839 lines
28 KiB
C++
839 lines
28 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef _GAUSS_H_
|
|
#define _GAUSS_H_
|
|
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <cmath>
|
|
#include "alignedbuffer.h"
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
#ifdef __SSE__
|
|
#if defined( WIN32 ) && defined(__x86_64__)
|
|
#include <intrin.h>
|
|
#else
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
#endif
|
|
|
|
// classical filtering if the support window is small:
|
|
|
|
template<class T> void gaussHorizontal3 (T** src, T** dst, AlignedBufferMP<double> &buffer, int W, int H, const float c0, const float c1) {
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<H; i++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
T* temp=(T*)pBuf->data;
|
|
|
|
for (int j=1; j<W-1; j++)
|
|
temp[j] = (T)(c1 * (src[i][j-1] + src[i][j+1]) + c0 * src[i][j]);
|
|
dst[i][0] = src[i][0];
|
|
memcpy (dst[i]+1, temp+1, (W-2)*sizeof(T));
|
|
|
|
buffer.release(pBuf);
|
|
|
|
dst[i][W-1] = src[i][W-1];
|
|
}
|
|
}
|
|
|
|
template<class T> void gaussVertical3 (T** src, T** dst, AlignedBufferMP<double> &buffer, int W, int H, const float c0, const float c1) {
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<W; i++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
T* temp = (T*)pBuf->data;
|
|
|
|
for (int j = 1; j<H-1; j++)
|
|
temp[j] = (T)(c1 * (src[j-1][i] + src[j+1][i]) + c0 * src[j][i]);
|
|
dst[0][i] = src[0][i];
|
|
for (int j=1; j<H-1; j++)
|
|
dst[j][i] = temp[j];
|
|
|
|
buffer.release(pBuf);
|
|
|
|
dst[H-1][i] = src[H-1][i];
|
|
}
|
|
}
|
|
|
|
#ifdef __SSE__
|
|
#ifdef WIN32
|
|
template<class T> __attribute__((force_align_arg_pointer)) void gaussVertical3Sse (T** src, T** dst, int W, int H, const float c0, const float c1) {
|
|
#else
|
|
template<class T> void gaussVertical3Sse (T** src, T** dst, int W, int H, const float c0, const float c1) {
|
|
#endif
|
|
__m128 Tv,Tm1v,Tp1v;
|
|
__m128 c0v,c1v;
|
|
c0v = _mm_set1_ps(c0);
|
|
c1v = _mm_set1_ps(c1);
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<W-3; i+=4) {
|
|
Tm1v = _mm_loadu_ps( &src[0][i] );
|
|
_mm_storeu_ps( &dst[0][i], Tm1v);
|
|
if(H>1)
|
|
Tv = _mm_loadu_ps( &src[1][i]);
|
|
for (int j=1; j<H-1; j++){
|
|
Tp1v = _mm_loadu_ps( &src[j+1][i]);
|
|
_mm_storeu_ps( &dst[j][i], c1v * (Tp1v + Tm1v) + Tv * c0v);
|
|
Tm1v = Tv;
|
|
Tv = Tp1v;
|
|
}
|
|
_mm_storeu_ps( &dst[H-1][i], _mm_loadu_ps( &src[H-1][i]));
|
|
}
|
|
|
|
// Borders are done without SSE
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i=W-(W%4);i<W;i++)
|
|
{
|
|
dst[0][i] = src[0][i];
|
|
for (int j = 1; j<H-1; j++)
|
|
dst[j][i] = c1 * (src[j-1][i] + src[j+1][i]) + c0 * src[j][i];
|
|
dst[H-1][i] = src[H-1][i];
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef WIN32
|
|
template<class T> __attribute__((force_align_arg_pointer)) void gaussHorizontal3Sse (T** src, T** dst, int W, int H, const float c0, const float c1) {
|
|
#else
|
|
template<class T> void gaussHorizontal3Sse (T** src, T** dst, int W, int H, const float c0, const float c1) {
|
|
#endif
|
|
float tmp[W][4] __attribute__ ((aligned (16)));
|
|
|
|
__m128 Tv,Tm1v,Tp1v;
|
|
__m128 c0v,c1v;
|
|
c0v = _mm_set1_ps(c0);
|
|
c1v = _mm_set1_ps(c1);
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<H-3; i+=4) {
|
|
dst[i][0] = src[i][0];
|
|
dst[i+1][0] = src[i+1][0];
|
|
dst[i+2][0] = src[i+2][0];
|
|
dst[i+3][0] = src[i+3][0];
|
|
