % 3;
int imx = (i - 1) % 3;
int ipx = (i + 1) % 3;
if (i < H - 2) {
interpolate_row_g (gh[(i + 2) % 4], gv[(i + 2) % 4], i + 2);
interpolate_row_rb (rh[(i + 1) % 3], bh[(i + 1) % 3], gh[i % 4], gh[(i + 1) % 4], gh[(i + 2) % 4], i + 1);
interpolate_row_rb (rv[(i + 1) % 3], bv[(i + 1) % 3], gv[i % 4], gv[(i + 1) % 4], gv[(i + 2) % 4], i + 1);
} else {
interpolate_row_rb (rh[(i + 1) % 3], bh[(i + 1) % 3], gh[i % 4], gh[(i + 1) % 4], nullptr, i + 1);
interpolate_row_rb (rv[(i + 1) % 3], bv[(i + 1) % 3], gv[i % 4], gv[(i + 1) % 4], nullptr, i + 1);
}
Color::RGB2Lab(rh[(i + 1) % 3], gh[(i + 1) % 4], bh[(i + 1) % 3], lLh[(i + 1) % 3], lah[(i + 1) % 3], lbh[(i + 1) % 3], wp, W);
Color::RGB2Lab(rv[(i + 1) % 3], gv[(i + 1) % 4], bv[(i + 1) % 3], lLv[(i + 1) % 3], lav[(i + 1) % 3], lbv[(i + 1) % 3], wp, W);
for (int j = 0; j < W; j++) {
homh[ipx][j] = 0;
homv[ipx][j] = 0;
}
for (int j = 1; j < W - 1; j++) {
int dmi = 0;
for (int x = -1; x <= 0; x++) {
int idx = mod[x + 1];
for (int y = -1; y <= 1; y++) {
// compute distance in a, b, and L
if (dmi < 4) {
int sh = homh[idx][j + y];
int sv = homv[idx][j + y];
if (sh > sv) { // fixate horizontal pixel
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLh[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lah[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbh[idx][j + y]);
} else if (sh < sv) {
dLmaph[dmi] = DIST(lLh[ix][j], lLv[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lav[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbv[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
} else {
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
}
} else {
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
}
dmi++;
}
}
int idx = mod[2];
for (int y = -1; y <= 1; y++) {
// compute distance in a, b, and L
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
dmi++;
}
// compute eL & eC
float eL = min(max(dLmaph[3], dLmaph[5]), max(dLmapv[1], dLmapv[7]));
float eCa = min(max(dCamaph[3], dCamaph[5]), max(dCamapv[1], dCamapv[7]));
float eCb = min(max(dCbmaph[3], dCbmaph[5]), max(dCbmapv[1], dCbmapv[7]));
int wh = 0;
for (int d = 0; d < 9; ++d) {
wh += (dLmaph[d] <= eL) * (dCamaph[d] <= eCa) * (dCbmaph[d] <= eCb);
}
homh[imx][j - 1] += wh;
homh[imx][j] += wh;
homh[imx][j + 1] += wh;
homh[ix][j - 1] += wh;
homh[ix][j] += wh;
homh[ix][j + 1] += wh;
homh[ipx][j - 1] += wh;
homh[ipx][j] += wh;
homh[ipx][j + 1] += wh;
int wv = 0;
for (int d = 0; d < 9; ++d) {
wv += (dLmapv[d] <= eL) * (dCamapv[d] <= eCa) * (dCbmapv[d] <= eCb);
}
homv[imx][j - 1] += wv;
homv[imx][j] += wv;
homv[imx][j + 1] += wv;
homv[ix][j - 1] += wv;
homv[ix][j] += wv;
homv[ix][j + 1] += wv;
homv[ipx][j - 1] += wv;
homv[ipx][j] += wv;
homv[ipx][j + 1] += wv;
}
// finalize image
for (int j = 0; j < W; j++) {
if (ri->ISGREEN(i - 1, j)) {
green[i - 1][j] = rawData[i - 1][j];
} else {
int hc = homh[imx][j];
int vc = homv[imx][j];
if (hc > vc) {
green[i - 1][j] = std::max(0.f, gh[(i - 1) % 4][j]);
} else if (hc < vc) {
green[i - 1][j] = std::max(0.f, gv[(i - 1) % 4][j]);
} else {
green[i - 1][j] = std::max(0.f, (gh[(i - 1) % 4][j] + gv[(i - 1) % 4][j]) / 2);
}
}
}
if (!(i % 20) && plistener) {
plistener->setProgress ((double)i / (H - 2));
}
}
// finish H-2th and H-1th row, homogeneity value is still available
for (int i = H - 1; i < H + 1; i++)
for (int j = 0; j < W; j++) {
int hc = homh[(i - 1) % 3][j];
int vc = homv[(i - 1) % 3][j];
if (hc > vc) {
green[i - 1][j] = std::max(0.f, gh[(i - 1) % 4][j]);
} else if (hc < vc) {
green[i - 1][j] = std::max(0.f, gv[(i - 1) % 4][j]);
} else {
green[i - 1][j] = std::max(0.f, (gh[(i - 1) % 4][j] + gv[(i - 1) % 4][j]) / 2);
}
}
// Interpolate R and B
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H; i++) {
if (i == 0) {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], nullptr, green[i], green[i + 1], i, 1.0, 1.0, 1.0, 0, W, 1);
} else if (i == H - 1) {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], green[i - 1], green[i], nullptr, i, 1.0, 1.0, 1.0, 0, W, 1);
} else {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], green[i - 1], green[i], green[i + 1], i, 1.0, 1.0, 1.0, 0, W, 1);
}
}
}
}