511 lines
15 KiB
C++
511 lines
15 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but widthITheightOUT ANY widthARRANTY; without even the implied warranty of
|
|
* MERCheightANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* 2010 Emil Martinec <ejmartin@uchicago.edu>
|
|
*
|
|
*/
|
|
#include <cstddef>
|
|
#include "rt_math.h"
|
|
#include "labimage.h"
|
|
#include "improcfun.h"
|
|
#include "cieimage.h"
|
|
#include "sleef.c"
|
|
#include "opthelper.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace rtengine {
|
|
|
|
SSEFUNCTION void ImProcFunctions::impulse_nr (LabImage* lab, double thresh)
|
|
{
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// impulse noise removal
|
|
// local variables
|
|
|
|
int width = lab->W;
|
|
int height = lab->H;
|
|
|
|
// buffer for the lowpass image
|
|
float ** lpf = new float *[height];
|
|
// buffer for the highpass image
|
|
float ** impish = new float *[height];
|
|
for (int i=0; i<height; i++) {
|
|
lpf[i] = new float [width];
|
|
//memset (lpf[i], 0, width*sizeof(float));
|
|
impish[i] = new float [width];
|
|
//memset (impish[i], 0, width*sizeof(unsigned short));
|
|
}
|
|
|
|
|
|
//The cleaning algorithm starts here
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// modified bilateral filter for lowpass image, omitting input pixel; or Gaussian blur
|
|
|
|
const float eps = 1.0;
|
|
|
|
//rangeblur<unsigned short, unsigned int> (lab->L, lpf, impish /*used as buffer here*/, width, height, thresh, false);
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
AlignedBufferMP<double> buffer(max(width,height));
|
|
|
|
gaussHorizontal<float> (lab->L, lpf, buffer, width, height, max(2.0,thresh-1.0));
|
|
gaussVertical<float> (lpf, lpf, buffer, width, height, max(2.0,thresh-1.0));
|
|
}
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
float impthr = max(1.0,5.5-thresh);
|
|
float impthrDiv24 = impthr / 24.0f; //Issue 1671: moved the Division outside the loop, impthr can be optimized out too, but I let in the code at the moment
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int i1,j1,j;
|
|
float hpfabs, hfnbrave;
|
|
#ifdef __SSE2__
|
|
__m128 hfnbravev,hpfabsv;
|
|
__m128 impthrDiv24v = _mm_set1_ps( impthrDiv24 );
|
|
__m128 onev = _mm_set1_ps( 1.0f );
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
hpfabs = fabs(lab->L[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++) {
|
|
hfnbrave += fabs(lab->L[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
#ifdef __SSE2__
|
|
for (; j < width-5; j+=4) {
|
|
hfnbravev = _mm_setzero_ps( );
|
|
hpfabsv = vabsf(LVFU(lab->L[i][j])-LVFU(lpf[i][j]));
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++) {
|
|
hfnbravev += vabsf(LVFU(lab->L[i1][j1])-LVFU(lpf[i1][j1]));
|
|
}
|
|
_mm_storeu_ps(&impish[i][j], vself(vmaskf_gt(hpfabsv, (hfnbravev-hpfabsv)*impthrDiv24v), onev, _mm_setzero_ps()));
|
|
}
|
|
for (; j < width-2; j++) {
|
|
hpfabs = fabs(lab->L[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++) {
|
|
hfnbrave += fabs(lab->L[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
#else
|
|
for (; j < width-2; j++) {
|
|
hpfabs = fabs(lab->L[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++) {
|
|
hfnbrave += fabs(lab->L[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
hpfabs = fabs(lab->L[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++) {
|
|
hfnbrave += fabs(lab->L[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
}
|
|
}
|
|
|
|
//now impulsive values have been identified
|
|
|
|
// Issue 1671:
|
|
// often, noise isn't evenly distributed, e.g. only a few noisy pixels in the bright sky, but many in the dark foreground,
|
|
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
|
|
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
|
|
// choice for the chunk_size than 16
|
|
// race conditions are avoided by the array impish
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int i1,j1,j;
|
|
float wtdsum[3], dirwt, norm;
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
if (!impish[i][j]) continue;
|
|
norm=0.0;
|
|
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (impish[i1][j1]) continue;
|
|
dirwt = 1/(SQR(lab->L[i1][j1]-lab->L[i][j])+eps);//use more sophisticated rangefn???
|
|
wtdsum[0] += dirwt*lab->L[i1][j1];
|
|
wtdsum[1] += dirwt*lab->a[i1][j1];
|
|
wtdsum[2] += dirwt*lab->b[i1][j1];
|
|
norm += dirwt;
|
|
}
|
|
if (norm) {
|
|
lab->L[i][j]=wtdsum[0]/norm;//low pass filter
|
|
lab->a[i][j]=wtdsum[1]/norm;//low pass filter
|
|
lab->b[i][j]=wtdsum[2]/norm;//low pass filter
|
|
}
|
|
}
|
|
for (; j < width-2; j++) {
|
|
if (!impish[i][j]) continue;
|
|
norm=0.0;
|
|
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (impish[i1][j1]) continue;
|
|
dirwt = 1/(SQR(lab->L[i1][j1]-lab->L[i][j])+eps);//use more sophisticated rangefn???