Tm1v = _mm_set_ps( src[i][0], src[i+1][0], src[i+2][0], src[i+3][0] );
|
|
if(W>1)
|
|
Tv = _mm_set_ps( src[i][1], src[i+1][1], src[i+2][1], src[i+3][1] );
|
|
for (int j=1; j<W-1; j++){
|
|
Tp1v = _mm_set_ps( src[i][j+1], src[i+1][j+1], src[i+2][j+1], src[i+3][j+1] );
|
|
_mm_store_ps( &tmp[j][0], c1v * (Tp1v + Tm1v) + Tv * c0v);
|
|
Tm1v = Tv;
|
|
Tv = Tp1v;
|
|
}
|
|
|
|
for (int j=1; j<W-1; j++) {
|
|
dst[i+3][j] = tmp[j][0];
|
|
dst[i+2][j] = tmp[j][1];
|
|
dst[i+1][j] = tmp[j][2];
|
|
dst[i][j] = tmp[j][3];
|
|
}
|
|
|
|
dst[i][W-1] = src[i][W-1];
|
|
dst[i+1][W-1] = src[i+1][W-1];
|
|
dst[i+2][W-1] = src[i+2][W-1];
|
|
dst[i+3][W-1] = src[i+3][W-1];
|
|
}
|
|
// Borders are done without SSE
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i=H-(H%4);i<H;i++)
|
|
{
|
|
dst[i][0] = src[i][0];
|
|
for (int j = 1; j<W-1; j++)
|
|
dst[i][j] = c1 * (src[i][j-1] + src[i][j+1]) + c0 * src[i][j];
|
|
dst[i][W-1] = src[i][W-1];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// fast gaussian approximation if the support window is large
|
|
#ifdef WIN32
|
|
template<class T> __attribute__((force_align_arg_pointer)) void gaussHorizontalSse (T** src, T** dst, int W, int H, float sigma) {
|
|
#else
|
|
template<class T> void gaussHorizontalSse (T** src, T** dst, int W, int H, float sigma) {
|
|
#endif
|
|
if (sigma<0.25) {
|
|
// dont perform filtering
|
|
if (src!=dst)
|
|
#pragma omp for
|
|
for (int i = 0; i<H; i++)
|
|
memcpy (dst[i], src[i], W*sizeof(T));
|
|
return;
|
|
}
|
|
|
|
if (sigma<0.6) {
|
|
// compute 3x3 kernel
|
|
float c1 = exp (-1.0 / (2.0 * sigma * sigma));
|
|
float csum = 2.0 * c1 + 1.0;
|
|
c1 /= csum;
|
|
float c0 = 1.0 / csum;
|
|
gaussHorizontal3Sse<T> (src, dst, W, H, c0, c1);
|
|
return;
|
|
}
|
|
|
|
// coefficient calculation
|
|
float q = 0.98711 * sigma - 0.96330;
|
|
if (sigma<2.5)
|
|
q = 3.97156 - 4.14554 * sqrt (1.0 - 0.26891 * sigma);
|
|
float b0 = 1.57825 + 2.44413*q + 1.4281*q*q + 0.422205*q*q*q;
|
|
float b1 = 2.44413*q + 2.85619*q*q + 1.26661*q*q*q;
|
|
float b2 = -1.4281*q*q - 1.26661*q*q*q;
|
|
float b3 = 0.422205*q*q*q;
|
|
float B = 1.0 - (b1+b2+b3) / b0;
|
|
|
|
b1 /= b0;
|
|
b2 /= b0;
|
|
b3 /= b0;
|
|
|
|
// From: Bill Triggs, Michael Sdika: Boundary Conditions for Young-van Vliet Recursive Filtering
|
|
float M[3][3];
|
|
M[0][0] = -b3*b1+1.0-b3*b3-b2;
|
|
M[0][1] = (b3+b1)*(b2+b3*b1);
|
|
M[0][2] = b3*(b1+b3*b2);
|
|
M[1][0] = b1+b3*b2;
|
|
M[1][1] = -(b2-1.0)*(b2+b3*b1);
|
|
M[1][2] = -(b3*b1+b3*b3+b2-1.0)*b3;
|
|
M[2][0] = b3*b1+b2+b1*b1-b2*b2;
|
|
M[2][1] = b1*b2+b3*b2*b2-b1*b3*b3-b3*b3*b3-b3*b2+b3;
|
|
M[2][2] = b3*(b1+b3*b2);
|
|
for (int i=0; i<3; i++)
|
|
for (int j=0; j<3; j++) {
|
|
M[i][j] *= (1.0+b2+(b1-b3)*b3);
|
|
M[i][j] /= (1.0+b1-b2+b3)*(1.0-b1-b2-b3);
|
|
}
|
|
float tmp[W][4] __attribute__ ((aligned (16)));
|
|
float tmpV[4] __attribute__ ((aligned (16)));
|
|
__m128 Rv;
|
|
__m128 Tv,Tm2v,Tm3v;
|
|
__m128 Bv,b1v,b2v,b3v;
|
|
__m128 temp2W,temp2Wp1;
|
|
Bv = _mm_set1_ps(B);
|
|
b1v = _mm_set1_ps(b1);
|
|
b2v = _mm_set1_ps(b2);
|
|
b3v = _mm_set1_ps(b3);
|
|
#pragma omp for
|
|
for (int i=0; i<H-3; i+=4) {
|
|
tmpV[0] = src[i+3][0]; tmpV[1] = src[i+2][0]; tmpV[2] = src[i+1][0]; tmpV[3] = src[i][0];
|
|
Tv = _mm_load_ps(tmpV);
|
|
Rv = Tv * (Bv + b1v + b2v + b3v);
|
|
Tm3v = Rv;
|
|
_mm_store_ps( &tmp[0][0], Rv );
|
|
|
|
tmpV[0] = src[i+3][1]; tmpV[1] = src[i+2][1]; tmpV[2] = src[i+1][1]; tmpV[3] = src[i][1];
