rawTherapee/rtengine/imageio.cc
2024-12-26 22:26:11 -08:00

1616 lines
47 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
* Copyright (c) 2010 Oliver Duis <www.oliverduis.de>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#ifdef LIBJXL
#include "jxl/decode_cxx.h"
#include "jxl/resizable_parallel_runner_cxx.h"
#endif
#include <fcntl.h>
#include <glib/gstdio.h>
#include <png.h>
#include <tiff.h>
#include <tiffio.h>
#ifdef _WIN32
#include <winsock2.h>
#else
#include <netinet/in.h>
#endif
#include "color.h"
#include "iccjpeg.h"
#include "imagedata.h"
#include "imageio.h"
#include "jpeg.h"
#include "procparams.h"
#include "rt_math.h"
#include "settings.h"
#include "utils.h"
#include "rtgui/options.h"
#include "rtgui/version.h"
using namespace std;
using namespace rtengine;
using namespace rtengine::procparams;
namespace rtengine { extern const Settings *settings; }
namespace
{
// Opens a file for binary writing and request exclusive lock (cases were you need "wb" mode plus locking)
FILE* g_fopen_withBinaryAndLock(const Glib::ustring& fname)
{
#ifdef _WIN32
// Use native function to disallow sharing, i.e. lock the file for exclusive access.
// This is important to e.g. prevent Windows Explorer from crashing RT due to concurrently scanning an image file.
std::unique_ptr<wchar_t, GFreeFunc> wfname (reinterpret_cast<wchar_t*>(g_utf8_to_utf16 (fname.c_str (), -1, NULL, NULL, NULL)), g_free);
HANDLE hFile = CreateFileW ( wfname.get (), GENERIC_READ | GENERIC_WRITE, 0 /* no sharing allowed */, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
FILE* f = nullptr;
if (hFile != INVALID_HANDLE_VALUE) {
f = _fdopen (_open_osfhandle ((intptr_t)hFile, 0), "wb");
}
#else
FILE* f = ::g_fopen (fname.c_str (), "wb");
#endif
return f;
}
template <typename Iterator, typename Integer = std::size_t>
auto to_long(const Iterator &iter, Integer n = Integer{0}) -> decltype(
#if EXIV2_TEST_VERSION(0,28,0)
iter->toInt64()
) {
return iter->toInt64(n);
#else
iter->toLong()
) {
return iter->toLong(n);
#endif
}
}
void ImageIO::setMetadata(Exiv2Metadata info)
{
metadataInfo = std::move(info);
}
void ImageIO::setOutputProfile(const std::string& pdata)
{
profileData = pdata;
}
ImageIO::ImageIO() :
pl(nullptr),
embProfile(nullptr),
profileLength(0),
loadedProfileData(nullptr),
loadedProfileLength(0),
sampleFormat(IIOSF_UNKNOWN),
sampleArrangement(IIOSA_UNKNOWN)
{
}
ImageIO::~ImageIO ()
{
if (embProfile) {
cmsCloseProfile(embProfile);
}
deleteLoadedProfileData();
}
void png_read_data(png_struct_def *png_ptr, unsigned char *data, size_t length);
void png_write_data(png_struct_def *png_ptr, unsigned char *data, size_t length);
void png_flush(png_struct_def *png_ptr);
int ImageIO::getPNGSampleFormat (const Glib::ustring &fname, IIOSampleFormat &sFormat, IIOSampleArrangement &sArrangement)
{
FILE *file = g_fopen (fname.c_str (), "rb");
if (!file) {
return IMIO_CANNOTREADFILE;
}
//reading PNG header
unsigned char header[8];
if (fread (header, 1, 8, file) != 8 || png_sig_cmp (header, 0, 8)) {
fclose(file);
return IMIO_HEADERERROR;
}
//initializing main structures
png_structp png = png_create_read_struct (PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!png) {
fclose (file);
return IMIO_HEADERERROR;
}
png_infop info = png_create_info_struct (png);
png_infop end_info = png_create_info_struct (png);
if (!end_info || !info) {
png_destroy_read_struct (&png, &info, &end_info);
fclose (file);
return IMIO_HEADERERROR;
}
if (setjmp (png_jmpbuf(png))) {
png_destroy_read_struct (&png, &info, &end_info);
fclose (file);
return IMIO_READERROR;
}
//set up png read
png_set_read_fn (png, file, png_read_data);
png_set_sig_bytes (png, 8);
png_read_info(png, info);
//retrieving image information
png_uint_32 width, height;
int bit_depth, color_type, interlace_type, compression_type, filter_method;
png_get_IHDR(png, info, &width, &height, &bit_depth, &color_type, &interlace_type, &compression_type, &filter_method);
png_destroy_read_struct (&png, &info, &end_info);
fclose (file);
if (interlace_type != PNG_INTERLACE_NONE) {
return IMIO_VARIANTNOTSUPPORTED;
}
if (bit_depth == 8) {
sArrangement = IIOSA_CHUNKY;
sFormat = IIOSF_UNSIGNED_CHAR;
return IMIO_SUCCESS;
} else if (bit_depth == 16) {
sArrangement = IIOSA_CHUNKY;
sFormat = IIOSF_UNSIGNED_SHORT;
return IMIO_SUCCESS;
} else {
sArrangement = IIOSA_UNKNOWN;
sFormat = IIOSF_UNKNOWN;
return IMIO_VARIANTNOTSUPPORTED;
}
}
int ImageIO::loadPNG (const Glib::ustring &fname)
{
FILE *file = g_fopen (fname.c_str (), "rb");
if (!file) {
return IMIO_CANNOTREADFILE;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_LOADPNG");
pl->setProgress (0.0);
}
//reading PNG header
unsigned char header[8];
if (fread (header, 1, 8, file) != 8 || png_sig_cmp (header, 0, 8)) {
fclose(file);
return IMIO_HEADERERROR;
}
//initializing main structures
png_structp png = png_create_read_struct (PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!png) {