|
|
wtdsum[0] += dirwt*lab->L[i1][j1];
|
|
wtdsum[1] += dirwt*lab->a[i1][j1];
|
|
wtdsum[2] += dirwt*lab->b[i1][j1];
|
|
norm += dirwt;
|
|
}
|
|
if (norm) {
|
|
lab->L[i][j]=wtdsum[0]/norm;//low pass filter
|
|
lab->a[i][j]=wtdsum[1]/norm;//low pass filter
|
|
lab->b[i][j]=wtdsum[2]/norm;//low pass filter
|
|
}
|
|
}
|
|
for (; j < width; j++) {
|
|
if (!impish[i][j]) continue;
|
|
norm=0.0;
|
|
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (impish[i1][j1]) continue;
|
|
dirwt = 1/(SQR(lab->L[i1][j1]-lab->L[i][j])+eps);//use more sophisticated rangefn???
|
|
wtdsum[0] += dirwt*lab->L[i1][j1];
|
|
wtdsum[1] += dirwt*lab->a[i1][j1];
|
|
wtdsum[2] += dirwt*lab->b[i1][j1];
|
|
norm += dirwt;
|
|
}
|
|
if (norm) {
|
|
lab->L[i][j]=wtdsum[0]/norm;//low pass filter
|
|
lab->a[i][j]=wtdsum[1]/norm;//low pass filter
|
|
lab->b[i][j]=wtdsum[2]/norm;//low pass filter
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//now impulsive values have been corrected
|
|
|
|
for (int i=0; i<height; i++) {
|
|
delete [] lpf[i];
|
|
delete [] impish[i];
|
|
}
|
|
delete [] lpf;
|
|
delete [] impish;
|
|
|
|
}
|
|
|
|
|
|
SSEFUNCTION void ImProcFunctions::impulse_nrcam (CieImage* ncie, double thresh, float **buffers[3])
|
|
{
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// impulse noise removal
|
|
// local variables
|
|
|
|
int width = ncie->W;
|
|
int height = ncie->H;
|
|
|
|
|
|
float piid=3.14159265f/180.f;
|
|
|
|
// buffer for the lowpass image
|
|
float ** lpf = buffers[0];
|
|
// buffer for the highpass image
|
|
float ** impish = buffers[1];
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// modified bilateral filter for lowpass image, omitting input pixel; or Gaussian blur
|
|
|
|
|
|
|
|
//The cleaning algorithm starts here
|
|
|
|
//rangeblur<unsigned short, unsigned int> (lab->L, lpf, impish /*used as buffer here*/, width, height, thresh, false);
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
AlignedBufferMP<double> buffer(max(width,height));
|
|
gaussHorizontal<float> (ncie->sh_p, lpf, buffer, width, height, max(2.0,thresh-1.0));
|
|
gaussVertical<float> (lpf, lpf, buffer, width, height, max(2.0,thresh-1.0));
|
|
}
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
float impthr = max(1.0f,5.0f-(float)thresh);
|
|
float impthrDiv24 = impthr / 24.0f; //Issue 1671: moved the Division outside the loop, impthr can be optimized out too, but I let in the code at the moment
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int i1,j1,j;
|
|
float hpfabs, hfnbrave;
|
|
#ifdef __SSE2__
|
|
__m128 hfnbravev,hpfabsv;
|
|
__m128 impthrDiv24v = _mm_set1_ps( impthrDiv24 );
|
|
__m128 onev = _mm_set1_ps( 1.0f );
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
hpfabs = fabs(ncie->sh_p[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++) {
|
|
hfnbrave += fabs(ncie->sh_p[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
#ifdef __SSE2__
|
|
for (; j < width-5; j+=4) {
|
|
hpfabsv = vabsf(LVFU(ncie->sh_p[i][j])-LVFU(lpf[i][j]));
|
|
hfnbravev = _mm_setzero_ps();
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) {
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
hfnbravev += vabsf(LVFU(ncie->sh_p[i1][j1])-LVFU(lpf[i1][j1]));
|
|
}
|
|
_mm_storeu_ps(&impish[i][j], vself(vmaskf_gt(hpfabsv, (hfnbravev-hpfabsv)*impthrDiv24v), onev, _mm_setzero_ps()));
|
|
}
|
|
}
|
|
for (; j < width-2; j++) {
|
|
hpfabs = fabs(ncie->sh_p[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
hfnbrave += fabs(ncie->sh_p[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
#else
|
|
for (; j < width-2; j++) {
|
|
hpfabs = fabs(ncie->sh_p[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
hfnbrave += fabs(ncie->sh_p[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
hpfabs = fabs(ncie->sh_p[i][j]-lpf[i][j]);
|
|
//block average of high pass data
