332 lines
12 KiB
C++
332 lines
12 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <cmath>
|
|
#include <iostream>
|
|
|
|
#include "rtengine.h"
|
|
#include "rawimagesource.h"
|
|
#include "mytime.h"
|
|
#include "procparams.h"
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
#include "opthelper.h"
|
|
#include "rt_algo.h"
|
|
|
|
//#define BENCHMARK
|
|
#include "StopWatch.h"
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
extern const Settings* settings;
|
|
|
|
bool RawImageSource::channelsAvg(Coord spotPos, int spotSize, float avgs[3], const FilmNegativeParams ¶ms)
|
|
{
|
|
avgs[0] = avgs[1] = avgs[2] = 0.f; // Channel averages
|
|
|
|
if(ri->getSensorType() != ST_BAYER && ri->getSensorType() != ST_FUJI_XTRANS)
|
|
return false;
|
|
|
|
if (settings->verbose)
|
|
printf("Spot coord: x=%d y=%d\n", spotPos.x, spotPos.y);
|
|
|
|
int x1 = spotPos.x - spotSize / 2;
|
|
int x2 = spotPos.x + spotSize / 2;
|
|
int y1 = spotPos.y - spotSize / 2;
|
|
int y2 = spotPos.y + spotSize / 2;
|
|
|
|
if(x1<0 || x2>W || y1<0 || y2>H)
|
|
return false; // Spot goes outside bounds, bail out.
|
|
|
|
int pxCount[3] = {0}; // Per-channel sample counts
|
|
for(int c=spotPos.x-spotSize; c<spotPos.x+spotSize; c++) {
|
|
for(int r=spotPos.y-spotSize; r<spotPos.y+spotSize; r++) {
|
|
|
|
int ch = (ri->getSensorType() == ST_BAYER) ? FC(r,c) : ri->XTRANSFC(r,c);
|
|
|
|
pxCount[ch]++;
|
|
// If film negative is currently enabled, undo the effect by elevating to 1/exp,
|
|
// in order to sample the original, linear value
|
|
if(params.enabled)
|
|
avgs[ch] += powf(rawData[r][c], -1 / (ch==0 ? params.redExp : ch==1 ? params.greenExp : params.blueExp));
|
|
else
|
|
avgs[ch] += rawData[r][c];
|
|
}
|
|
}
|
|
|
|
for(int ch=0; ch<3; ch++)
|
|
avgs[ch] = avgs[ch] / (pxCount[ch]);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Calculate logarithms in arbitrary base
|
|
float logBase(float base, float num) {
|
|
return log(num) / log(base);
|
|
}
|
|
|
|
bool RawImageSource::getFilmNegativeExponents (Coord2D spotA, Coord2D spotB, int tran, const FilmNegativeParams ¤tParams, float newExps[3])
|
|
{
|
|
float clearVals[3], denseVals[3];
|
|
|
|
newExps[0] = currentParams.redExp;
|
|
newExps[1] = currentParams.greenExp;
|
|
newExps[2] = currentParams.blueExp;
|
|
|
|
int spotSize = 32; // TODO : make this confugurable ?
|
|
Coord spot;
|
|
// Sample first spot
|
|
transformPosition (spotA.x, spotA.y, tran, spot.x, spot.y);
|
|
if(!channelsAvg(spot, spotSize, clearVals, currentParams))
|
|
return false;
|
|
|
|
// Sample second spot
|
|
transformPosition (spotB.x, spotB.y, tran, spot.x, spot.y);
|
|
if(!channelsAvg(spot, spotSize, denseVals, currentParams))
|
|
return false;
|
|
|
|
// Detect which one is the dense spot, based on green channel
|
|
if(clearVals[1] < denseVals[1])
|
|
std::swap(clearVals, denseVals);
|
|
|
|
if (settings->verbose) {
|
|
printf("Clear film values: R=%g G=%g B=%g\n", clearVals[0], clearVals[1], clearVals[2]);
|
|
printf("Dense film values: R=%g G=%g B=%g\n", denseVals[0], denseVals[1], denseVals[2]);
|
|
}
|
|
|
|
float denseGreenRatio = clearVals[1] / denseVals[1];
|
|
|
|
// Calculate exponents for each channel, based on the ratio between the bright and dark values,
|
|
// compared to the ratio in the reference channel (green)
|
|
for(int ch=0; ch<3; ch++)
|
|
if(ch==1)
|
|
newExps[ch] = 2.f; // Green is the reference channel
|
|
else
|
|
newExps[ch] = CLAMP(2.f * logBase(clearVals[ch] / denseVals[ch], denseGreenRatio), 0.3f, 6.f);
|
|
|
|
if (settings->verbose)
|
|
printf("New exponents: R=%g G=%g B=%g\n", newExps[0], newExps[1], newExps[2]);
|
|
|
|
return true;
|
|
}
|
|
|
|
void RawImageSource::filmNegativeProcess(const procparams::FilmNegativeParams ¶ms)
|
|
{
|
|
// BENCHFUNMICRO
|
|
|
|
if(!params.enabled)
|
|
return;
|
|
|
|
float exps[3] = { (float)params.redExp, (float)params.greenExp, (float)params.blueExp };
|
|
|
|
MyTime t1, t2, t3,t4, t5, t6;
|
|
t1.set();
|
|
|
|
// Channel vectors to calculate medians
|
|
std::vector<float> cvs[3] = {
|
|
std::vector<float>(),
|
|
std::vector<float>(),
|
|
std::vector<float>()
|
|
};
|
|
|
|
// Sample one every 5 pixels, and push the value in the appropriate channel vector.