fclose (file);
return IMIO_HEADERERROR;
}
// silence the warning about "invalid" sRGB profiles -- see #4260
#if defined(PNG_SKIP_sRGB_CHECK_PROFILE) && defined(PNG_SET_OPTION_SUPPORTED)
png_set_option(png, PNG_SKIP_sRGB_CHECK_PROFILE, PNG_OPTION_ON);
#endif
png_infop info = png_create_info_struct (png);
png_infop end_info = png_create_info_struct (png);
if (!end_info || !info) {
png_destroy_read_struct (&png, &info, &end_info);
fclose (file);
return IMIO_HEADERERROR;
}
if (setjmp (png_jmpbuf(png))) {
png_destroy_read_struct (&png, &info, &end_info);
fclose (file);
return IMIO_READERROR;
}
//set up png read
png_set_read_fn (png, file, png_read_data);
png_set_sig_bytes (png, 8);
png_read_info(png, info);
embProfile = nullptr;
//retrieving image information
png_uint_32 width, height;
int bit_depth, color_type, interlace_type, compression_type, filter_method;
png_get_IHDR(png, info, &width, &height, &bit_depth, &color_type, &interlace_type, &compression_type, &filter_method);
if (color_type == PNG_COLOR_TYPE_PALETTE || interlace_type != PNG_INTERLACE_NONE ) {
// we don't support interlaced png or png with palette
png_destroy_read_struct (&png, &info, &end_info);
fclose (file);
printf("%s uses an unsupported feature: <palette-indexed colors|interlacing>. Skipping.\n", fname.data());
return IMIO_VARIANTNOTSUPPORTED;
}
if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
png_set_gray_to_rgb(png);
}
if (png_get_valid(png, info, PNG_INFO_tRNS)) {
png_set_tRNS_to_alpha(png);
png_set_strip_alpha(png);
}
if (color_type & PNG_COLOR_MASK_ALPHA) {
png_set_strip_alpha(png);
}
// reading the embedded ICC profile if any
if (png_get_valid(png, info, PNG_INFO_iCCP)) {
png_charp name;
int compression_type;
#if PNG_LIBPNG_VER < 10500
png_charp profdata;
#else
png_bytep profdata;
#endif
png_uint_32 proflen;
png_get_iCCP(png, info, &name, &compression_type, &profdata, &proflen);
embProfile = cmsOpenProfileFromMem(profdata, proflen);
loadedProfileData = new char[proflen];
memcpy(loadedProfileData, profdata, proflen);
}
//setting gamma
double gamma;
if (png_get_gAMA(png, info, &gamma)) {
png_set_gamma(png, 1.0 / gamma, gamma); // use gamma from metadata
} else {
png_set_gamma(png, 2.2, 1.0 / 2.2); // no gamma in metadata, suppose gamma 2.2
}
// if (bps==8 && bit_depth==16) png_set_strip_16(png);
//updating png info struct
png_read_update_info(png, info);
png_get_IHDR(png, info, &width, &height, &bit_depth, &color_type, &interlace_type, &compression_type, &filter_method);
allocate (width, height);
int rowlen = width * 3 * bit_depth / 8;
unsigned char *row = new unsigned char [rowlen];
// set a new jump point to avoid memory leak
if (setjmp (png_jmpbuf(png))) {
png_destroy_read_struct (&png, &info, &end_info);
fclose (file);
delete [] row;
return IMIO_READERROR;
}
for (unsigned int i = 0; i < height; i++) {
png_read_row (png, (png_byte*)row, nullptr);
if (bit_depth == 16) { // convert scanline to host byte order
unsigned short* srow = (unsigned short*)row;
for (unsigned int j = 0; j < width * 3; j++) {
srow[j] = ntohs (srow[j]);
}
}
setScanline (i, row, bit_depth);
if (pl && !(i % 100)) {
pl->setProgress ((double)(i + 1) / height);
}
}
png_read_end (png, nullptr);
png_destroy_read_struct (&png, &info, &end_info);
delete [] row;
fclose(file);
if (pl) {
pl->setProgressStr ("PROGRESSBAR_READY");
pl->setProgress (1.0);
}
return IMIO_SUCCESS;
}
typedef struct {
struct jpeg_error_mgr pub; /* "public" fields */
jmp_buf setjmp_buffer; /* for return to caller */
} my_error_mgr;
void my_error_exit (j_common_ptr cinfo)
{
/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
my_error_mgr *myerr = (my_error_mgr*) cinfo->err;
/* Always display the message. */
/* We could postpone this until after returning, if we chose. */
(*cinfo->err->output_message) (cinfo);
/* Return control to the setjmp point */
#if defined( _WIN32 ) && defined( __x86_64__ ) && !defined(__clang__)
__builtin_longjmp(myerr->setjmp_buffer, 1);
#else
longjmp(myerr->setjmp_buffer, 1);
#endif
}
int ImageIO::loadJPEGFromMemory (const char* buffer, int bufsize)
{
jpeg_decompress_struct cinfo;
jpeg_create_decompress(&cinfo);
jpeg_memory_src (&cinfo, (const JOCTET*)buffer, bufsize);
/* We use our private extension JPEG error handler.
Note that this struct must live as long as the main JPEG parameter
struct, to avoid dangling-pointer problems.
*/
my_error_mgr jerr;
/* We set up the normal JPEG error routines, then override error_exit. */
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = my_error_exit;
/* Establish the setjmp return context for my_error_exit to use. */
#if defined( _WIN32 ) && defined( __x86_64__ ) && !defined(__clang__)
if (__builtin_setjmp(jerr.setjmp_buffer)) {
#else
if (setjmp(jerr.setjmp_buffer)) {
#endif
/* If we get here, the JPEG code has signaled an error.
We need to clean up the JPEG object and return.
