rawTherapee/rtengine/hilite_recon.cc

974 lines
34 KiB
C++

////////////////////////////////////////////////////////////////
//
// Highlight reconstruction
//
// copyright (c) 2008-2011 Emil Martinec <ejmartin@uchicago.edu>
//
//
// code dated: June 16, 2011
//
// hilite_recon.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
#include <cstddef>
#include <cmath>
#include "array2D.h"
#include "rawimagesource.h"
#include "rt_math.h"
#include "opthelper.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#define FOREACHCOLOR for (int c=0; c < ColorCount; c++)
//#include "RGBdefringe.cc"
namespace rtengine
{
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SSEFUNCTION void RawImageSource::boxblur2(float** src, float** dst, int H, int W, int box )
{
array2D<float> temp(W, H);
//box blur image channel; box size = 2*box+1
//horizontal blur
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < H; row++) {
int len = box + 1;
temp[row][0] = src[row][0] / len;
for (int j = 1; j <= box; j++) {
temp[row][0] += src[row][j] / len;
}
for (int col = 1; col <= box; col++) {
temp[row][col] = (temp[row][col - 1] * len + src[row][col + box]) / (len + 1);
len ++;
}
for (int col = box + 1; col < W - box; col++) {
temp[row][col] = temp[row][col - 1] + (src[row][col + box] - src[row][col - box - 1]) / len;
}
for (int col = W - box; col < W; col++) {
temp[row][col] = (temp[row][col - 1] * len - src[row][col - box - 1]) / (len - 1);
len --;
}
}
#ifdef __SSE2__
//vertical blur
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float len = box + 1;
__m128 lenv = _mm_set1_ps( len );
__m128 lenp1v = _mm_set1_ps( len + 1.0f );
__m128 onev = _mm_set1_ps( 1.0f );
__m128 tempv, temp2v;
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int col = 0; col < W - 7; col += 8) {
tempv = LVFU(temp[0][col]) / lenv;
temp2v = LVFU(temp[0][col + 4]) / lenv;
for (int i = 1; i <= box; i++) {
tempv = tempv + LVFU(temp[i][col]) / lenv;
temp2v = temp2v + LVFU(temp[i][col + 4]) / lenv;
}
_mm_storeu_ps( &dst[0][col], tempv);
_mm_storeu_ps( &dst[0][col + 4], temp2v);
for (int row = 1; row <= box; row++) {
tempv = (tempv * lenv + LVFU(temp[(row + box)][col])) / lenp1v;
temp2v = (temp2v * lenv + LVFU(temp[(row + box)][col + 4])) / lenp1v;
_mm_storeu_ps( &dst[row][col], tempv);
_mm_storeu_ps( &dst[row][col + 4], temp2v);
lenv = lenp1v;
lenp1v = lenp1v + onev;
}
for (int row = box + 1; row < H - box; row++) {
tempv = tempv + (LVFU(temp[(row + box)][col]) - LVFU(temp[(row - box - 1)][col])) / lenv;
temp2v = temp2v + (LVFU(temp[(row + box)][col + 4]) - LVFU(temp[(row - box - 1)][col + 4])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv);
_mm_storeu_ps( &dst[row][col + 4], temp2v);
}
for (int row = H - box; row < H; row++) {
lenp1v = lenv;
lenv = lenv - onev;
tempv = (tempv * lenp1v - LVFU(temp[(row - box - 1)][col])) / lenv;
temp2v = (temp2v * lenp1v - LVFU(temp[(row - box - 1)][col + 4])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv );
_mm_storeu_ps( &dst[row][col + 4], temp2v );
}
}
#pragma omp single
{
for (int col = W - (W % 8); col < W - 3; col += 4) {
tempv = LVFU(temp[0][col]) / lenv;