|
|
Rv = _mm_load_ps(tmpV) * Bv + Rv * b1v + Tv * (b2v + b3v);
|
|
Tm2v = Rv;
|
|
_mm_store_ps( &tmp[1][0], Rv );
|
|
|
|
tmpV[0] = src[i+3][2]; tmpV[1] = src[i+2][2]; tmpV[2] = src[i+1][2]; tmpV[3] = src[i][2];
|
|
Rv = _mm_load_ps(tmpV) * Bv + Rv * b1v + Tm3v * b2v + Tv * b3v;
|
|
_mm_store_ps( &tmp[2][0], Rv );
|
|
|
|
for (int j=3; j<W; j++) {
|
|
Tv = Rv;
|
|
Rv = _mm_set_ps(src[i][j],src[i+1][j],src[i+2][j],src[i+3][j]) * Bv + Tv * b1v + Tm2v * b2v + Tm3v * b3v;
|
|
_mm_store_ps( &tmp[j][0], Rv );
|
|
Tm3v = Tm2v;
|
|
Tm2v = Tv;
|
|
}
|
|
|
|
Tv = _mm_set_ps(src[i][W-1],src[i+1][W-1],src[i+2][W-1],src[i+3][W-1]);
|
|
|
|
temp2Wp1 = Tv + _mm_set1_ps(M[2][0]) * (Rv - Tv) + _mm_set1_ps(M[2][1]) * ( Tm2v - Tv ) + _mm_set1_ps(M[2][2]) * (Tm3v - Tv);
|
|
temp2W = Tv + _mm_set1_ps(M[1][0]) * (Rv - Tv) + _mm_set1_ps(M[1][1]) * (Tm2v - Tv) + _mm_set1_ps(M[1][2]) * (Tm3v - Tv);
|
|
|
|
Rv = Tv + _mm_set1_ps(M[0][0]) * (Rv - Tv) + _mm_set1_ps(M[0][1]) * (Tm2v - Tv) + _mm_set1_ps(M[0][2]) * (Tm3v - Tv);
|
|
_mm_store_ps( &tmp[W-1][0], Rv );
|
|
|
|
Tm2v = Bv * Tm2v + b1v * Rv + b2v * temp2W + b3v * temp2Wp1;
|
|
_mm_store_ps( &tmp[W-2][0], Tm2v );
|
|
|
|
Tm3v = Bv * Tm3v + b1v * Tm2v + b2v * Rv + b3v * temp2W;
|
|
_mm_store_ps( &tmp[W-3][0], Tm3v );
|
|
|
|
Tv = Rv;
|
|
Rv = Tm3v;
|
|
Tm3v = Tv;
|
|
|
|
for (int j=W-4; j>=0; j--) {
|
|
Tv = Rv;
|
|
Rv = _mm_load_ps(&tmp[j][0]) * Bv + Tv * b1v + Tm2v * b2v + Tm3v * b3v;
|
|
_mm_store_ps( &tmp[j][0], Rv );
|
|
Tm3v = Tm2v;
|
|
Tm2v = Tv;
|
|
}
|
|
|
|
for (int j=0; j<W; j++) {
|
|
dst[i+3][j] = tmp[j][0];
|
|
dst[i+2][j] = tmp[j][1];
|
|
dst[i+1][j] = tmp[j][2];
|
|
dst[i][j] = tmp[j][3];
|
|
}
|
|
|
|
|
|
}
|
|
// Borders are done without SSE
|
|
#pragma omp for
|
|
for(int i=H-(H%4);i<H;i++)
|
|
{
|
|
tmp[0][0] = B * src[i][0] + b1*src[i][0] + b2*src[i][0] + b3*src[i][0];
|
|
tmp[1][0] = B * src[i][1] + b1*tmp[0][0] + b2*src[i][0] + b3*src[i][0];
|
|
tmp[2][0] = B * src[i][2] + b1*tmp[1][0] + b2*tmp[0][0] + b3*src[i][0];
|
|
|
|
for (int j=3; j<W; j++)
|
|
tmp[j][0] = B * src[i][j] + b1*tmp[j-1][0] + b2*tmp[j-2][0] + b3*tmp[j-3][0];
|
|
|
|
float temp2Wm1 = src[i][W-1] + M[0][0]*(tmp[W-1][0] - src[i][W-1]) + M[0][1]*(tmp[W-2][0] - src[i][W-1]) + M[0][2]*(tmp[W-3][0] - src[i][W-1]);
|
|
float temp2W = src[i][W-1] + M[1][0]*(tmp[W-1][0] - src[i][W-1]) + M[1][1]*(tmp[W-2][0] - src[i][W-1]) + M[1][2]*(tmp[W-3][0] - src[i][W-1]);
|
|
float temp2Wp1 = src[i][W-1] + M[2][0]*(tmp[W-1][0] - src[i][W-1]) + M[2][1]*(tmp[W-2][0] - src[i][W-1]) + M[2][2]*(tmp[W-3][0] - src[i][W-1]);
|
|
|
|
tmp[W-1][0] = temp2Wm1;
|
|
tmp[W-2][0] = B * tmp[W-2][0] + b1*tmp[W-1][0] + b2*temp2W + b3*temp2Wp1;
|
|
tmp[W-3][0] = B * tmp[W-3][0] + b1*tmp[W-2][0] + b2*tmp[W-1][0] + b3*temp2W;
|
|
|
|
for (int j=W-4; j>=0; j--)
|
|
tmp[j][0] = B * tmp[j][0] + b1*tmp[j+1][0] + b2*tmp[j+2][0] + b3*tmp[j+3][0];
|
|
|
|
for (int j=0; j<W; j++)
|
|
dst[i][j] = tmp[j][0];
|
|
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// fast gaussian approximation if the support window is large
|
|
|
|
template<class T> void gaussHorizontal (T** src, T** dst, AlignedBufferMP<double> &buffer, int W, int H, double sigma) {
|
|
|
|
#ifdef __SSE__
|
|
if(sigma < 70) { // bigger sigma only with double precision
|
|
gaussHorizontalSse<T> (src, dst, W, H, sigma);
|
|
return;
|
|
}
|
|
#endif
|
|
if (sigma<0.25) {
|
|
// dont perform filtering
|
|
if (src!=dst)
