246 lines
7.2 KiB
C++
246 lines
7.2 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* 2010 Ilya Popov <ilia_popov@rambler.ru>
|
|
* 2012 Emil Martinec <ejmartin@uchicago.edu>
|
|
*/
|
|
|
|
#ifndef CPLX_WAVELET_DEC_H_INCLUDED
|
|
#define CPLX_WAVELET_DEC_H_INCLUDED
|
|
|
|
#include <cstddef>
|
|
#include <math.h>
|
|
|
|
#include "cplx_wavelet_level.h"
|
|
#include "cplx_wavelet_filter_coeffs.h"
|
|
|
|
namespace rtengine {
|
|
|
|
class wavelet_decomposition
|
|
{
|
|
public:
|
|
|
|
typedef float internal_type;
|
|
float *coeff0;
|
|
bool memoryAllocationFailed;
|
|
|
|
private:
|
|
|
|
static const int maxlevels = 10;//should be greater than any conceivable order of decimation
|
|
|
|
int lvltot, subsamp;
|
|
int numThreads;
|
|
int m_w, m_h;//dimensions
|
|
|
|
int wavfilt_len, wavfilt_offset;
|
|
float *wavfilt_anal;
|
|
float *wavfilt_synth;
|
|
|
|
|
|
wavelet_level<internal_type> * wavelet_decomp[maxlevels];
|
|
|
|
public:
|
|
|
|
template<typename E>
|
|
wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling, int skipcrop = 1, int numThreads = 1, int Daub4Len = 6);
|
|
|
|
~wavelet_decomposition();
|
|
|
|
internal_type ** level_coeffs(int level) const
|
|
{
|
|
return wavelet_decomp[level]->subbands();
|
|
}
|
|
|
|
int level_W(int level) const
|
|
{
|
|
return wavelet_decomp[level]->width();
|
|
}
|
|
|
|
int level_H(int level) const
|
|
{
|
|
return wavelet_decomp[level]->height();
|
|
}
|
|
|
|
int level_stride(int level) const
|
|
{
|
|
return wavelet_decomp[level]->stride();
|
|
}
|
|
|
|
int maxlevel() const
|
|
{
|
|
return lvltot+1;
|
|
}
|
|
|
|
int subsample() const
|
|
{
|
|
return subsamp;
|
|
}
|
|
template<typename E>
|
|
void reconstruct(E * dst, const float blend = 1.f);
|
|
};
|
|
|
|
template<typename E>
|
|
wavelet_decomposition::wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling, int skipcrop, int numThreads, int Daub4Len)
|
|
: coeff0(NULL), memoryAllocationFailed(false), lvltot(0), subsamp(subsampling), numThreads(numThreads), m_w(width), m_h(height)
|
|
{
|
|
|
|
//initialize wavelet filters
|
|
wavfilt_len = Daub4Len;
|
|
wavfilt_offset = Daub4_offset;
|
|
wavfilt_anal = new float[2*wavfilt_len];
|
|
wavfilt_synth = new float[2*wavfilt_len];
|
|
|
|
if(wavfilt_len==6) {
|
|
for (int n=0; n<2; n++) {
|
|
for (int i=0; i<wavfilt_len; i++) {
|
|
wavfilt_anal[wavfilt_len*(n)+i] = Daub4_anal[n][i];
|
|
wavfilt_synth[wavfilt_len*(n)+i] = Daub4_anal[n][wavfilt_len-1-i];
|
|
//n=0 lopass, n=1 hipass
|
|
}
|
|
}
|
|
} else if(wavfilt_len==8) {
|
|
for (int n=0; n<2; n++) {
|
|
for (int i=0; i<wavfilt_len; i++) {
|
|
wavfilt_anal[wavfilt_len*(n)+i] = Daub4_anal8[n][i];
|
|
wavfilt_synth[wavfilt_len*(n)+i] = Daub4_anal8[n][wavfilt_len-1-i];
|
|
//n=0 lopass, n=1 hipass
|
|
}
|
|
}
|
|
}
|
|
else if(wavfilt_len==12) {
|
|
for (int n=0; n<2; n++) {
|
|
for (int i=0; i<wavfilt_len; i++) {
|
|
wavfilt_anal[wavfilt_len*(n)+i] = Daub4_anal12[n][i];
|
|
wavfilt_synth[wavfilt_len*(n)+i] = Daub4_anal12[n][wavfilt_len-1-i];
|
|
//n=0 lopass, n=1 hipass
|
|
}
|
|
}
|
|
}
|
|
else if(wavfilt_len==16) {
|
|
for (int n=0; n<2; n++) {
|
|
for (int i=0; i<wavfilt_len; i++) {
|
|
wavfilt_anal[wavfilt_len*(n)+i] = Daub4_anal16[n][i];
|
|
wavfilt_synth[wavfilt_len*(n)+i] = Daub4_anal16[n][wavfilt_len-1-i];
|
|
//n=0 lopass, n=1 hipass
|
|
}
|
|
}
|
|
}
|
|
else if(wavfilt_len==4) {
|
|
for (int n=0; n<2; n++) {
|
|
for (int i=0; i<wavfilt_len; i++) {