|
|
// Chose an odd step, not multiple of the CFA size, to get a chance to visit each channel.
|
|
if(ri->getSensorType() == ST_BAYER) {
|
|
for (int row = 0; row < H; row+=5) {
|
|
int col = 0;
|
|
int c0 = FC(row, col);
|
|
int c1 = FC(row, col + 5);
|
|
for (; col < W - 5; col+=10) {
|
|
cvs[c0].push_back(rawData[row][col]);
|
|
cvs[c1].push_back(rawData[row][col + 5]);
|
|
}
|
|
if (col < W) {
|
|
cvs[c0].push_back(rawData[row][col]);
|
|
}
|
|
}
|
|
} else if(ri->getSensorType() == ST_FUJI_XTRANS) {
|
|
for (int row = 0; row < H; row+=5) {
|
|
int col = 0;
|
|
const unsigned int cs[6] = {ri->XTRANSFC(row, 0), ri->XTRANSFC(row, 5), ri->XTRANSFC(row, 10), ri->XTRANSFC(row, 15), ri->XTRANSFC(row, 20), ri->XTRANSFC(row, 25)};
|
|
for (; col < W - 25; col += 30) {
|
|
for (int c = 0; c < 6; ++c) {
|
|
cvs[cs[c]].push_back(rawData[row][col + c * 5]);
|
|
}
|
|
}
|
|
for (int c = 0; col < W; col += 5, ++c) {
|
|
cvs[cs[c]].push_back(rawData[row][col]);
|
|
}
|
|
}
|
|
}
|
|
|
|
const float MAX_OUT_VALUE = 65000.f;
|
|
|
|
t2.set();
|
|
if (settings->verbose)
|
|
printf("Median vector fill loop time us: %d\n", t2.etime(t1));
|
|
|
|
float medians[3]; // Channel median values
|
|
float mults[3] = { 1.f }; // Channel normalization multipliers
|
|
|
|
for (int c=0; c<3; c++) {
|
|
// Find median values for each channel
|
|
if(cvs[c].size() > 0) {
|
|
findMinMaxPercentile(&cvs[c][0], cvs[c].size(), 0.5f, medians[c], 0.5f, medians[c], true);
|
|
medians[c] = pow_F(max(medians[c], 1.f), -exps[c]);
|
|
// Determine the channel multipler so that N times the median becomes 65k. This clips away
|
|
// the values in the dark border surrounding the negative (due to the film holder, for example),
|
|
// the reciprocal of which have blown up to stellar values.
|
|
mults[c] = MAX_OUT_VALUE / (medians[c] * 24);
|
|
}
|
|
}
|
|
|
|
t3.set();
|
|
if (settings->verbose) {
|
|
printf("Sample count : %lu, %lu, %lu\n", cvs[0].size(), cvs[1].size(), cvs[2].size());
|
|
printf("Medians : %g %g %g\n", medians[0], medians[1], medians[2] );
|
|
printf("Computed multipliers : %g %g %g\n", mults[0], mults[1], mults[2] );
|
|
printf("Median calc time us: %d\n", t3.etime(t2));
|
|
}
|
|
|
|
|
|
if(ri->getSensorType() == ST_BAYER) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic, 16)
|
|
#endif
|
|
for (int row = 0; row < H; row ++) {
|
|
int col = 0;
|
|
// Exponents are expressed as positive in the parameters, so negate them in order
|
|
// to get the reciprocals. Avoid trouble with zeroes, minimum pixel value is 1.
|
|
const float exps0 = -exps[FC(row, col)];
|
|
const float exps1 = -exps[FC(row, col + 1)];
|
|
const float mult0 = mults[FC(row, col)];
|
|
const float mult1 = mults[FC(row, col + 1)];
|
|
#ifdef __SSE2__
|
|
const vfloat expsv = _mm_setr_ps(exps0, exps1, exps0, exps1);
|
|
const vfloat multsv = _mm_setr_ps(mult0, mult1, mult0, mult1);
|
|
const vfloat onev = F2V(1.f);
|
|
const vfloat c65535v = F2V(65535.f);
|
|
for (; col < W - 3; col+=4) {
|
|
STVFU(rawData[row][col], vminf(multsv * pow_F(vmaxf(LVFU(rawData[row][col]), onev), expsv), c65535v));
|
|
}
|
|
#endif // __SSE2__
|
|
for (; col < W - 1; col+=2) {
|
|
rawData[row][col] = rtengine::min(mult0 * pow_F(max(rawData[row][col], 1.f), exps0), 65535.f);
|
|
rawData[row][col + 1] = rtengine::min(mult1 * pow_F(max(rawData[row][col + 1], 1.f), exps1), 65535.f);
|
|
}
|
|
if (col < W) {
|
|
rawData[row][col] = rtengine::min(mult0 * pow_F(max(rawData[row][col], 1.f), exps0), 65535.f);
|
|
}
|
|
}
|
|
} else if(ri->getSensorType() == ST_FUJI_XTRANS) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic, 16)
|
|
#endif
|
|
for (int row = 0; row < H; row ++) {
|
|
int col = 0;
|
|
// Exponents are expressed as positive in the parameters, so negate them in order
|
|
// to get the reciprocals. Avoid trouble with zeroes, minimum pixel value is 1.