for (int i = 1; i <= box; i++) {
tempv = tempv + LVFU(temp[i][col]) / lenv;
}
_mm_storeu_ps( &dst[0][col], tempv);
for (int row = 1; row <= box; row++) {
tempv = (tempv * lenv + LVFU(temp[(row + box)][col])) / lenp1v;
_mm_storeu_ps( &dst[row][col], tempv);
lenv = lenp1v;
lenp1v = lenp1v + onev;
}
for (int row = box + 1; row < H - box; row++) {
tempv = tempv + (LVFU(temp[(row + box)][col]) - LVFU(temp[(row - box - 1)][col])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv);
}
for (int row = H - box; row < H; row++) {
lenp1v = lenv;
lenv = lenv - onev;
tempv = (tempv * lenp1v - LVFU(temp[(row - box - 1)][col])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv );
}
}
}
}
for (int col = W - (W % 4); col < W; col++) {
int len = box + 1;
dst[0][col] = temp[0][col] / len;
for (int i = 1; i <= box; i++) {
dst[0][col] += temp[i][col] / len;
}
for (int row = 1; row <= box; row++) {
dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + box)][col]) / (len + 1);
len ++;
}
for (int row = box + 1; row < H - box; row++) {
dst[row][col] = dst[(row - 1)][col] + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
}
for (int row = H - box; row < H; row++) {
dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - box - 1)][col]) / (len - 1);
len --;
}
}
#else
//vertical blur
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int col = 0; col < W; col++) {
int len = box + 1;
dst[0][col] = temp[0][col] / len;
for (int i = 1; i <= box; i++) {
dst[0][col] += temp[i][col] / len;
}
for (int row = 1; row <= box; row++) {
dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + box)][col]) / (len + 1);
len ++;
}
for (int row = box + 1; row < H - box; row++) {
dst[row][col] = dst[(row - 1)][col] + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
}
for (int row = H - box; row < H; row++) {
dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - box - 1)][col]) / (len - 1);
len --;
}
}
#endif
}
void RawImageSource::boxblur_resamp(float **src, float **dst, int H, int W, int box, int samp )
{
array2D<float> temp((W / samp) + ((W % samp) == 0 ? 0 : 1), H);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float tempval;
#ifdef _OPENMP
#pragma omp for
#endif
//box blur image channel; box size = 2*box+1
//horizontal blur
for (int row = 0; row < H; row++) {
int len = box + 1;
tempval = src[row][0] / len;
for (int j = 1; j <= box; j++) {
tempval += src[row][j] / len;
}
temp[row][0] = tempval;
for (int col = 1; col <= box; col++) {
tempval = (tempval * len + src[row][col + box]) / (len + 1);
if(col % samp == 0) {
temp[row][col / samp] = tempval;
}
len ++;
}
for (int col = box + 1; col < W - box; col++) {
tempval = tempval + (src[row][col + box] - src[row][col - box - 1]) / len;
if(col % samp == 0) {
temp[row][col / samp] = tempval;
}
}
for (int col = W - box; col < W; col++) {
tempval = (tempval * len - src[row][col - box - 1]) / (len - 1);
if(col % samp == 0) {
temp[row][col / samp] = tempval;
}
len --;
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float tempval;
#ifdef _OPENMP
#pragma omp for
#endif
//vertical blur
for (int col = 0; col < W / samp; col++) {
int len = box + 1;