*/
jpeg_destroy_decompress(&cinfo);
return IMIO_READERROR;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_LOADJPEG");
pl->setProgress (0.0);
}
setup_read_icc_profile (&cinfo);
jpeg_read_header(&cinfo, TRUE);
deleteLoadedProfileData();
bool hasprofile = read_icc_profile (&cinfo, (JOCTET**)&loadedProfileData, (unsigned int*)&loadedProfileLength);
if (hasprofile) {
embProfile = cmsOpenProfileFromMem (loadedProfileData, loadedProfileLength);
} else {
embProfile = nullptr;
}
jpeg_start_decompress(&cinfo);
unsigned int width = cinfo.output_width;
unsigned int height = cinfo.output_height;
allocate (width, height);
unsigned char *row = new unsigned char[width * 3];
while (cinfo.output_scanline < height) {
if (jpeg_read_scanlines(&cinfo, &row, 1) < 1) {
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);
delete [] row;
return IMIO_READERROR;
}
setScanline (cinfo.output_scanline - 1, row, 8, cinfo.num_components);
if (pl && !(cinfo.output_scanline % 100)) {
pl->setProgress ((double)(cinfo.output_scanline) / cinfo.output_height);
}
}
delete [] row;
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);
if (pl) {
pl->setProgressStr ("PROGRESSBAR_READY");
pl->setProgress (1.0);
}
return IMIO_SUCCESS;
}
int ImageIO::loadJPEG (const Glib::ustring &fname)
{
std::unique_ptr<FILE, void (*)(FILE *)> file(
g_fopen(fname.c_str(), "rb"),
[](FILE *f) {
fclose(f);
});
if (!file) {
return IMIO_CANNOTREADFILE;
}
jpeg_decompress_struct cinfo;
jpeg_error_mgr jerr;
cinfo.err = my_jpeg_std_error(&jerr);
jpeg_create_decompress(&cinfo);
my_jpeg_stdio_src (&cinfo, file.get());
#if defined( _WIN32 ) && defined( __x86_64__ ) && !defined(__clang__)
if ( __builtin_setjmp((reinterpret_cast<rt_jpeg_error_mgr*>(cinfo.src))->error_jmp_buf) == 0 ) {
#else
if ( setjmp((reinterpret_cast<rt_jpeg_error_mgr*>(cinfo.src))->error_jmp_buf) == 0 ) {
#endif
if (pl) {
pl->setProgressStr ("PROGRESSBAR_LOADJPEG");
pl->setProgress (0.0);
}
setup_read_icc_profile (&cinfo);
//jpeg_stdio_src(&cinfo,file);
jpeg_read_header(&cinfo, TRUE);
//if JPEG is CMYK, then abort reading
if (cinfo.jpeg_color_space == JCS_CMYK || cinfo.jpeg_color_space == JCS_YCCK) {
jpeg_destroy_decompress(&cinfo);
return IMIO_READERROR;
}
cinfo.out_color_space = JCS_RGB;
deleteLoadedProfileData();
bool hasprofile = read_icc_profile (&cinfo, (JOCTET**)&loadedProfileData, (unsigned int*)&loadedProfileLength);
if (hasprofile) {
embProfile = cmsOpenProfileFromMem (loadedProfileData, loadedProfileLength);
} else {
embProfile = nullptr;
}
jpeg_start_decompress(&cinfo);
unsigned int width = cinfo.output_width;
unsigned int height = cinfo.output_height;
allocate (width, height);
unsigned char *row = new unsigned char[width * 3];
while (cinfo.output_scanline < height) {
if (jpeg_read_scanlines(&cinfo, &row, 1) < 1) {
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);
delete [] row;
return IMIO_READERROR;
}
setScanline (cinfo.output_scanline - 1, row, 8);
if (pl && !(cinfo.output_scanline % 100)) {
pl->setProgress ((double)(cinfo.output_scanline) / cinfo.output_height);
}
}
delete [] row;
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);
file.reset();
if (pl) {
pl->setProgressStr ("PROGRESSBAR_READY");
pl->setProgress (1.0);
}
return IMIO_SUCCESS;
} else {
jpeg_destroy_decompress(&cinfo);
return IMIO_READERROR;
}
}
int ImageIO::getTIFFSampleFormat (const Glib::ustring &fname, IIOSampleFormat &sFormat, IIOSampleArrangement &sArrangement)
{
#ifdef _WIN32
wchar_t *wfilename = (wchar_t*)g_utf8_to_utf16 (fname.c_str(), -1, NULL, NULL, NULL);
TIFF* in = TIFFOpenW (wfilename, "r");
g_free (wfilename);
#else
TIFF* in = TIFFOpen(fname.c_str(), "r");
#endif
if (in == nullptr) {
return IMIO_CANNOTREADFILE;
}
std::uint16_t bitspersample = 0, samplesperpixel = 0, sampleformat = 0;
int hasTag = TIFFGetField(in, TIFFTAG_BITSPERSAMPLE, &bitspersample);
hasTag &= TIFFGetField(in, TIFFTAG_SAMPLESPERPIXEL, &samplesperpixel);
if (!hasTag) {
// These are needed
TIFFClose(in);
sFormat = IIOSF_UNKNOWN;
return IMIO_VARIANTNOTSUPPORTED;
}
if (!TIFFGetField(in, TIFFTAG_SAMPLEFORMAT, &sampleformat)) {
/*
* WARNING: This is a dirty hack!