|
|
#pragma omp for
|
|
for (int i = 0; i<H; i++)
|
|
memcpy (dst[i], src[i], W*sizeof(T));
|
|
return;
|
|
}
|
|
|
|
if (sigma<0.6) {
|
|
// compute 3x3 kernel
|
|
double c1 = exp (-1.0 / (2.0 * sigma * sigma));
|
|
double csum = 2.0 * c1 + 1.0;
|
|
c1 /= csum;
|
|
double c0 = 1.0 / csum;
|
|
gaussHorizontal3<T> (src, dst, buffer, W, H, c0, c1);
|
|
return;
|
|
}
|
|
|
|
// coefficient calculation
|
|
double q = 0.98711 * sigma - 0.96330;
|
|
if (sigma<2.5)
|
|
q = 3.97156 - 4.14554 * sqrt (1.0 - 0.26891 * sigma);
|
|
double b0 = 1.57825 + 2.44413*q + 1.4281*q*q + 0.422205*q*q*q;
|
|
double b1 = 2.44413*q + 2.85619*q*q + 1.26661*q*q*q;
|
|
double b2 = -1.4281*q*q - 1.26661*q*q*q;
|
|
double b3 = 0.422205*q*q*q;
|
|
double B = 1.0 - (b1+b2+b3) / b0;
|
|
|
|
b1 /= b0;
|
|
b2 /= b0;
|
|
b3 /= b0;
|
|
|
|
// From: Bill Triggs, Michael Sdika: Boundary Conditions for Young-van Vliet Recursive Filtering
|
|
double M[3][3];
|
|
M[0][0] = -b3*b1+1.0-b3*b3-b2;
|
|
M[0][1] = (b3+b1)*(b2+b3*b1);
|
|
M[0][2] = b3*(b1+b3*b2);
|
|
M[1][0] = b1+b3*b2;
|
|
M[1][1] = -(b2-1.0)*(b2+b3*b1);
|
|
M[1][2] = -(b3*b1+b3*b3+b2-1.0)*b3;
|
|
M[2][0] = b3*b1+b2+b1*b1-b2*b2;
|
|
M[2][1] = b1*b2+b3*b2*b2-b1*b3*b3-b3*b3*b3-b3*b2+b3;
|
|
M[2][2] = b3*(b1+b3*b2);
|
|
for (int i=0; i<3; i++)
|
|
for (int j=0; j<3; j++)
|
|
M[i][j] /= (1.0+b1-b2+b3)*(1.0+b2+(b1-b3)*b3);
|
|
|
|
#pragma omp for
|
|
for (int i=0; i<H; i++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
double* temp2 = pBuf->data;
|
|
|
|
temp2[0] = B * src[i][0] + b1*src[i][0] + b2*src[i][0] + b3*src[i][0];
|
|
temp2[1] = B * src[i][1] + b1*temp2[0] + b2*src[i][0] + b3*src[i][0];
|
|
temp2[2] = B * src[i][2] + b1*temp2[1] + b2*temp2[0] + b3*src[i][0];
|
|
|
|
for (int j=3; j<W; j++)
|
|
temp2[j] = B * src[i][j] + b1*temp2[j-1] + b2*temp2[j-2] + b3*temp2[j-3];
|
|
|
|
double temp2Wm1 = src[i][W-1] + M[0][0]*(temp2[W-1] - src[i][W-1]) + M[0][1]*(temp2[W-2] - src[i][W-1]) + M[0][2]*(temp2[W-3] - src[i][W-1]);
|
|
double temp2W = src[i][W-1] + M[1][0]*(temp2[W-1] - src[i][W-1]) + M[1][1]*(temp2[W-2] - src[i][W-1]) + M[1][2]*(temp2[W-3] - src[i][W-1]);
|
|
double temp2Wp1 = src[i][W-1] + M[2][0]*(temp2[W-1] - src[i][W-1]) + M[2][1]*(temp2[W-2] - src[i][W-1]) + M[2][2]*(temp2[W-3] - src[i][W-1]);
|
|
|
|
temp2[W-1] = temp2Wm1;
|
|
temp2[W-2] = B * temp2[W-2] + b1*temp2[W-1] + b2*temp2W + b3*temp2Wp1;
|
|
temp2[W-3] = B * temp2[W-3] + b1*temp2[W-2] + b2*temp2[W-1] + b3*temp2W;
|
|
|
|
for (int j=W-4; j>=0; j--)
|
|
temp2[j] = B * temp2[j] + b1*temp2[j+1] + b2*temp2[j+2] + b3*temp2[j+3];
|
|
for (int j=0; j<W; j++)
|
|
dst[i][j] = (T)temp2[j];
|
|
|
|
buffer.release(pBuf);
|
|
}
|
|
}
|
|
|
|
#ifdef __SSE__
|
|
#ifdef WIN32
|
|
template<class T> __attribute__((force_align_arg_pointer)) void gaussVerticalSse (T** src, T** dst, int W, int H, float sigma) {
|
|
#else
|
|
template<class T> void gaussVerticalSse (T** src, T** dst, int W, int H, float sigma) {
|
|
#endif
|
|
if (sigma<0.25) {
|
|
// dont perform filtering
|
|
if (src!=dst)
|
|
#pragma omp for
|
|
for (int i = 0; i<H; i++)
|
|
memcpy (dst[i], src[i], W*sizeof(T));
|
|
return;
|
|
}
|
|
|
|
if (sigma<0.6) {
|
|
// compute 3x3 kernel
|
|
double c1 = exp (-1.0 / (2.0 * sigma * sigma));
|
|
double csum = 2.0 * c1 + 1.0;
|
|
c1 /= csum;
|
|
double c0 = 1.0 / csum;
|
|
gaussVertical3Sse<T> (src, dst, W, H, c0, c1);
|
|
return;
|
|
}
|
|
|
|
// coefficient calculation
|
|