tempval = temp[0][col] / len;
for (int i = 1; i <= box; i++) {
tempval += temp[i][col] / len;
}
dst[0][col] = tempval;
for (int row = 1; row <= box; row++) {
tempval = (tempval * len + temp[(row + box)][col]) / (len + 1);
if(row % samp == 0) {
dst[row / samp][col] = tempval;
}
len ++;
}
for (int row = box + 1; row < H - box; row++) {
tempval = tempval + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
if(row % samp == 0) {
dst[row / samp][col] = tempval;
}
}
for (int row = H - box; row < H; row++) {
tempval = (tempval * len - temp[(row - box - 1)][col]) / (len - 1);
if(row % samp == 0) {
dst[row / samp][col] = tempval;
}
len --;
}
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void RawImageSource :: HLRecovery_inpaint (float** red, float** green, float** blue)
{
double progress = 0.0;
if (plistener) {
plistener->setProgressStr ("HL reconstruction...");
plistener->setProgress (progress);
}
int height = H;
int width = W;
const int range = 2;
const int pitch = 4;
int hfh = (height - (height % pitch)) / pitch;
int hfw = (width - (width % pitch)) / pitch;
static const int numdirs = 4;
static const float threshpct = 0.25;
static const float fixthreshpct = 0.7;
static const float maxpct = 0.95;
//%%%%%%%%%%%%%%%%%%%%
//for blend algorithm:
static const float blendthresh = 1.0;
const int ColorCount = 3;
// Transform matrixes rgb>lab and back
static const float trans[2][ColorCount][ColorCount] = {
{ { 1, 1, 1 }, { 1.7320508, -1.7320508, 0 }, { -1, -1, 2 } },
{ { 1, 1, 1 }, { 1, -1, 1 }, { 1, 1, -1 } }
};
static const float itrans[2][ColorCount][ColorCount] = {
{ { 1, 0.8660254, -0.5 }, { 1, -0.8660254, -0.5 }, { 1, 0, 1 } },
{ { 1, 1, 1 }, { 1, -1, 1 }, { 1, 1, -1 } }
};
//%%%%%%%%%%%%%%%%%%%%
float max_f[3], thresh[3], fixthresh[3], norm[3];
//float red1, green1, blue1;//diagnostic
// float chmaxalt[4]={0,0,0,0};//diagnostic
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//halfsize demosaic
/*
multi_array2D<float,3> hfsize (hfw+1,hfh+1,ARRAY2D_CLEAR_DATA);
boxblur_resamp(red,hfsize[0],chmaxalt[0],height,width,range,pitch);
if(plistener){
progress += 0.05;
plistener->setProgress(progress);
}
boxblur_resamp(green,hfsize[1],chmaxalt[1],height,width,range,pitch);
if(plistener){
progress += 0.05;
plistener->setProgress(progress);
}
boxblur_resamp(blue,hfsize[2],chmaxalt[2],height,width,range,pitch);
if(plistener){
progress += 0.05;
plistener->setProgress(progress);
}
//blur image
//for (int m=0; m<3; m++)
// boxblur2(hfsize[m],hfsizeblur[m],hfh,hfw,3);
*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for (int c = 0; c < 3; c++) {
thresh[c] = chmax[c] * threshpct;
fixthresh[c] = chmax[c] * fixthreshpct;
max_f[c] = chmax[c] * maxpct; //min(chmax[0],chmax[1],chmax[2])*maxpct;
norm[c] = 1.0 / (max_f[c] - fixthresh[c]);
}
float whitept = max(max_f[0], max_f[1], max_f[2]);
float clippt = min(max_f[0], max_f[1], max_f[2]);
float medpt = max_f[0] + max_f[1] + max_f[2] - whitept - clippt;
float blendpt = blendthresh * clippt;
float camwb[4];
for (int c = 0; c < 4; c++) {
camwb[c] = ri->get_cam_mul(c);
}
multi_array2D<float, 3> channelblur(width, height, ARRAY2D_CLEAR_DATA);
