rawTherapee/rtengine/image8.cc

242 lines
7.7 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstring>
#include <cstdio>
#include "image8.h"
#include "rtengine.h"
using namespace rtengine;
Image8::Image8 () {
}
Image8::Image8 (int w, int h) {
allocate (w, h);
}
Image8::~Image8 () {
}
void Image8::getScanline (int row, unsigned char* buffer, int bps) {
if (data==NULL)
return;
if (bps==8)
memcpy (buffer, data + row*width*3, width*3);
else if (bps==16) {
unsigned short* sbuffer = (unsigned short*) buffer;
for (int i=0, ix = row*width*3; i<width*3; i++, ix++)
sbuffer[i] = (unsigned short)(data[ix]) << 8;
}
}
void Image8::setScanline (int row, unsigned char* buffer, int bps, float *minValue, float *maxValue) {
if (data==NULL)
return;
// For optimization purpose, we're assuming that this class never have to provide min/max bound
assert(!minValue);
switch (sampleFormat) {
case (IIOSF_UNSIGNED_CHAR):
memcpy (data + row*width*3, buffer, width*3);
break;
case (IIOSF_UNSIGNED_SHORT):
{
unsigned short* sbuffer = (unsigned short*) buffer;
for (int i=0, ix = row*width*3; i<width*3; i++, ix++)
data[ix] = sbuffer[i] >> 8;
break;
}
default:
// Other type are ignored, but could be implemented if necessary
break;
}
}
Image8* Image8::copy () {
Image8* cp = new Image8 (width, height);
copyData(cp);
return cp;
}
void Image8::getStdImage (ColorTemp ctemp, int tran, Imagefloat* image, PreviewProps pp, bool first, procparams::ToneCurveParams hrp)
{
// compute channel multipliers
double drm, dgm, dbm;
ctemp.getMultipliers (drm, dgm, dbm);
float rm=drm,gm=dgm,bm=dbm;
rm = 1.0 / rm;
gm = 1.0 / gm;
bm = 1.0 / bm;
float mul_lum = 0.299*rm + 0.587*gm + 0.114*bm;
rm /= mul_lum;
gm /= mul_lum;
bm /= mul_lum;
int sx1, sy1, sx2, sy2;
transform (pp, tran, sx1, sy1, sx2, sy2);
int imwidth=image->width; // Destination image
int imheight=image->height; // Destination image
if (((tran & TR_ROT) == TR_R90)||((tran & TR_ROT) == TR_R270)) {
int swap = imwidth;
imwidth=imheight;
imheight=swap;
}
int maxx=width; // Source image
int maxy=height; // Source image
int mtran = tran & TR_ROT;
int skip = pp.skip;
//if ((sx1 + skip*imwidth)>maxx) imwidth -- ; // we have a boundary condition that can cause errors
// improve speed by integrating the area division into the multipliers
// switched to using ints for the red/green/blue channel buffer.
// Incidentally this improves accuracy too.
float area=skip*skip;
float rm2=rm;
float gm2=gm;
float bm2=bm;
rm/=area;
gm/=area;
bm/=area;
#define GCLIP( x ) Color::gamma_srgb(CLIP(x))
#ifdef _OPENMP
#pragma omp parallel
{
#endif
AlignedBuffer<float> abR(imwidth);
AlignedBuffer<float> abG(imwidth);
AlignedBuffer<float> abB(imwidth);
float *lineR = abR.data;
float *lineG = abG.data;
float *lineB = abB.data;
#ifdef _OPENMP
#pragma omp for
#endif
// Iterating all the rows of the destination image
for (int iy=0; iy<imheight; iy++) {
if (skip==1) {
// special case (speedup for 1:1 scale)
// i: source image, first line of the current destination row
int src_y=sy1+iy;
// overflow security check, not sure that it's necessary
if (src_y>=maxy)
continue;
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x++) {
float r_, g_, b_;
// overflow security check, not sure that it's necessary
if (src_x>=maxx)
continue;
convertTo(r(src_y, src_x), r_);
convertTo(g(src_y, src_x), g_);
convertTo(b(src_y, src_x), b_);
lineR[dst_x] = CLIP(rm2*r_);
lineG[dst_x] = CLIP(gm2*g_);
lineB[dst_x] = CLIP(bm2*b_);
}
}
else {
// source image, first line of the current destination row
int src_y=sy1+skip*iy;
if (src_y>=maxy)
continue;
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
if (src_x>=maxx)
continue;
int src_sub_width = MIN(maxx-src_x, skip);
int src_sub_height = MIN(maxy-src_y, skip);
float rtot,gtot,btot; // RGB accumulators
rtot=gtot=btot=0.;
for (int src_sub_y=0; src_sub_y<src_sub_height; src_sub_y++)
for (int src_sub_x=0; src_sub_x<src_sub_width; src_sub_x++) {
float r_, g_, b_;
convertTo(r(src_y+src_sub_y, src_x+src_sub_x), r_);
convertTo(g(src_y+src_sub_y, src_x+src_sub_x), g_);
convertTo(b(src_y+src_sub_y, src_x+src_sub_x), b_);
rtot += r_;
gtot += g_;
btot += b_;
}
// convert back to gamma and clip
if (src_sub_width == skip && src_sub_height == skip) {
// Common case where the sub-region is complete
lineR[dst_x] = CLIP(rm*rtot);
lineG[dst_x] = CLIP(gm*gtot);
lineB[dst_x] = CLIP(bm*btot);
}
else {
// computing a special factor for this incomplete sub-region
float area = src_sub_width*src_sub_height;
lineR[dst_x] = CLIP(rm2*rtot/area);
lineG[dst_x] = CLIP(gm2*gtot/area);
lineB[dst_x] = CLIP(bm2*btot/area);
}
}
}
if (mtran == TR_NONE)
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
image->r(iy, dst_x) = lineR[dst_x];
image->g(iy, dst_x) = lineG[dst_x];
image->b(iy, dst_x) = lineB[dst_x];
}
else if (mtran == TR_R180)
for (int dst_x=0; dst_x<imwidth; dst_x++) {
image->r(imheight-1-iy, imwidth-1-dst_x) = lineR[dst_x];
image->g(imheight-1-iy, imwidth-1-dst_x) = lineG[dst_x];
image->b(imheight-1-iy, imwidth-1-dst_x) = lineB[dst_x];
}
else if (mtran == TR_R90)
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
image->r(dst_x, imheight-1-iy) = lineR[dst_x];
image->g(dst_x, imheight-1-iy) = lineG[dst_x];
image->b(dst_x, imheight-1-iy) = lineB[dst_x];
}
else if (mtran == TR_R270)
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
image->r(imwidth-1-dst_x, iy) = lineR[dst_x];
image->g(imwidth-1-dst_x, iy) = lineG[dst_x];
image->b(imwidth-1-dst_x, iy) = lineB[dst_x];
}
}
#ifdef _OPENMP
}
#endif
#undef GCLIP
}