* We assume that files which doesn't contain the TIFFTAG_SAMPLEFORMAT tag
* (which is the case with uncompressed TIFFs produced by RT!) are RGB files,
* but that may be not true. --- Hombre
*/
sampleformat = SAMPLEFORMAT_UINT;
} else if (sampleformat == SAMPLEFORMAT_VOID) {
// according to https://www.awaresystems.be/imaging/tiff/tifftags/sampleformat.html
// we assume SAMPLEFORMAT_UINT if SAMPLEFORMAT_VOID is set
sampleformat = SAMPLEFORMAT_UINT;
}
std::uint16_t config;
TIFFGetField(in, TIFFTAG_PLANARCONFIG, &config);
if (config == PLANARCONFIG_CONTIG) {
sArrangement = IIOSA_CHUNKY;
} else {
sFormat = IIOSF_UNKNOWN;
sArrangement = IIOSA_UNKNOWN;
TIFFClose(in);
return IMIO_VARIANTNOTSUPPORTED;
}
std::uint16_t photometric;
if (!TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &photometric)) {
TIFFClose(in);
return IMIO_VARIANTNOTSUPPORTED;
}
std::uint16_t compression;
if (photometric == PHOTOMETRIC_LOGLUV)
if (!TIFFGetField(in, TIFFTAG_COMPRESSION, &compression)) {
compression = COMPRESSION_NONE;
}
TIFFClose(in);
if (photometric == PHOTOMETRIC_RGB || photometric == PHOTOMETRIC_MINISBLACK) {
if ((samplesperpixel == 1 || samplesperpixel == 3 || samplesperpixel == 4) && sampleformat == SAMPLEFORMAT_UINT) {
if (bitspersample == 8) {
sFormat = IIOSF_UNSIGNED_CHAR;
return IMIO_SUCCESS;
}
if (bitspersample == 16) {
sFormat = IIOSF_UNSIGNED_SHORT;
return IMIO_SUCCESS;
}
} else if ((samplesperpixel == 3 || samplesperpixel == 4) && sampleformat == SAMPLEFORMAT_IEEEFP) {
if (bitspersample==16) {
sFormat = IIOSF_FLOAT16;
return IMIO_SUCCESS;
}
if (bitspersample == 24) {
sFormat = IIOSF_FLOAT24;
return IMIO_SUCCESS;
}
if (bitspersample == 32) {
sFormat = IIOSF_FLOAT32;
return IMIO_SUCCESS;
}
}
} else if ((samplesperpixel == 3 || samplesperpixel == 4) && photometric == PHOTOMETRIC_LOGLUV) {
if (compression == COMPRESSION_SGILOG24) {
sFormat = IIOSF_LOGLUV24;
return IMIO_SUCCESS;
} else if (compression == COMPRESSION_SGILOG) {
sFormat = IIOSF_LOGLUV32;
return IMIO_SUCCESS;
}
}
return IMIO_VARIANTNOTSUPPORTED;
}
int ImageIO::loadTIFF (const Glib::ustring &fname)
{
static MyMutex thumbMutex;
MyMutex::MyLock lock(thumbMutex);
if(!options.serializeTiffRead) {
lock.release();
}
#ifdef _WIN32
wchar_t *wfilename = (wchar_t*)g_utf8_to_utf16 (fname.c_str(), -1, NULL, NULL, NULL);
TIFF* in = TIFFOpenW (wfilename, "r");
g_free (wfilename);
#else
TIFF* in = TIFFOpen(fname.c_str(), "r");
#endif
if (in == nullptr) {
return IMIO_CANNOTREADFILE;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_LOADTIFF");
pl->setProgress (0.0);
}
int width, height;
TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &width);
TIFFGetField(in, TIFFTAG_IMAGELENGTH, &height);
std::uint16_t bitspersample, samplesperpixel;
int hasTag = TIFFGetField(in, TIFFTAG_BITSPERSAMPLE, &bitspersample);
hasTag &= TIFFGetField(in, TIFFTAG_SAMPLESPERPIXEL, &samplesperpixel);
if (!hasTag) {
// These are needed
TIFFClose(in);
fprintf(stderr, "Error 1 loading %s\n", fname.c_str());
fflush(stderr);
return IMIO_VARIANTNOTSUPPORTED;
}
std::uint16_t config;
TIFFGetField(in, TIFFTAG_PLANARCONFIG, &config);
if (config != PLANARCONFIG_CONTIG) {
TIFFClose(in);
fprintf(stderr, "Error 2 loading %s\n", fname.c_str());
fflush(stderr);
return IMIO_VARIANTNOTSUPPORTED;
}
if (sampleFormat & (IIOSF_LOGLUV24 | IIOSF_LOGLUV32)) {
TIFFSetField(in, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_FLOAT);
}
/*
* We could use the min/max values set in TIFFTAG_SMINSAMPLEVALUE and
* TIFFTAG_SMAXSAMPLEVALUE, but for now, we normalize the image to the
* effective minimum and maximum values
*/
if (settings->verbose) {
printf("Information of \"%s\":\n", fname.c_str());
std::uint16_t tiffDefaultScale, tiffBaselineExposure, tiffLinearResponseLimit;
if (TIFFGetField(in, TIFFTAG_DEFAULTSCALE, &tiffDefaultScale)) {
printf(" DefaultScale: %d\n", tiffDefaultScale);
}
else
printf(" No DefaultScale value!\n");
if (TIFFGetField(in, TIFFTAG_BASELINEEXPOSURE, &tiffBaselineExposure)) {
printf(" BaselineExposure: %d\n", tiffBaselineExposure);
}
else
printf(" No BaselineExposure value!\n");
if (TIFFGetField(in, TIFFTAG_LINEARRESPONSELIMIT, &tiffLinearResponseLimit)) {
printf(" LinearResponseLimit: %d\n", tiffLinearResponseLimit);
}
else
printf(" No LinearResponseLimit value!\n");
std::uint16_t tiffMinValue, tiffMaxValue;
if (TIFFGetField(in, TIFFTAG_SMINSAMPLEVALUE, &tiffMinValue)) {
printf(" MinValue: %d\n", tiffMinValue);
}
else
printf(" No minimum value!\n");
if (TIFFGetField(in, TIFFTAG_SMAXSAMPLEVALUE, &tiffMaxValue)) {
printf(" MaxValue: %d\n\n", tiffMaxValue);
}
else
printf(" No maximum value!\n\n");
printf(" Those values are not taken into account, the image data are normalized to a [0;1] range\n\n");
}
char* profdata;
deleteLoadedProfileData();
if (TIFFGetField(in, TIFFTAG_ICCPROFILE, &loadedProfileLength, &profdata)) {
embProfile = cmsOpenProfileFromMem (profdata, loadedProfileLength);
loadedProfileData = new char [loadedProfileLength];
memcpy (loadedProfileData, profdata, loadedProfileLength);
} else {
embProfile = nullptr;
}
allocate (width, height);
std::unique_ptr<unsigned char[]> linebuffer(new unsigned char[TIFFScanlineSize(in) * (samplesperpixel == 1 ? 3 : 1)]);
for (int row = 0; row < height; row++) {
if (TIFFReadScanline(in, linebuffer.get(), row, 0) < 0) {
TIFFClose(in);
fprintf(stderr, "Error 3 loading %s\n", fname.c_str());
fflush(stderr);
return IMIO_READERROR;
}
if (samplesperpixel > 3) {
for (int i = 0; i < width; i++) {
memmove(linebuffer.get() + i * 3 * bitspersample / 8, linebuffer.get() + i * samplesperpixel * bitspersample / 8, 3 * bitspersample / 8);
}
}
else if (samplesperpixel == 1) {
const size_t bytes = bitspersample / 8;
for (int i = width - 1; i >= 0; --i) {
const unsigned char* const src = linebuffer.get() + i * bytes;
unsigned char* const dest = linebuffer.get() + i * 3 * bytes;
memcpy(dest + 2 * bytes, src, bytes);
memcpy(dest + 1 * bytes, src, bytes);
memcpy(dest + 0 * bytes, src, bytes);
}
}
setScanline (row, linebuffer.get(), bitspersample);
if (pl && !(row % 100)) {
pl->setProgress ((double)(row + 1) / height);
}
}
TIFFClose(in);
if (pl) {
pl->setProgressStr ("PROGRESSBAR_READY");
pl->setProgress (1.0);
}
return IMIO_SUCCESS;
}
#ifdef LIBJXL
#define _PROFILE_ JXL_COLOR_PROFILE_TARGET_ORIGINAL
// adapted from libjxl
int ImageIO::loadJXL(const Glib::ustring &fname)
{
if (pl) {
pl->setProgressStr("PROGRESSBAR_LOADJXL");
pl->setProgress(0.0);
}
std::vector<std::uint8_t> icc_profile;
std::vector<std::uint8_t> buffer;
std::size_t buffer_size = 0;
JxlBasicInfo info = {};
JxlPixelFormat format = {};
format.num_channels = 3;
format.data_type = JXL_TYPE_FLOAT;
format.endianness = JXL_NATIVE_ENDIAN;
format.align = 0;
std::vector<std::uint8_t> const compressed = getFileData(fname);
if (compressed.empty()) {
std::cerr << "Error: loadJXL failed to get data from file" << std::endl;
return IMIO_READERROR;
}
// multi-threaded parallel runner.