multi_array2D<float, 5> hilite_full(width, height, ARRAY2D_CLEAR_DATA);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
// blur RGB channels
boxblur2(red , channelblur[0], height, width, 4);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
boxblur2(green, channelblur[1], height, width, 4);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
boxblur2(blue , channelblur[2], height, width, 4);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
float hipass_sum = 0, hipass_norm = 0.00;
// set up which pixels are clipped or near clipping
#ifdef _OPENMP
#pragma omp parallel for reduction(+:hipass_sum,hipass_norm) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
//if one or more channels is highlight but none are blown, add to highlight accumulator
if ((red[i][j] > thresh[0] || green[i][j] > thresh[1] || blue[i][j] > thresh[2]) &&
(red[i][j] < max_f[0] && green[i][j] < max_f[1] && blue[i][j] < max_f[2])) {
hipass_sum += fabs(channelblur[0][i][j] - red[i][j]) + fabs(channelblur[1][i][j] - green[i][j]) + fabs(channelblur[2][i][j] - blue[i][j]);
hipass_norm++;
hilite_full[0][i][j] = red[i][j];
hilite_full[1][i][j] = green[i][j];
hilite_full[2][i][j] = blue[i][j];
hilite_full[3][i][j] = 1;
hilite_full[4][i][j] = 1;
}
//if (i%100==0 && j%100==0)
// printf("row=%d col=%d r=%f g=%f b=%f hilite=%f \n",i,j,hilite_full[0][i][j],hilite_full[1][i][j],hilite_full[2][i][j],hilite_full[3][i][j]);
}
}//end of filling highlight array
hipass_norm += 0.01;
float hipass_ave = (hipass_sum / hipass_norm);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//blur highlight data
boxblur2(hilite_full[4], hilite_full[4], height, width, 1);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
float hipass = fabs(channelblur[0][i][j] - red[i][j]) + fabs(channelblur[1][i][j] - green[i][j]) + fabs(channelblur[2][i][j] - blue[i][j]);
if (hipass > 2 * hipass_ave) {
//too much variation
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0;
continue;
}
if (hilite_full[4][i][j] > 0.00001 && hilite_full[4][i][j] < 0.95) {
//too near an edge, could risk using CA affected pixels, therefore omit
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0;
}
}
}
for (int c = 0; c < 3; c++) {
channelblur[c](1, 1); //free up some memory
}
multi_array2D<float, 4> hilite(hfw + 1, hfh + 1, ARRAY2D_CLEAR_DATA);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// blur and resample highlight data; range=size of blur, pitch=sample spacing
for (int m = 0; m < 4; m++) {
boxblur_resamp(hilite_full[m], hilite[m], height, width, range, pitch);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
}
for (int c = 0; c < 5; c++) {
hilite_full[c](1, 1); //free up some memory
}
multi_array2D<float, 4 * numdirs> hilite_dir(hfw, hfh, ARRAY2D_CLEAR_DATA);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//blur highlights
//for (int m=0; m<4; m++)
// boxblur2(hilite[m],hilite[m],hfh,hfw,4);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
LUTf invfn(0x10000);
for (int i = 0; i < 0x10000; i++) {
invfn[i] = 1.0 / (1.0 + i);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//fill gaps in highlight map by directional extension