double q = 0.98711 * sigma - 0.96330;
|
|
if (sigma<2.5)
|
|
q = 3.97156 - 4.14554 * sqrt (1.0 - 0.26891 * sigma);
|
|
double b0 = 1.57825 + 2.44413*q + 1.4281*q*q + 0.422205*q*q*q;
|
|
double b1 = 2.44413*q + 2.85619*q*q + 1.26661*q*q*q;
|
|
double b2 = -1.4281*q*q - 1.26661*q*q*q;
|
|
double b3 = 0.422205*q*q*q;
|
|
double B = 1.0 - (b1+b2+b3) / b0;
|
|
|
|
b1 /= b0;
|
|
b2 /= b0;
|
|
b3 /= b0;
|
|
|
|
// From: Bill Triggs, Michael Sdika: Boundary Conditions for Young-van Vliet Recursive Filtering
|
|
double M[3][3];
|
|
M[0][0] = -b3*b1+1.0-b3*b3-b2;
|
|
M[0][1] = (b3+b1)*(b2+b3*b1);
|
|
M[0][2] = b3*(b1+b3*b2);
|
|
M[1][0] = b1+b3*b2;
|
|
M[1][1] = -(b2-1.0)*(b2+b3*b1);
|
|
M[1][2] = -(b3*b1+b3*b3+b2-1.0)*b3;
|
|
M[2][0] = b3*b1+b2+b1*b1-b2*b2;
|
|
M[2][1] = b1*b2+b3*b2*b2-b1*b3*b3-b3*b3*b3-b3*b2+b3;
|
|
M[2][2] = b3*(b1+b3*b2);
|
|
for (int i=0; i<3; i++)
|
|
for (int j=0; j<3; j++) {
|
|
M[i][j] *= (1.0+b2+(b1-b3)*b3);
|
|
M[i][j] /= (1.0+b1-b2+b3)*(1.0-b1-b2-b3);
|
|
}
|
|
float tmp[H][4] __attribute__ ((aligned (16)));
|
|
__m128 Rv;
|
|
__m128 Tv,Tm2v,Tm3v;
|
|
__m128 Bv,b1v,b2v,b3v;
|
|
__m128 temp2W,temp2Wp1;
|
|
Bv = _mm_set1_ps(B);
|
|
b1v = _mm_set1_ps(b1);
|
|
b2v = _mm_set1_ps(b2);
|
|
b3v = _mm_set1_ps(b3);
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<W-3; i+=4) {
|
|
Tv = _mm_loadu_ps( &src[0][i]);
|
|
Rv = Tv * (Bv + b1v + b2v + b3v);
|
|
Tm3v = Rv;
|
|
_mm_store_ps( &tmp[0][0], Rv );
|
|
|
|
Rv = _mm_loadu_ps(&src[1][i]) * Bv + Rv * b1v + Tv * (b2v + b3v);
|
|
Tm2v = Rv;
|
|
_mm_store_ps( &tmp[1][0], Rv );
|
|
|
|
Rv = _mm_loadu_ps(&src[2][i]) * Bv + Rv * b1v + Tm3v * b2v + Tv * b3v;
|
|
_mm_store_ps( &tmp[2][0], Rv );
|
|
|
|
for (int j=3; j<H; j++) {
|
|
Tv = Rv;
|
|
Rv = _mm_loadu_ps(&src[j][i]) * Bv + Tv * b1v + Tm2v * b2v + Tm3v * b3v;
|
|
_mm_store_ps( &tmp[j][0], Rv );
|
|
Tm3v = Tm2v;
|
|
Tm2v = Tv;
|
|
}
|
|
Tv = _mm_loadu_ps(&src[H-1][i]);
|
|
|
|
temp2Wp1 = Tv + _mm_set1_ps(M[2][0]) * (Rv - Tv) + _mm_set1_ps(M[2][1]) * (Tm2v - Tv) + _mm_set1_ps(M[2][2]) * (Tm3v - Tv);
|
|
temp2W = Tv + _mm_set1_ps(M[1][0]) * (Rv - Tv) + _mm_set1_ps(M[1][1]) * (Tm2v - Tv) + _mm_set1_ps(M[1][2]) * (Tm3v - Tv);
|
|
|
|
Rv = Tv + _mm_set1_ps(M[0][0]) * (Rv - Tv) + _mm_set1_ps(M[0][1]) * (Tm2v - Tv) + _mm_set1_ps(M[0][2]) * (Tm3v - Tv);
|
|
_mm_storeu_ps( &dst[H-1][i], Rv );
|
|
|
|
Tm2v = Bv * Tm2v + b1v * Rv + b2v * temp2W + b3v * temp2Wp1;
|
|
_mm_storeu_ps( &dst[H-2][i], Tm2v );
|
|
|
|
Tm3v = Bv * Tm3v + b1v * Tm2v + b2v * Rv + b3v * temp2W;
|
|
_mm_storeu_ps( &dst[H-3][i], Tm3v );
|
|
|
|
Tv = Rv;
|
|
Rv = Tm3v;
|
|
Tm3v = Tv;
|
|
|
|
for (int j=H-4; j>=0; j--) {
|
|
Tv = Rv;
|
|
Rv = _mm_load_ps(&tmp[j][0]) * Bv + Tv * b1v + Tm2v * b2v + Tm3v * b3v;
|
|
_mm_storeu_ps( &dst[j][i], Rv );
|
|
Tm3v = Tm2v;
|
|
Tm2v = Tv;
|
|
}
|
|
}
|
|
// Borders are done without SSE
|
|
#pragma omp for
|
|
for(int i=W-(W%4);i<W;i++)
|
|
{
|
|
tmp[0][0] = B * src[0][i] + b1*src[0][i] + b2*src[0][i] + b3*src[0][i];
|
|
tmp[1][0] = B * src[1][i] + b1*tmp[0][0] + b2*src[0][i] + b3*src[0][i];
|
|
tmp[2][0] = B * src[2][i] + b1*tmp[1][0] + b2*tmp[0][0] + b3*src[0][i];
|
|
|
|
for (int j=3; j<H; j++)
|
|
tmp[j][0] = B * src[j][i] + b1*tmp[j-1][0] + b2*tmp[j-2][0] + b3*tmp[j-3][0];
|
|
|
|
float temp2Hm1 = src[H-1][i] + M[0][0]*(tmp[H-1][0] - src[H-1][i]) + M[0][1]*(tmp[H-2][0] - src[H-1][i]) + M[0][2]*(tmp[H-3][0] - src[H-1][i]);
|
|