auto runner = JxlResizableParallelRunnerMake(nullptr);
auto dec = JxlDecoderMake(nullptr);
if (JXL_DEC_SUCCESS !=
JxlDecoderSubscribeEvents(dec.get(), JXL_DEC_BASIC_INFO |
JXL_DEC_COLOR_ENCODING |
JXL_DEC_FULL_IMAGE)) {
std::cerr << "Error: JxlDecoderSubscribeEvents failed" << std::endl;
return IMIO_HEADERERROR;
}
if (JXL_DEC_SUCCESS !=
JxlDecoderSetParallelRunner(dec.get(), JxlResizableParallelRunner,
runner.get())) {
std::cerr << "Error: JxlDecoderSetParallelRunner failed" << std::endl;
return IMIO_HEADERERROR;
}
// grand decode loop...
JxlDecoderSetInput(dec.get(), compressed.data(), compressed.size());
while (true) {
JxlDecoderStatus status = JxlDecoderProcessInput(dec.get());
if (status == JXL_DEC_BASIC_INFO) {
if (JXL_DEC_SUCCESS != JxlDecoderGetBasicInfo(dec.get(), &info)) {
std::cerr << "Error: JxlDecoderGetBasicInfo failed" << std::endl;
return IMIO_HEADERERROR;
}
JxlResizableParallelRunnerSetThreads(
runner.get(),
JxlResizableParallelRunnerSuggestThreads(info.xsize, info.ysize));
} else if (status == JXL_DEC_COLOR_ENCODING) {
// check for ICC profile
deleteLoadedProfileData();
embProfile = nullptr;
std::size_t icc_size = 0;
if (JXL_DEC_SUCCESS !=
#if JPEGXL_NUMERIC_VERSION < JPEGXL_COMPUTE_NUMERIC_VERSION(0, 9, 0)
JxlDecoderGetICCProfileSize(dec.get(), &format, _PROFILE_, &icc_size)
#else
JxlDecoderGetICCProfileSize(dec.get(), _PROFILE_, &icc_size)
#endif
) {
std::cerr << "Warning: JxlDecoderGetICCProfileSize failed" << std::endl;
}
if (icc_size > 0) {
icc_profile.resize(icc_size);
if (JXL_DEC_SUCCESS !=
#if JPEGXL_NUMERIC_VERSION < JPEGXL_COMPUTE_NUMERIC_VERSION(0, 9, 0)
JxlDecoderGetColorAsICCProfile(
dec.get(), &format, _PROFILE_,
icc_profile.data(), icc_profile.size())
#else
JxlDecoderGetColorAsICCProfile(
dec.get(), _PROFILE_,
icc_profile.data(), icc_profile.size())
#endif
) {
std::cerr << "Warning: JxlDecoderGetColorAsICCProfile failed" << std::endl;
} else {
embProfile = cmsOpenProfileFromMem(icc_profile.data(),
icc_profile.size());
}
} else {
std::cerr << "Warning: Empty ICC data." << std::endl;
}
} else if (status == JXL_DEC_NEED_IMAGE_OUT_BUFFER) {
// Note: If assert is triggered, change to assignment.
// We want maximum bit depth from the decoder,
// regardless of the original encoding intent.
assert(format.data_type == JXL_TYPE_FLOAT);
if (JXL_DEC_SUCCESS !=
JxlDecoderImageOutBufferSize(dec.get(), &format, &buffer_size)) {
std::cerr << "Error: JxlDecoderImageOutBufferSize failed" << std::endl;
return IMIO_READERROR;
}
buffer.resize(buffer_size);
if (JXL_DEC_SUCCESS != JxlDecoderSetImageOutBuffer(dec.get(), &format, buffer.data(), buffer.size())) {
std::cerr << "Error: JxlDecoderSetImageOutBuffer failed" << std::endl;
return IMIO_READERROR;
}
} else if (status == JXL_DEC_FULL_IMAGE ||
status == JXL_DEC_FRAME) {
// Nothing to do. If the image is an animation, more full frames
// may be decoded. This example only keeps the first one.
break;
} else if (status == JXL_DEC_SUCCESS) {
// Decoding complete. Decoder will be released automatically.