//raster scan from four corners
for (int j = 1; j < hfw - 1; j++)
for (int i = 2; i < hfh - 2; i++) {
//from left
if (hilite[3][i][j] > 0.01) {
for (int c = 0; c < 4; c++) {
hilite_dir[c][i][j] = hilite[c][i][j] / hilite[3][i][j];
}
} else {
for (int c = 0; c < 4; c++) {
hilite_dir[c][i][j] = 0.1 * ((hilite_dir[0 + c][i - 2][j - 1] + hilite_dir[0 + c][i - 1][j - 1] + hilite_dir[0 + c][i][j - 1] + hilite_dir[0 + c][i + 1][j - 1] + hilite_dir[0 + c][i + 2][j - 1]) /
(hilite_dir[0 + 3][i - 2][j - 1] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i][j - 1] + hilite_dir[0 + 3][i + 1][j - 1] + hilite_dir[0 + 3][i + 2][j - 1] + 0.00001));
hilite_dir[4 + c][i][j + 1] += hilite_dir[c][i][j];
hilite_dir[8 + c][i - 2][j] += hilite_dir[c][i][j];
hilite_dir[12 + c][i + 2][j] += hilite_dir[c][i][j];
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
for (int j = hfw - 2; j > 0; j--)
for (int i = 2; i < hfh - 2; i++) {
//from right
if (hilite[3][i][j] > 0.01) {
for (int c = 0; c < 4; c++) {
hilite_dir[4 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
}
} else {
for (int c = 0; c < 4; c++) {
hilite_dir[4 + c][i][j] = 0.1 * ((hilite_dir[4 + c][(i - 2)][(j + 1)] + hilite_dir[4 + c][(i - 1)][(j + 1)] + hilite_dir[4 + c][(i)][(j + 1)] + hilite_dir[4 + c][(i + 1)][(j + 1)] + hilite_dir[4 + c][(i + 2)][(j + 1)]) /
(hilite_dir[4 + 3][(i - 2)][(j + 1)] + hilite_dir[4 + 3][(i - 1)][(j + 1)] + hilite_dir[4 + 3][(i)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 2)][(j + 1)] + 0.00001));
hilite_dir[8 + c][i - 2][j] += hilite_dir[4 + c][i][j];
hilite_dir[12 + c][i + 2][j] += hilite_dir[4 + c][i][j];
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
for (int i = 1; i < hfh - 1; i++)
for (int j = 2; j < hfw - 2; j++) {
//if (i%100==0 && j%100==0)
// printf("row=%d col=%d r=%f g=%f b=%f hilite=%f \n",i,j,hilite[0][i][j],hilite[1][i][j],hilite[2][i][j],hilite[3][i][j]);
//from top
if (hilite[3][i][j] > 0.01) {
for (int c = 0; c < 4; c++) {
hilite_dir[8 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
}
} else {
for (int c = 0; c < 4; c++) {
hilite_dir[8 + c][i][j] = 0.1 * ((hilite_dir[8 + c][i - 1][j - 2] + hilite_dir[8 + c][i - 1][j - 1] + hilite_dir[8 + c][i - 1][j] + hilite_dir[8 + c][i - 1][j + 1] + hilite_dir[8 + c][i - 1][j + 2]) /
(hilite_dir[8 + 3][i - 1][j - 2] + hilite_dir[8 + 3][i - 1][j - 1] + hilite_dir[8 + 3][i - 1][j] + hilite_dir[8 + 3][i - 1][j + 1] + hilite_dir[8 + 3][i - 1][j + 2] + 0.00001));
hilite_dir[12 + c][i + 1][j] += hilite_dir[8 + c][i][j];
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
for (int i = hfh - 2; i > 0; i--)
for (int j = 2; j < hfw - 2; j++) {
//from bottom
if (hilite[3][i][j] > 0.01) {
for (int c = 0; c < 4; c++) {
hilite_dir[12 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
}
} else {
for (int c = 0; c < 4; c++) {
hilite_dir[12 + c][i][j] = 0.1 * ((hilite_dir[12 + c][(i + 1)][(j - 2)] + hilite_dir[12 + c][(i + 1)][(j - 1)] + hilite_dir[12 + c][(i + 1)][(j)] + hilite_dir[12 + c][(i + 1)][(j + 1)] + hilite_dir[12 + c][(i + 1)][(j + 2)]) /