float temp2H = src[H-1][i] + M[1][0]*(tmp[H-1][0] - src[H-1][i]) + M[1][1]*(tmp[H-2][0] - src[H-1][i]) + M[1][2]*(tmp[H-3][0] - src[H-1][i]);
|
|
float temp2Hp1 = src[H-1][i] + M[2][0]*(tmp[H-1][0] - src[H-1][i]) + M[2][1]*(tmp[H-2][0] - src[H-1][i]) + M[2][2]*(tmp[H-3][0] - src[H-1][i]);
|
|
|
|
tmp[H-1][0] = temp2Hm1;
|
|
tmp[H-2][0] = B * tmp[H-2][0] + b1*tmp[H-1][0] + b2*temp2H + b3*temp2Hp1;
|
|
tmp[H-3][0] = B * tmp[H-3][0] + b1*tmp[H-2][0] + b2*tmp[H-1][0] + b3*temp2H;
|
|
|
|
for (int j=H-4; j>=0; j--)
|
|
tmp[j][0] = B * tmp[j][0] + b1*tmp[j+1][0] + b2*tmp[j+2][0] + b3*tmp[j+3][0];
|
|
|
|
for (int j=0; j<H; j++)
|
|
dst[j][i] = tmp[j][0];
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
template<class T> void gaussVertical (T** src, T** dst, AlignedBufferMP<double> &buffer, int W, int H, double sigma) {
|
|
|
|
#ifdef __SSE__
|
|
if(sigma < 70) { // bigger sigma only with double precision
|
|
gaussVerticalSse<T> (src, dst, W, H, sigma);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (sigma<0.25) {
|
|
// dont perform filtering
|
|
if (src!=dst)
|
|
#pragma omp for
|
|
for (int i = 0; i<H; i++)
|
|
memcpy (dst[i], src[i], W*sizeof(T));
|
|
return;
|
|
}
|
|
|
|
if (sigma<0.6) {
|
|
// compute 3x3 kernel
|
|
double c1 = exp (-1.0 / (2.0 * sigma * sigma));
|
|
double csum = 2.0 * c1 + 1.0;
|
|
c1 /= csum;
|
|
double c0 = 1.0 / csum;
|
|
gaussVertical3<T> (src, dst, buffer, W, H, c0, c1);
|
|
return;
|
|
}
|
|
|
|
// coefficient calculation
|
|
double q = 0.98711 * sigma - 0.96330;
|
|
if (sigma<2.5)
|
|
q = 3.97156 - 4.14554 * sqrt (1.0 - 0.26891 * sigma);
|
|
double b0 = 1.57825 + 2.44413*q + 1.4281*q*q + 0.422205*q*q*q;
|
|
double b1 = 2.44413*q + 2.85619*q*q + 1.26661*q*q*q;
|
|
double b2 = -1.4281*q*q - 1.26661*q*q*q;
|
|
double b3 = 0.422205*q*q*q;
|
|
double B = 1.0 - (b1+b2+b3) / b0;
|
|
|
|
b1 /= b0;
|
|
b2 /= b0;
|
|
b3 /= b0;
|
|
|
|
// From: Bill Triggs, Michael Sdika: Boundary Conditions for Young-van Vliet Recursive Filtering
|
|
double M[3][3];
|
|
M[0][0] = -b3*b1+1.0-b3*b3-b2;
|
|
M[0][1] = (b3+b1)*(b2+b3*b1);
|
|
M[0][2] = b3*(b1+b3*b2);
|
|
M[1][0] = b1+b3*b2;
|
|
M[1][1] = -(b2-1.0)*(b2+b3*b1);
|
|
M[1][2] = -(b3*b1+b3*b3+b2-1.0)*b3;
|
|
M[2][0] = b3*b1+b2+b1*b1-b2*b2;
|
|
M[2][1] = b1*b2+b3*b2*b2-b1*b3*b3-b3*b3*b3-b3*b2+b3;
|
|
M[2][2] = b3*(b1+b3*b2);
|
|
for (int i=0; i<3; i++)
|
|
for (int j=0; j<3; j++)
|
|
M[i][j] /= (1.0+b1-b2+b3)*(1.0+b2+(b1-b3)*b3);
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<W; i++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
double* temp2 = pBuf->data;
|
|
temp2[0] = B * src[0][i] + b1*src[0][i] + b2*src[0][i] + b3*src[0][i];
|
|
temp2[1] = B * src[1][i] + b1*temp2[0] + b2*src[0][i] + b3*src[0][i];
|
|
temp2[2] = B * src[2][i] + b1*temp2[1] + b2*temp2[0] + b3*src[0][i];
|
|
|
|
for (int j=3; j<H; j++)
|
|
temp2[j] = B * src[j][i] + b1*temp2[j-1] + b2*temp2[j-2] + b3*temp2[j-3];
|
|
|
|
double temp2Hm1 = src[H-1][i] + M[0][0]*(temp2[H-1] - src[H-1][i]) + M[0][1]*(temp2[H-2] - src[H-1][i]) + M[0][2]*(temp2[H-3] - src[H-1][i]);
|
|
double temp2H = src[H-1][i] + M[1][0]*(temp2[H-1] - src[H-1][i]) + M[1][1]*(temp2[H-2] - src[H-1][i]) + M[1][2]*(temp2[H-3] - src[H-1][i]);
|
|
double temp2Hp1 = src[H-1][i] + M[2][0]*(temp2[H-1] - src[H-1][i]) + M[2][1]*(temp2[H-2] - src[H-1][i]) + M[2][2]*(temp2[H-3] - src[H-1][i]);
|
|
|
|
temp2[H-1] = temp2Hm1;
|
|
temp2[H-2] = B * temp2[H-2] + b1*temp2[H-1] + b2*temp2H + b3*temp2Hp1;