break;
} else if (status == JXL_DEC_NEED_MORE_INPUT) {
std::cerr << "Error: Decoder needs more input data" << std::endl;
return IMIO_READERROR;
} else if (status == JXL_DEC_ERROR) {
std::cerr << "Error: Decoder error" << std::endl;
return IMIO_READERROR;
} else {
std::cerr << "Error: Unknown decoder status" << std::endl;
return IMIO_READERROR;
}
} // end grand decode loop
std::size_t width = info.xsize;
std::size_t height = info.ysize;
allocate(width, height);
std::size_t line_length = width * 3 * 4;
for (std::size_t row = 0; row < height; ++row) {
setScanline(row, buffer.data() + (row * line_length), 32);
if (pl && !(row % 100)) {
pl->setProgress((double)(row + 1) / height);
}
}
if (pl) {
pl->setProgressStr("PROGRESSBAR_READY");
pl->setProgress(1.0);
}
return IMIO_SUCCESS;
}
#undef _PROFILE_
#endif // LIBJXL
int ImageIO::loadPPMFromMemory(const char* buffer, int width, int height, bool swap, int bps)
{
allocate (width, height);
int line_length(width * 3 * (bps / 8));
if ( swap && bps > 8 ) {
char swapped[line_length];
for ( int row = 0; row < height; ++row ) {
::rtengine::swab(((const char*)buffer) + (row * line_length), swapped, line_length);
setScanline(row, (unsigned char*)&swapped[0], bps);
}
} else {
for ( int row = 0; row < height; ++row ) {
setScanline(row, ((const unsigned char*)buffer) + (row * line_length), bps);
}
}
return IMIO_SUCCESS;
}
int ImageIO::savePNG (const Glib::ustring &fname, volatile int bps) const
{
if (getWidth() < 1 || getHeight() < 1) {
return IMIO_HEADERERROR;
}
FILE* const file = g_fopen_withBinaryAndLock (fname);
if (!file) {
return IMIO_CANNOTWRITEFILE;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_SAVEPNG");
pl->setProgress (0.0);
}
png_structp png = png_create_write_struct (PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!png) {
fclose (file);
return IMIO_HEADERERROR;
}
// silence the warning about "invalid" sRGB profiles -- see #4260
#if defined(PNG_SKIP_sRGB_CHECK_PROFILE) && defined(PNG_SET_OPTION_SUPPORTED)
png_set_option(png, PNG_SKIP_sRGB_CHECK_PROFILE, PNG_OPTION_ON);
#endif
png_infop info = png_create_info_struct(png);
if (!info) {
png_destroy_write_struct (&png, nullptr);
fclose (file);
return IMIO_HEADERERROR;
}
if (setjmp(png_jmpbuf(png))) {
png_destroy_write_struct (&png, &info);
fclose(file);
return IMIO_CANNOTWRITEFILE;
}
png_set_write_fn (png, file, png_write_data, png_flush);
png_set_filter(png, 0, PNG_FILTER_PAETH);
png_set_compression_level(png, 6);
png_set_compression_strategy(png, 3);
int width = getWidth ();
int height = getHeight ();
if (bps < 0) {
bps = getBPS ();
}
if (bps > 16) {
bps = 16;
}
png_set_IHDR(png, info, width, height, bps, PNG_COLOR_TYPE_RGB,
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_BASE);
if (!profileData.empty()) {
#if PNG_LIBPNG_VER < 10500
png_const_charp profdata = reinterpret_cast<png_const_charp>(profileData.data());
#else
png_const_bytep profdata = reinterpret_cast<png_const_bytep>(profileData.data());
#endif
png_set_iCCP(png, info, "icc", 0, profdata, profileData.size());
}
int rowlen = width * 3 * bps / 8;
unsigned char *row = new unsigned char [rowlen];
png_write_info(png, info);
for (int i = 0; i < height; i++) {
getScanline (i, row, bps);
if (bps == 16) {
// convert to network byte order
#if __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
for (int j = 0; j < width * 6; j += 2) {
unsigned char tmp = row[j];
row[j] = row[j + 1];
row[j + 1] = tmp;
}
#endif
}
png_write_row (png, (png_byte*)row);
if (pl && !(i % 100)) {
pl->setProgress ((double)(i + 1) / height);
}
}
png_write_end(png, info);
png_destroy_write_struct(&png, &info);
delete [] row;
fclose (file);
if (!saveMetadata(fname)) {
g_remove(fname.c_str());
return IMIO_CANNOTWRITEFILE;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_READY");
pl->setProgress (1.0);
}
return IMIO_SUCCESS;
}
// Quality 0..100, subsampling: 1=low quality, 2=medium, 3=high
int ImageIO::saveJPEG (const Glib::ustring &fname, int quality, int subSamp) const
{
if (getWidth() < 1 || getHeight() < 1) {
return IMIO_HEADERERROR;
}
FILE* const file = g_fopen_withBinaryAndLock (fname);
if (!file) {
return IMIO_CANNOTWRITEFILE;
}
jpeg_compress_struct cinfo;
/* We use our private extension JPEG error handler.
Note that this struct must live as long as the main JPEG parameter
struct, to avoid dangling-pointer problems.
*/
my_error_mgr jerr;
/* We set up the normal JPEG error routines, then override error_exit. */
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = my_error_exit;
/* Establish the setjmp return context for my_error_exit to use. */
#if defined( _WIN32 ) && defined( __x86_64__ ) && !defined(__clang__)
if (__builtin_setjmp(jerr.setjmp_buffer)) {
#else
if (setjmp(jerr.setjmp_buffer)) {
#endif
/* If we get here, the JPEG code has signaled an error.
We need to clean up the JPEG object, close the file, remove the already saved part of the file and return.