(hilite_dir[12 + 3][(i + 1)][(j - 2)] + hilite_dir[12 + 3][(i + 1)][(j - 1)] + hilite_dir[12 + 3][(i + 1)][(j)] + hilite_dir[12 + 3][(i + 1)][(j + 1)] + hilite_dir[12 + 3][(i + 1)][(j + 2)] + 0.00001));
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//fill in edges
for (int dir = 0; dir < numdirs; dir++) {
for (int i = 1; i < hfh - 1; i++)
for (int c = 0; c < 4; c++) {
hilite_dir[dir * 4 + c][i][0] = hilite_dir[dir * 4 + c][i][1];
hilite_dir[dir * 4 + c][i][hfw - 1] = hilite_dir[dir * 4 + c][i][hfw - 2];
}
for (int j = 1; j < hfw - 1; j++)
for (int c = 0; c < 4; c++) {
hilite_dir[dir * 4 + c][0][j] = hilite_dir[dir * 4 + c][1][j];
hilite_dir[dir * 4 + c][hfh - 1][j] = hilite_dir[dir * 4 + c][hfh - 2][j];
}
for (int c = 0; c < 4; c++) {
hilite_dir[dir * 4 + c][0][0] = hilite_dir[dir * 4 + c][1][0] = hilite_dir[dir * 4 + c][0][1] = hilite_dir[dir * 4 + c][1][1] = hilite_dir[dir * 4 + c][2][2];
hilite_dir[dir * 4 + c][0][hfw - 1] = hilite_dir[dir * 4 + c][1][hfw - 1] = hilite_dir[dir * 4 + c][0][hfw - 2] = hilite_dir[dir * 4 + c][1][hfw - 2] = hilite_dir[dir * 4 + c][2][hfw - 3];
hilite_dir[dir * 4 + c][hfh - 1][0] = hilite_dir[dir * 4 + c][hfh - 2][0] = hilite_dir[dir * 4 + c][hfh - 1][1] = hilite_dir[dir * 4 + c][hfh - 2][1] = hilite_dir[dir * 4 + c][hfh - 3][2];
hilite_dir[dir * 4 + c][hfh - 1][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 1][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 3][hfw - 3];
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*for (int m=0; m<4*numdirs; m++) {
boxblur2(hilite_dir[m],hilite_dir[m],hfh,hfw,4);
}*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//now we have highlight data extended in various directions
//next step is to build back local data by averaging
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// now reconstruct clipped channels using color ratios
//const float Yclip = 0.3333*(max[0] + max[1] + max[2]);
//float sumwt=0, counts=0;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int i1 = min((i - (i % pitch)) / pitch, hfh - 1);
for (int j = 0; j < width; j++) {
int j1 = min((j - (j % pitch)) / pitch, hfw - 1);
float pixel[3] = {red[i][j], green[i][j], blue[i][j]};
if (pixel[0] < max_f[0] && pixel[1] < max_f[1] && pixel[2] < max_f[2]) {
continue; //pixel not clipped
}
//if (pixel[0]<fixthresh[0] && pixel[1]<fixthresh[1] && pixel[2]<fixthresh[2]) continue;//pixel not clipped
//%%%%%%%%%%%%%%%%%%%%%%%
//estimate recovered values using modified HLRecovery_blend algorithm
float rgb[ColorCount], rgb_blend[ColorCount] = {}, cam[2][ColorCount], lab[2][ColorCount], sum[2], chratio;
// Copy input pixel to rgb so it's easier to access in loops
rgb[0] = pixel[0];
rgb[1] = pixel[1];
rgb[2] = pixel[2];
// Initialize cam with raw input [0] and potentially clipped input [1]
FOREACHCOLOR {
cam[0][c] = rgb[c];
cam[1][c] = min(cam[0][c], clippt);
}
// Calculate the lightness correction ratio (chratio)
for (int i2 = 0; i2 < 2; i2++) {
FOREACHCOLOR {
lab[i2][c] = 0;
for (int j = 0; j < ColorCount; j++)
{
lab[i2][c] += trans[ColorCount - 3][c][j] * cam[i2][j];
}
}
sum[i2] = 0;
for (int c = 1; c < ColorCount; c++) {