|
|
temp2[H-3] = B * temp2[H-3] + b1*temp2[H-2] + b2*temp2[H-1] + b3*temp2H;
|
|
|
|
for (int j=H-4; j>=0; j--)
|
|
temp2[j] = B * temp2[j] + b1*temp2[j+1] + b2*temp2[j+2] + b3*temp2[j+3];
|
|
|
|
for (int j=0; j<H; j++)
|
|
dst[j][i] = (T)temp2[j];
|
|
|
|
buffer.release(pBuf);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
template<class T> void gaussDerivH (T** src, T** dst, AlignedBufferMP<double> &buffer, int W, int H, double sigma) {
|
|
|
|
|
|
if (sigma<0.6) {
|
|
// apply symmetric derivative
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<H; i++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
T* temp = (T*)pBuf->data;
|
|
// double* temp = buffer->data;// replaced by 2 lines above
|
|
for (int j=1; j<W-1; j++)
|
|
temp[j] = (0.5 * (src[i][j+1] - src[i][j-1]) );
|
|
dst[i][0] = (src[i][1]-src[i][0]);
|
|
//memcpy (dst[i]+1, temp+1, (W-2)*sizeof(T));
|
|
for (int j=1; j<W-1; j++)
|
|
dst[i][j] = temp[j];
|
|
|
|
buffer.release(pBuf);
|
|
dst[i][W-1] = (src[i][W-1]-src[i][W-2]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// coefficient calculation
|
|
double q = 0.98711 * sigma - 0.96330;
|
|
if (sigma<2.5)
|
|
q = 3.97156 - 4.14554 * sqrt (1.0 - 0.26891 * sigma);
|
|
double b0 = 1.57825 + 2.44413*q + 1.4281*q*q + 0.422205*q*q*q;
|
|
double b1 = 2.44413*q + 2.85619*q*q + 1.26661*q*q*q;
|
|
double b2 = -1.4281*q*q - 1.26661*q*q*q;
|
|
double b3 = 0.422205*q*q*q;
|
|
double B = 1.0 - (b1+b2+b3) / b0;
|
|
|
|
b1 /= b0;
|
|
b2 /= b0;
|
|
b3 /= b0;
|
|
|
|
// From: Bill Triggs, Michael Sdika: Boundary Conditions for Young-van Vliet Recursive Filtering
|
|
double M[3][3];
|
|
M[0][0] = -b3*b1+1.0-b3*b3-b2;
|
|
M[0][1] = (b3+b1)*(b2+b3*b1);
|
|
M[0][2] = b3*(b1+b3*b2);
|
|
M[1][0] = b1+b3*b2;
|
|
M[1][1] = -(b2-1.0)*(b2+b3*b1);
|
|
M[1][2] = -(b3*b1+b3*b3+b2-1.0)*b3;
|
|
M[2][0] = b3*b1+b2+b1*b1-b2*b2;
|
|
M[2][1] = b1*b2+b3*b2*b2-b1*b3*b3-b3*b3*b3-b3*b2+b3;
|
|
M[2][2] = b3*(b1+b3*b2);
|
|
for (int i=0; i<3; i++)
|
|
for (int j=0; j<3; j++)
|
|
M[i][j] /= (1.0+b1-b2+b3)*(1.0+b2+(b1-b3)*b3);
|
|
|
|
#pragma omp for
|
|
for (int i=0; i<H; i++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
T* temp2 = (T*)pBuf->data;
|
|
// double* temp2 = buffer->data;// replaced by 2 lines above
|
|
|
|
double src0 = (src[i][1]-src[i][0]);
|
|
|
|
temp2[0] = B * src0 + b1*src0 + b2*src0 + b3*src0;
|
|
temp2[1] = B * 0.5*(src[i][2]-src[i][0]) + b1*temp2[0] + b2*src0 + b3*src0;
|
|
temp2[2] = B * 0.5*(src[i][3]-src[i][1]) + b1*temp2[1] + b2*temp2[0] + b3*src0;
|
|
|
|
for (int j=3; j<W-1; j++)
|
|
temp2[j] = B * 0.5*(src[i][j+1]-src[i][j-1]) + b1*temp2[j-1] + b2*temp2[j-2] + b3*temp2[j-3];
|
|
|
|
double srcWm1 = (src[i][W-1]-src[i][W-2]);
|
|
|
|
temp2[W-1] = B * srcWm1 + b1*temp2[W-2] + b2*temp2[W-3] + b3*temp2[W-4];
|
|
|
|
double temp2Wm1 = srcWm1 + M[0][0]*(temp2[W-1] - srcWm1) + M[0][1]*(temp2[W-2] - srcWm1) + M[0][2]*(temp2[W-3] - srcWm1);
|
|
double temp2W = srcWm1 + M[1][0]*(temp2[W-1] - srcWm1) + M[1][1]*(temp2[W-2] - srcWm1) + M[1][2]*(temp2[W-3] - srcWm1);
|
|
double temp2Wp1 = srcWm1 + M[2][0]*(temp2[W-1] - srcWm1) + M[2][1]*(temp2[W-2] - srcWm1) + M[2][2]*(temp2[W-3] - srcWm1);
|
|
|
|
temp2[W-1] = temp2Wm1;
|
|
temp2[W-2] = B * temp2[W-2] + b1*temp2[W-1] + b2*temp2W + b3*temp2Wp1;
|
|
temp2[W-3] = B * temp2[W-3] + b1*temp2[W-2] + b2*temp2[W-1] + b3*temp2W;
|
|
|
|
for (int j=W-4; j>=0; j--)
|
|