*/
jpeg_destroy_compress(&cinfo);
fclose(file);
g_remove (fname.c_str());
return IMIO_CANNOTWRITEFILE;
}
jpeg_create_compress (&cinfo);
if (pl) {
pl->setProgressStr ("PROGRESSBAR_SAVEJPEG");
pl->setProgress (0.0);
}
jpeg_stdio_dest (&cinfo, file);
int width = getWidth ();
int height = getHeight ();
cinfo.image_width = width;
cinfo.image_height = height;
cinfo.in_color_space = JCS_RGB;
cinfo.input_components = 3;
jpeg_set_defaults (&cinfo);
cinfo.write_JFIF_header = FALSE;
// compute optimal Huffman coding tables for the image. Bit slower to generate, but size of result image is a bit less (default was FALSE)
cinfo.optimize_coding = TRUE;
// Since math coprocessors are common these days, FLOAT should be a bit more accurate AND fast (default is ISLOW)
// (machine dependency is not really an issue, since we all run on x86 and having exactly the same file is not a requirement)
cinfo.dct_method = JDCT_FLOAT;
if (quality >= 0 && quality <= 100) {
jpeg_set_quality (&cinfo, quality, true);
}
cinfo.comp_info[1].h_samp_factor = cinfo.comp_info[1].v_samp_factor = 1;
cinfo.comp_info[2].h_samp_factor = cinfo.comp_info[2].v_samp_factor = 1;
if (subSamp == 1) {
// Best compression, default of the JPEG library: 2x2, 1x1, 1x1 (4:2:0)
cinfo.comp_info[0].h_samp_factor = cinfo.comp_info[0].v_samp_factor = 2;
} else if (subSamp == 2) {
// Widely used normal ratio 2x1, 1x1, 1x1 (4:2:2)
cinfo.comp_info[0].h_samp_factor = 2;
cinfo.comp_info[0].v_samp_factor = 1;
} else if (subSamp == 3) {
// Best quality 1x1 1x1 1x1 (4:4:4)
cinfo.comp_info[0].h_samp_factor = cinfo.comp_info[0].v_samp_factor = 1;
}
jpeg_start_compress(&cinfo, TRUE);
// write icc profile to the output
if (!profileData.empty()) {
write_icc_profile (&cinfo, reinterpret_cast<const JOCTET*>(profileData.data()), profileData.size());
}
// write image data
int rowlen = width * 3;
unsigned char *row = new unsigned char [rowlen];
/* To avoid memory leaks we establish a new setjmp return context for my_error_exit to use. */
#if defined( _WIN32 ) && defined( __x86_64__ ) && !defined(__clang__)
if (__builtin_setjmp(jerr.setjmp_buffer)) {
#else
if (setjmp(jerr.setjmp_buffer)) {
#endif
/* If we get here, the JPEG code has signaled an error.
We need to clean up the JPEG object, close the file, remove the already saved part of the file and return.
*/
delete [] row;
jpeg_destroy_compress(&cinfo);
fclose(file);
g_remove (fname.c_str());
return IMIO_CANNOTWRITEFILE;
}
while (cinfo.next_scanline < cinfo.image_height) {
getScanline (cinfo.next_scanline, row, 8);
if (jpeg_write_scanlines (&cinfo, &row, 1) < 1) {
jpeg_destroy_compress (&cinfo);
delete [] row;
fclose (file);
g_remove (fname.c_str());
return IMIO_CANNOTWRITEFILE;
}
if (pl && !(cinfo.next_scanline % 100)) {
pl->setProgress ((double)(cinfo.next_scanline) / cinfo.image_height);
}
}
jpeg_finish_compress (&cinfo);
jpeg_destroy_compress (&cinfo);
delete [] row;
fclose (file);
if (!saveMetadata(fname)) {
g_remove(fname.c_str());
return IMIO_CANNOTWRITEFILE;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_READY");
pl->setProgress (1.0);
}
return IMIO_SUCCESS;
}
int ImageIO::saveTIFF (
const Glib::ustring &fname,
int bps,
bool isFloat,
bool uncompressed,
bool big
) const
{
if (getWidth() < 1 || getHeight() < 1) {
return IMIO_HEADERERROR;
}
bool writeOk = true;
int width = getWidth ();
int height = getHeight ();
if (bps < 0) {
bps = getBPS ();
}
int lineWidth = width * 3 * (bps / 8);
std::vector<unsigned char> linebuffer(lineWidth);
std::string mode = "w";
if (big) {
mode += '8';
}
#ifdef _WIN32
FILE *file = g_fopen_withBinaryAndLock (fname);
int fileno = _fileno(file);
int osfileno = _get_osfhandle(fileno);
TIFF* out = TIFFFdOpen (osfileno, fname.c_str(), mode.c_str());
#else
TIFF* out = TIFFOpen(fname.c_str(), mode.c_str());
// int fileno = TIFFFileno (out);
#endif
if (!out) {
return IMIO_CANNOTWRITEFILE;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_SAVETIFF");
pl->setProgress (0.0);
}
bool needsReverse = false;
TIFFSetField (out, TIFFTAG_SOFTWARE, "RawTherapee " RTVERSION);
TIFFSetField (out, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField (out, TIFFTAG_IMAGELENGTH, height);
TIFFSetField (out, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
TIFFSetField (out, TIFFTAG_SAMPLESPERPIXEL, 3);
TIFFSetField (out, TIFFTAG_ROWSPERSTRIP, height);
TIFFSetField (out, TIFFTAG_BITSPERSAMPLE, bps);
TIFFSetField (out, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField (out, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField (out, TIFFTAG_COMPRESSION, uncompressed ? COMPRESSION_NONE : COMPRESSION_ADOBE_DEFLATE);
TIFFSetField (out, TIFFTAG_SAMPLEFORMAT, (bps == 16 || bps == 32) && isFloat ? SAMPLEFORMAT_IEEEFP : SAMPLEFORMAT_UINT);
// somehow Exiv2 (tested with 0.27.3) doesn't seem to be able to update
// XResolution and YResolution, so we do it ourselves here....