sum[i2] += SQR(lab[i2][c]);
}
}
if(sum[0] == 0.f) { // avoid division by zero
sum[0] = 0.0001f;
}
chratio = sqrt(sum[1] / sum[0]);
// Apply ratio to lightness in lab space
for (int c = 1; c < ColorCount; c++) {
lab[0][c] *= chratio;
}
// Transform back from lab to RGB
FOREACHCOLOR {
cam[0][c] = 0;
for (int j = 0; j < ColorCount; j++)
{
cam[0][c] += itrans[ColorCount - 3][c][j] * lab[0][j];
}
}
FOREACHCOLOR rgb[c] = cam[0][c] / ColorCount;
// Copy converted pixel back
float rfrac = min(1.0f, max(1.0f, max_f[0] / medpt) * (pixel[0] - blendpt) / (hlmax[0] - blendpt));
float gfrac = min(1.0f, max(1.0f, max_f[1] / medpt) * (pixel[1] - blendpt) / (hlmax[1] - blendpt));
float bfrac = min(1.0f, max(1.0f, max_f[2] / medpt) * (pixel[2] - blendpt) / (hlmax[2] - blendpt));
if (pixel[0] > blendpt) {
rgb_blend[0] = rfrac * rgb[0] + (1 - rfrac) * pixel[0];
}
if (pixel[1] > blendpt) {
rgb_blend[1] = gfrac * rgb[1] + (1 - gfrac) * pixel[1];
}
if (pixel[2] > blendpt) {
rgb_blend[2] = bfrac * rgb[2] + (1 - bfrac) * pixel[2];
}
//end of HLRecovery_blend estimation
//%%%%%%%%%%%%%%%%%%%%%%%
//float pixref[3]={min(Yclip,hfsize[0][i1][j1]),min(Yclip,hfsize[1][i1][j1]),min(Yclip,hfsize[2][i1][j1])};
//there are clipped highlights
//first, determine weighted average of unclipped extensions (weighting is by 'hue' proximity)
float dirwt, factor, Y;
float totwt = 0; //0.0003;
float clipfix[3] = {0, 0, 0}; //={totwt*rgb_blend[0],totwt*rgb_blend[1],totwt*rgb_blend[2]};
for (int dir = 0; dir < numdirs; dir++) {
float Yhi = 0.001 + (hilite_dir[dir * 4 + 0][i1][j1] + hilite_dir[dir * 4 + 1][i1][j1] + hilite_dir[dir * 4 + 2][i1][j1]);
float Y = 0.001 + (rgb_blend[0] + rgb_blend[1] + rgb_blend[2]);
if (hilite_dir[dir * 4 + 0][i1][j1] + hilite_dir[dir * 4 + 1][i1][j1] + hilite_dir[dir * 4 + 2][i1][j1] > 0.5) {
dirwt = invfn[65535 * (SQR(rgb_blend[0] / Y - hilite_dir[dir * 4 + 0][i1][j1] / Yhi) +
SQR(rgb_blend[1] / Y - hilite_dir[dir * 4 + 1][i1][j1] / Yhi) +
SQR(rgb_blend[2] / Y - hilite_dir[dir * 4 + 2][i1][j1] / Yhi))];
totwt += dirwt;
clipfix[0] += dirwt * hilite_dir[dir * 4 + 0][i1][j1] / (hilite_dir[dir * 4 + 3][i1][j1] + 0.00001);
clipfix[1] += dirwt * hilite_dir[dir * 4 + 1][i1][j1] / (hilite_dir[dir * 4 + 3][i1][j1] + 0.00001);
clipfix[2] += dirwt * hilite_dir[dir * 4 + 2][i1][j1] / (hilite_dir[dir * 4 + 3][i1][j1] + 0.00001);
}
}
if(totwt == 0.f) {
continue;
}
clipfix[0] /= totwt;
clipfix[1] /= totwt;
clipfix[2] /= totwt;
//sumwt += totwt;
//counts ++;
//now correct clipped channels
if (pixel[0] > max_f[0] && pixel[1] > max_f[1] && pixel[2] > max_f[2]) {
//all channels clipped
float Y = (0.299 * clipfix[0] + 0.587 * clipfix[1] + 0.114 * clipfix[2]);
//float Y = (clipfix[0] + clipfix[1] + clipfix[2]);
factor = whitept / Y;
red[i][j] = clipfix[0] * factor;
green[i][j] = clipfix[1] * factor;
blue[i][j] = clipfix[2] * factor;
} else {//some channels clipped
int notclipped[3] = {pixel[0] < max_f[0] ? 1 : 0, pixel[1] < max_f[1] ? 1 : 0, pixel[2] < max_f[2] ? 1 : 0};
if (notclipped[0] == 0) { //red clipped
red[i][j] = max(red[i][j], (clipfix[0] * ((notclipped[1] * pixel[1] + notclipped[2] * pixel[2]) /