temp2[j] = B * temp2[j] + b1*temp2[j+1] + b2*temp2[j+2] + b3*temp2[j+3];
|
|
for (int j=0; j<W; j++)
|
|
dst[i][j] = (T)temp2[j];
|
|
|
|
buffer.release(pBuf);
|
|
}
|
|
}
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
template<class T> void gaussDerivV (T** src, T** dst, AlignedBufferMP<double> &buffer, int W, int H, double sigma) {
|
|
|
|
if (sigma<0.6) {
|
|
// apply symmetric derivative
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int j=0; j<W; j++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
T* temp = (T*)pBuf->data;
|
|
// double* temp = buffer->data;// replaced by 2 lines above
|
|
for (int i = 1; i<H-1; i++)
|
|
temp[i] = (0.5 * (src[i+1][j] - src[i-1][j]) );
|
|
dst[0][j] = (src[1][j]-src[0][j]);
|
|
for (int i=1; i<H-1; i++)
|
|
dst[i][j] = temp[i];
|
|
|
|
buffer.release(pBuf);
|
|
|
|
dst[H-1][j] = (src[H-1][j]-src[H-2][j]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// coefficient calculation
|
|
double q = 0.98711 * sigma - 0.96330;
|
|
if (sigma<2.5)
|
|
q = 3.97156 - 4.14554 * sqrt (1.0 - 0.26891 * sigma);
|
|
double b0 = 1.57825 + 2.44413*q + 1.4281*q*q + 0.422205*q*q*q;
|
|
double b1 = 2.44413*q + 2.85619*q*q + 1.26661*q*q*q;
|
|
double b2 = -1.4281*q*q - 1.26661*q*q*q;
|
|
double b3 = 0.422205*q*q*q;
|
|
double B = 1.0 - (b1+b2+b3) / b0;
|
|
|
|
b1 /= b0;
|
|
b2 /= b0;
|
|
b3 /= b0;
|
|
|
|
// From: Bill Triggs, Michael Sdika: Boundary Conditions for Young-van Vliet Recursive Filtering
|
|
double M[3][3];
|
|
M[0][0] = -b3*b1+1.0-b3*b3-b2;
|
|
M[0][1] = (b3+b1)*(b2+b3*b1);
|
|
M[0][2] = b3*(b1+b3*b2);
|
|
M[1][0] = b1+b3*b2;
|
|
M[1][1] = -(b2-1.0)*(b2+b3*b1);
|
|
M[1][2] = -(b3*b1+b3*b3+b2-1.0)*b3;
|
|
M[2][0] = b3*b1+b2+b1*b1-b2*b2;
|
|
M[2][1] = b1*b2+b3*b2*b2-b1*b3*b3-b3*b3*b3-b3*b2+b3;
|
|
M[2][2] = b3*(b1+b3*b2);
|
|
for (int i=0; i<3; i++)
|
|
for (int j=0; j<3; j++)
|
|
M[i][j] /= (1.0+b1-b2+b3)*(1.0+b2+(b1-b3)*b3);
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<W; i++) {
|
|
AlignedBuffer<double>* pBuf = buffer.acquire();
|
|
T* temp2 = (T*)pBuf->data;
|
|
// double* temp2 = buffer->data;// replaced by 2 lines above
|
|
|
|
double src0 = 0.5*(src[1][i]-src[0][i]);
|
|
|
|
temp2[0] = B * src0 + b1*src0 + b2*src0 + b3*src0;
|
|
temp2[1] = B * 0.5*(src[2][i]-src[0][i]) + b1*temp2[0] + b2*src0 + b3*src0;
|
|
temp2[2] = B * 0.5*(src[3][i]-src[1][i]) + b1*temp2[1] + b2*temp2[0] + b3*src0;
|
|
|
|
for (int j=3; j<H-1; j++)
|
|
temp2[j] = B * 0.5*(src[j+1][i]-src[j-1][i]) + b1*temp2[j-1] + b2*temp2[j-2] + b3*temp2[j-3];
|
|
|
|
double srcHm1 = 0.5*(src[H-1][i]-src[H-2][i]);
|
|
|
|
temp2[H-1] = B * srcHm1 + b1*temp2[H-2] + b2*temp2[H-3] + b3*temp2[H-4];
|
|
|
|
double temp2Hm1 = srcHm1 + M[0][0]*(temp2[H-1] - srcHm1) + M[0][1]*(temp2[H-2] - srcHm1) + M[0][2]*(temp2[H-3] - srcHm1);
|
|
double temp2H = srcHm1 + M[1][0]*(temp2[H-1] - srcHm1) + M[1][1]*(temp2[H-2] - srcHm1) + M[1][2]*(temp2[H-3] - srcHm1);
|
|
double temp2Hp1 = srcHm1 + M[2][0]*(temp2[H-1] - srcHm1) + M[2][1]*(temp2[H-2] - srcHm1) + M[2][2]*(temp2[H-3] - srcHm1);
|
|
|
|
temp2[H-1] = temp2Hm1;
|
|
temp2[H-2] = B * temp2[H-2] + b1*temp2[H-1] + b2*temp2H + b3*temp2Hp1;
|
|
temp2[H-3] = B * temp2[H-3] + b1*temp2[H-2] + b2*temp2[H-1] + b3*temp2H;
|
|
|
|
for (int j=H-4; j>=0; j--)
|
|
temp2[j] = B * temp2[j] + b1*temp2[j+1] + b2*temp2[j+2] + b3*temp2[j+3];
|
|
|
|
for (int j=0; j<H; j++)
|
|
dst[j][i] = (T)temp2[j];
|
|
|
|
buffer.release(pBuf);
|
|
}
|
|
}
|
|
|
|
#endif
|