|
|
wavfilt_anal[wavfilt_len*(n)+i] = Daub4_anal0[n][i];
|
|
wavfilt_synth[wavfilt_len*(n)+i] = Daub4_anal0[n][wavfilt_len-1-i];
|
|
//n=0 lopass, n=1 hipass
|
|
}
|
|
}
|
|
}
|
|
// after coefficient rotation, data structure is:
|
|
// wavelet_decomp[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
|
|
|
|
lvltot=0;
|
|
E *buffer[2];
|
|
buffer[0] = new (std::nothrow) E[(m_w/2+1)*(m_h/2+1)];
|
|
if(buffer[0] == NULL) {
|
|
memoryAllocationFailed = true;
|
|
return;
|
|
}
|
|
buffer[1] = new (std::nothrow) E[(m_w/2+1)*(m_h/2+1)];
|
|
if(buffer[1] == NULL) {
|
|
memoryAllocationFailed = true;
|
|
delete[] buffer[0];
|
|
buffer[0] = NULL;
|
|
return;
|
|
}
|
|
int bufferindex = 0;
|
|
|
|
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(src, buffer[bufferindex^1], lvltot/*level*/, subsamp, m_w, m_h, \
|
|
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset, skipcrop, numThreads);
|
|
if(wavelet_decomp[lvltot]->memoryAllocationFailed)
|
|
memoryAllocationFailed = true;
|
|
while(lvltot < maxlvl-1) {
|
|
lvltot++;
|
|
bufferindex ^= 1;
|
|
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(buffer[bufferindex], buffer[bufferindex^1]/*lopass*/, lvltot/*level*/, subsamp, \
|
|
wavelet_decomp[lvltot-1]->width(), wavelet_decomp[lvltot-1]->height(), \
|
|
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset, skipcrop, numThreads);
|
|
if(wavelet_decomp[lvltot]->memoryAllocationFailed)
|
|
memoryAllocationFailed = true;
|
|
}
|
|
coeff0 = buffer[bufferindex^1];
|
|
delete[] buffer[bufferindex];
|
|
}
|
|
|
|
template<typename E>
|
|
void wavelet_decomposition::reconstruct(E * dst, const float blend) {
|
|
|
|
if(memoryAllocationFailed)
|
|
return;
|
|
// data structure is wavcoeffs[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
|
|
|
|
if(lvltot >= 1) {
|
|
int width = wavelet_decomp[1]->m_w;
|
|
int height = wavelet_decomp[1]->m_h;
|
|
|
|
E *tmpHi = new (std::nothrow) E[width*height];
|
|
if(tmpHi == NULL) {
|
|
memoryAllocationFailed = true;
|
|
return;
|
|
}
|
|
|
|
for (int lvl=lvltot; lvl>0; lvl--) {
|
|
E *tmpLo = wavelet_decomp[lvl]->wavcoeffs[2]; // we can use this as buffer
|
|
wavelet_decomp[lvl]->reconstruct_level(tmpLo, tmpHi, coeff0, coeff0, wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset);
|
|
delete wavelet_decomp[lvl];
|
|
wavelet_decomp[lvl] = NULL;
|
|
}
|
|
delete[] tmpHi;
|
|
}
|
|
|
|
int width = wavelet_decomp[0]->m_w;
|
|
int height = wavelet_decomp[0]->m_h2;
|
|
E *tmpLo;
|
|
if(wavelet_decomp[0]->bigBlockOfMemoryUsed()) // bigBlockOfMemoryUsed means that wavcoeffs[2] points to a block of memory big enough to hold the data
|
|
tmpLo = wavelet_decomp[0]->wavcoeffs[2];
|
|
else { // allocate new block of memory
|
|
tmpLo = new (std::nothrow) E[width*height];
|
|
if(tmpLo == NULL) {
|
|
memoryAllocationFailed = true;
|
|
return;
|
|
}
|
|
}
|
|
E *tmpHi = new (std::nothrow) E[width*height];
|
|
if(tmpHi == NULL) {
|
|
memoryAllocationFailed = true;
|
|
if(!wavelet_decomp[0]->bigBlockOfMemoryUsed())
|
|
delete[] tmpLo;
|
|
return;
|
|
}
|
|
|
|
|
|
wavelet_decomp[0]->reconstruct_level(tmpLo, tmpHi, coeff0, dst, wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset, blend);
|
|
if(!wavelet_decomp[0]->bigBlockOfMemoryUsed())
|
|
delete[] tmpLo;
|
|
delete[] tmpHi;
|
|
delete wavelet_decomp[0];
|
|
wavelet_decomp[0] = NULL;
|
|
delete[] coeff0;
|
|
coeff0 = NULL;
|
|
}
|
|
|
|
};
|
|
|
|
#endif
|