(notclipped[1] * clipfix[1] + notclipped[2] * clipfix[2]))));
}
if (notclipped[1] == 0) { //green clipped
green[i][j] = max(green[i][j], (clipfix[1] * ((notclipped[2] * pixel[2] + notclipped[0] * pixel[0]) /
(notclipped[2] * clipfix[2] + notclipped[0] * clipfix[0]))));
}
if (notclipped[2] == 0) { //blue clipped
blue[i][j] = max(blue[i][j], (clipfix[2] * ((notclipped[0] * pixel[0] + notclipped[1] * pixel[1]) /
(notclipped[0] * clipfix[0] + notclipped[1] * clipfix[1]))));
}
}
/*if (hilite[3][i1][j1]>0.01) {
red[i][j] = (red[i][j] + hilite[0][i1][j1])/(1+hilite[3][i1][j1]);
green[i][j] = (green[i][j]+ hilite[1][i1][j1])/(1+hilite[3][i1][j1]);
blue[i][j] = (blue[i][j] + hilite[2][i1][j1])/(1+hilite[3][i1][j1]);
}*/
Y = (0.299 * red[i][j] + 0.587 * green[i][j] + 0.114 * blue[i][j]);
if (Y > whitept) {
factor = whitept / Y;
/*I = (0.596 * red[i][j] - 0.275 * green[i][j] - 0.321 * blue[i][j]);
Q = (0.212 * red[i][j] - 0.523 * green[i][j] + 0.311 * blue[i][j]);
Y *= factor;
I *= factor;//max(0,min(1,(whitept-Y)/(whitept-clippt)));
Q *= factor;//max(0,min(1,(whitept-Y)/(whitept-clippt)));
red[i][j] = Y + 0.956*I + 0.621*Q;
green[i][j] = Y - 0.272*I - 0.647*Q;
blue[i][j] = Y - 1.105*I + 1.702*Q;*/
red[i][j] *= factor;
green[i][j] *= factor;
blue[i][j] *= factor;
}
}
}
if(plistener) {
plistener->setProgress(1.00);
}
//printf("ave wt=%f\n",sumwt/counts);
// diagnostic output
/*for (int i=0; i<height; i++) {
int i1 = min(hfh-1,(i-(i%pitch))/pitch);
for (int j=0; j<width; j++) {
int j1 = min(hfw-1,(j-(j%pitch))/pitch);
//red[i][j] =hfsize[0][i1][j1];
//green[i][j]=hfsize[1][i1][j1];
//blue[i][j] =hfsize[2][i1][j1];
//red[i][j] =clippt/2+red[i][j]-channelblur[0][i][j];
//green[i][j]=clippt/2+green[i][j]-channelblur[1][i][j];
//blue[i][j] =clippt/2+blue[i][j]-channelblur[2][i][j];
red[i][j]= hilite[0][i1][j1]/(hilite[3][i1][j1]+0.001);
green[i][j]=hilite[1][i1][j1]/(hilite[3][i1][j1]+0.001);
blue[i][j]= hilite[2][i1][j1]/(hilite[3][i1][j1]+0.001);
//red[i][j]= hilite_dir[0+0][i1][j1]/hilite_dir[0+3][i1][j1];
//green[i][j]=hilite_dir[0+1][i1][j1]/hilite_dir[0+3][i1][j1];
//blue[i][j]= hilite_dir[0+2][i1][j1]/hilite_dir[0+3][i1][j1];
//red[i][j]= clipfix[0][i1][j1];
//green[i][j]=clipfix[1][i1][j1];
//blue[i][j]= clipfix[2][i1][j1];
}
}*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}// end of HLReconstruction
/*
void RawImageSource::halfsize()
{
int ex,ey;
//determine GRBG coset; (ey,ex) is the offset of the R subarray
if (FC(0,0)==1) {//first pixel is G
if (FC(0,1)==0) {ey=0; ex=1;} else {ey=1; ex=0;}
} else {//first pixel is R or B
if (FC(0,0)==0) {ey=0; ex=0;} else {ey=1; ex=1;}
}
for (int i=0; i<(H-(H&1)); i++) {
for (int j=0; j<(W-(W&1)); j++){
red[i][j] = rawData[i+ey-(i&1)][j+ex-(j&1)];
green[i][j] = (rawData[i+(1-ey)-(i&1)][j+ex-(j&1)]+rawData[i+ey-(i&1)][j+(1-ex)-(j&1)])/2;
blue[i][j] = rawData[i+(1-ey)-(i&1)][j+(1-ex)-(j&1)];
}
if (W&1) {
red[i][W-1]=red[i][W-2];
green[i][W-1]=green[i][W-2];
blue[i][W-1]=blue[i][W-2];
}
}
if (H&1) {
for (int j=0; j<W; j++){
red[H-1][j] = red[H-2][j];
green[H-1][j] = green[H-2][j];
blue[H-1][j] = blue[H-2][j];
}
}
}
*/
}