constexpr float default_resolution = 300.f;
float x_res = default_resolution;
float y_res = default_resolution;
int res_unit = RESUNIT_INCH;
if (!metadataInfo.filename().empty()) {
auto exif = metadataInfo.getOutputExifData();
auto it = exif.findKey(Exiv2::ExifKey("Exif.Image.XResolution"));
if (it != exif.end()) {
x_res = it->toFloat();
}
it = exif.findKey(Exiv2::ExifKey("Exif.Image.YResolution"));
if (it != exif.end()) {
y_res = it->toFloat();
}
it = exif.findKey(Exiv2::ExifKey("Exif.Image.ResolutionUnit"));
if (it != exif.end()) {
res_unit = to_long(it);
}
}
TIFFSetField(out, TIFFTAG_XRESOLUTION, x_res);
TIFFSetField(out, TIFFTAG_YRESOLUTION, y_res);
TIFFSetField(out, TIFFTAG_RESOLUTIONUNIT, res_unit);
if (!uncompressed) {
TIFFSetField (out, TIFFTAG_PREDICTOR, (bps == 16 || bps == 32) && isFloat ? PREDICTOR_FLOATINGPOINT : PREDICTOR_HORIZONTAL);
}
if (!profileData.empty()) {
TIFFSetField (out, TIFFTAG_ICCPROFILE, profileData.size(), profileData.data());
}
for (int row = 0; row < height; row++) {
getScanline (row, linebuffer.data(), bps, isFloat);
if (bps == 16) {
if(needsReverse && !uncompressed && isFloat) {
for(int i = 0; i < lineWidth; i += 2) {
std::swap(linebuffer[i], linebuffer[i + 1]);
}
}
} else if (bps == 32) {
if(needsReverse && !uncompressed) {
for(int i = 0; i < lineWidth; i += 4) {
std::swap(linebuffer[i], linebuffer[i + 3]);
std::swap(linebuffer[i + 1], linebuffer[i + 2]);
}
}
}
if (TIFFWriteScanline (out, linebuffer.data(), row, 0) < 0) {
TIFFClose (out);
return IMIO_CANNOTWRITEFILE;
}
if (pl && !(row % 100)) {
pl->setProgress ((double)(row + 1) / height);
}
}
if (TIFFFlush(out) != 1) {
writeOk = false;
}
TIFFClose (out);
#ifdef _WIN32
fclose (file);
#endif
if (!saveMetadata(fname)) {
writeOk = false;
}
if (pl) {
pl->setProgressStr ("PROGRESSBAR_READY");
pl->setProgress (1.0);
}
if(writeOk) {
return IMIO_SUCCESS;
} else {
g_remove (fname.c_str());
return IMIO_CANNOTWRITEFILE;
}
}
// PNG read and write routines:
void png_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_size_t check;
/* fread() returns 0 on error, so it is OK to store this in a png_size_t
* instead of an int, which is what fread() actually returns.
*/
check = (png_size_t)fread(data, (png_size_t)1, length, (FILE *)png_get_io_ptr(png_ptr));
if (check != length) {
png_error(png_ptr, "Read Error");
}
}
void png_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_uint_32 check;
check = fwrite(data, 1, length, (FILE *)png_get_io_ptr(png_ptr));
if (check != length) {
png_error(png_ptr, "Write Error");
}
}
void png_flush(png_structp png_ptr)
{
FILE *io_ptr;
io_ptr = (FILE *)(png_get_io_ptr(png_ptr));
if (io_ptr != nullptr) {
fflush(io_ptr);
}
}
int ImageIO::load (const Glib::ustring &fname)
{
if (hasPngExtension(fname)) {
return loadPNG (fname);
} else if (hasJpegExtension(fname)) {
return loadJPEG (fname);
#ifdef LIBJXL
} else if (hasJxlExtension(fname)) {
return loadJXL(fname);
#endif
} else if (hasTiffExtension(fname)) {
return loadTIFF (fname);
} else {
return IMIO_FILETYPENOTSUPPORTED;
}
}
int ImageIO::save (const Glib::ustring &fname) const
{
if (hasPngExtension(fname)) {
return savePNG (fname);
} else if (hasJpegExtension(fname)) {
return saveJPEG (fname);
} else if (hasTiffExtension(fname)) {
return saveTIFF (fname);
} else {
return IMIO_FILETYPENOTSUPPORTED;
}
}
void ImageIO::setProgressListener (ProgressListener* l)
{
pl = l;
}
void ImageIO::setSampleFormat(IIOSampleFormat sFormat)
{
sampleFormat = sFormat;
}
IIOSampleFormat ImageIO::getSampleFormat() const
{
return sampleFormat;
}
void ImageIO::setSampleArrangement(IIOSampleArrangement sArrangement)
{
sampleArrangement = sArrangement;
}
IIOSampleArrangement ImageIO::getSampleArrangement() const
{
return sampleArrangement;
}
cmsHPROFILE ImageIO::getEmbeddedProfile () const
{
return embProfile;
}
void ImageIO::getEmbeddedProfileData (int& length, unsigned char*& pdata) const
{
length = loadedProfileLength;
pdata = (unsigned char*)loadedProfileData;
}
MyMutex& ImageIO::mutex ()
{
return imutex;
}
void ImageIO::deleteLoadedProfileData( )
{
if(loadedProfileData) {
delete[] loadedProfileData;
}
loadedProfileData = nullptr;
}
bool ImageIO::saveMetadata(const Glib::ustring &fname) const
{
if (metadataInfo.filename().empty()) {
return true;
}
bool has_meta = true;
try {
metadataInfo.load();
} catch (const std::exception& exc) {
if (settings->verbose) {
std::cout << "EXIF LOAD ERROR: " << exc.what() << std::endl;
}
has_meta = false;
}
if (has_meta) {
try {
metadataInfo.saveToImage(fname, false);
// auto src = open_exiv2(metadataInfo.filename());
// auto dst = open_exiv2(fname);
// src->readMetadata();
// dst->setMetadata(*src);
// dst->exifData()["Exif.Image.Software"] = "RawTherapee " RTVERSION;
// for (const auto& p : metadataInfo.exif()) {
// try {
// dst->exifData()[p.first] = p.second;
// } catch (const Exiv2::AnyError& exc) {
// }
// }
// for (const auto& p : metadataInfo.iptc()) {
// try {
// auto& v = p.second;
// if (!v.empty()) {
// dst->iptcData()[p.first] = v[0];
// for (size_t j = 1; j < v.size(); ++j) {
// Exiv2::Iptcdatum d(Exiv2::IptcKey(p.first));
// d.setValue(v[j]);
// dst->iptcData().add(d);
// }
// }
// } catch (const Exiv2::AnyError& exc) {
// }
// }
// dst->writeMetadata();
} catch (const std::exception& exc) {
std::cout << "EXIF ERROR: " << exc.what() << std::endl;
//return false;
}
}
return true;
}