|
|
const float expsc[6] = {-exps[ri->XTRANSFC(row, 0)], -exps[ri->XTRANSFC(row, 1)], -exps[ri->XTRANSFC(row, 2)], -exps[ri->XTRANSFC(row, 3)], -exps[ri->XTRANSFC(row, 4)], -exps[ri->XTRANSFC(row, 5)]};
|
|
const float multsc[6] = {mults[ri->XTRANSFC(row, 0)], mults[ri->XTRANSFC(row, 1)], mults[ri->XTRANSFC(row, 2)], mults[ri->XTRANSFC(row, 3)], mults[ri->XTRANSFC(row, 4)], mults[ri->XTRANSFC(row, 5)]};
|
|
#ifdef __SSE2__
|
|
const vfloat expsv0 = _mm_setr_ps(expsc[0], expsc[1], expsc[2], expsc[3]);
|
|
const vfloat expsv1 = _mm_setr_ps(expsc[4], expsc[5], expsc[0], expsc[1]);
|
|
const vfloat expsv2 = _mm_setr_ps(expsc[2], expsc[3], expsc[4], expsc[5]);
|
|
const vfloat multsv0 = _mm_setr_ps(multsc[0], multsc[1], multsc[2], multsc[3]);
|
|
const vfloat multsv1 = _mm_setr_ps(multsc[4], multsc[5], multsc[0], multsc[1]);
|
|
const vfloat multsv2 = _mm_setr_ps(multsc[2], multsc[3], multsc[4], multsc[5]);
|
|
const vfloat onev = F2V(1.f);
|
|
const vfloat c65535v = F2V(65535.f);
|
|
for (; col < W - 11; col+=12) {
|
|
STVFU(rawData[row][col], vminf(multsv0 * pow_F(vmaxf(LVFU(rawData[row][col]), onev), expsv0), c65535v));
|
|
STVFU(rawData[row][col + 4], vminf(multsv1 * pow_F(vmaxf(LVFU(rawData[row][col + 4]), onev), expsv1), c65535v));
|
|
STVFU(rawData[row][col + 8], vminf(multsv2 * pow_F(vmaxf(LVFU(rawData[row][col + 8]), onev), expsv2), c65535v));
|
|
}
|
|
#endif // __SSE2__
|
|
for (; col < W - 5; col+=6) {
|
|
for (int c = 0; c < 6; ++c) {
|
|
rawData[row][col + c] = rtengine::min(multsc[c] * pow_F(max(rawData[row][col + c], 1.f), expsc[c]), 65535.f);
|
|
}
|
|
}
|
|
for (int c = 0; col < W; col++, c++) {
|
|
rawData[row][col + c] = rtengine::min(multsc[c] * pow_F(max(rawData[row][col + c], 1.f), expsc[c]), 65535.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
t4.set();
|
|
if (settings->verbose)
|
|
printf("Pow loop time us: %d\n", t4.etime(t3));
|
|
|
|
|
|
t5.set();
|
|
|
|
PixelsMap bitmapBads(W, H);
|
|
|
|
int totBP = 0; // Hold count of bad pixels to correct
|
|
|
|
if(ri->getSensorType() == ST_BAYER) {
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:totBP) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for(int i = 0; i < H; i++)
|
|
for(int j = 0; j < W; j++) {
|
|
if (rawData[i][j] >= MAX_OUT_VALUE) {
|
|
bitmapBads.set(j, i);
|
|
totBP++;
|
|
}
|
|
}
|
|
|
|
if (totBP > 0) {
|
|
interpolateBadPixelsBayer( bitmapBads, rawData );
|
|
}
|
|
|
|
} else if(ri->getSensorType() == ST_FUJI_XTRANS) {
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:totBP) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for(int i = 0; i < H; i++)
|
|
for(int j = 0; j < W; j++) {
|
|
if (rawData[i][j] >= MAX_OUT_VALUE) {
|
|
bitmapBads.set(j, i);
|
|
totBP++;
|
|
}
|
|
}
|
|
|
|
if (totBP > 0) {
|
|
interpolateBadPixelsXtrans( bitmapBads );
|
|
}
|
|
|
|
}
|
|
|
|
t6.set();
|
|
if (settings->verbose) {
|
|
printf("Bad pixels count: %d\n", totBP);
|
|
printf("Bad pixels interpolation time us: %d\n", t6.etime(t5));
|
|
}
|
|
}
|
|
|
|
} |