|
|
for (i1=max(0,i-2), hfnbrave=0; i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++ ) {
|
|
hfnbrave += fabs(ncie->sh_p[i1][j1]-lpf[i1][j1]);
|
|
}
|
|
impish[i][j] = (hpfabs>((hfnbrave-hpfabs)*impthrDiv24));
|
|
}
|
|
}
|
|
}
|
|
|
|
//now impulsive values have been identified
|
|
|
|
const float eps = 1.0f;
|
|
|
|
float** sraa = buffers[0]; // we can reuse buffers[0] because lpf is not needed anymore at this point
|
|
float** srbb = buffers[2];
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
float2 sincosval;
|
|
#ifdef __SSE2__
|
|
vfloat2 sincosvalv;
|
|
__m128 piidv = _mm_set1_ps( piid );
|
|
__m128 tempv;
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<height; i++) {
|
|
#ifdef __SSE2__
|
|
for (j=0; j<width-3; j+=4) {
|
|
sincosvalv = xsincosf(piidv*LVFU(ncie->h_p[i][j]));
|
|
tempv = LVFU(ncie->C_p[i][j]);
|
|
_mm_storeu_ps(&sraa[i][j], tempv * sincosvalv.y);
|
|
_mm_storeu_ps(&srbb[i][j], tempv * sincosvalv.x);
|
|
}
|
|
for (; j<width; j++) {
|
|
sincosval = xsincosf(piid*ncie->h_p[i][j]);
|
|
sraa[i][j]=ncie->C_p[i][j]*sincosval.y;
|
|
srbb[i][j]=ncie->C_p[i][j]*sincosval.x;
|
|
}
|
|
#else
|
|
for (j=0; j<width; j++) {
|
|
sincosval = xsincosf(piid*ncie->h_p[i][j]);
|
|
sraa[i][j]=ncie->C_p[i][j]*sincosval.y;
|
|
srbb[i][j]=ncie->C_p[i][j]*sincosval.x;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Issue 1671:
|
|
// often, noise isn't evenly distributed, e.g. only a few noisy pixels in the bright sky, but many in the dark foreground,
|
|
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
|
|
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
|
|
// choice for the chunk_size than 16
|
|
// race conditions are avoided by the array impish
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int i1,j1,j;
|
|
float wtdsum[3], dirwt, norm;
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
if (!impish[i][j]) continue;
|
|
norm=0.0f;
|
|
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (impish[i1][j1]) continue;
|
|
dirwt = 1.f/(SQR(ncie->sh_p[i1][j1]-ncie->sh_p[i][j])+eps);//use more sophisticated rangefn???
|
|
wtdsum[0] += dirwt*ncie->sh_p[i1][j1];
|
|
wtdsum[1] += dirwt*sraa[i1][j1];
|
|
wtdsum[2] += dirwt*srbb[i1][j1];
|
|
norm += dirwt;
|
|
}
|
|
if (norm) {
|
|
ncie->sh_p[i][j]=wtdsum[0]/norm;//low pass filter
|
|
sraa[i][j]=wtdsum[1]/norm;//low pass filter
|
|
srbb[i][j]=wtdsum[2]/norm;//low pass filter
|
|
}
|
|
}
|
|
for (; j < width-2; j++) {
|
|
if (!impish[i][j]) continue;
|
|
norm=0.0f;
|
|
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (impish[i1][j1]) continue;
|
|
dirwt = 1.f/(SQR(ncie->sh_p[i1][j1]-ncie->sh_p[i][j])+eps);//use more sophisticated rangefn???
|
|
wtdsum[0] += dirwt*ncie->sh_p[i1][j1];
|
|
wtdsum[1] += dirwt*sraa[i1][j1];
|
|
wtdsum[2] += dirwt*srbb[i1][j1];
|
|
norm += dirwt;
|
|
}
|
|
if (norm) {
|
|
ncie->sh_p[i][j]=wtdsum[0]/norm;//low pass filter
|
|
sraa[i][j]=wtdsum[1]/norm;//low pass filter
|
|
srbb[i][j]=wtdsum[2]/norm;//low pass filter
|
|
}
|
|
}
|
|
for (; j < width; j++) {
|
|
if (!impish[i][j]) continue;
|
|
norm=0.0f;
|
|
wtdsum[0]=wtdsum[1]=wtdsum[2]=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (impish[i1][j1]) continue;
|
|
dirwt = 1.f/(SQR(ncie->sh_p[i1][j1]-ncie->sh_p[i][j])+eps);//use more sophisticated rangefn???
|
|
wtdsum[0] += dirwt*ncie->sh_p[i1][j1];
|
|
wtdsum[1] += dirwt*sraa[i1][j1];
|
|
wtdsum[2] += dirwt*srbb[i1][j1];
|
|
norm += dirwt;
|
|
}
|
|
if (norm) {
|
|
ncie->sh_p[i][j]=wtdsum[0]/norm;//low pass filter
|
|
sraa[i][j]=wtdsum[1]/norm;//low pass filter
|
|
srbb[i][j]=wtdsum[2]/norm;//low pass filter
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//now impulsive values have been corrected
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
__m128 interav,interbv;
|
|
__m128 piidv = _mm_set1_ps(piid);
|
|
#endif // __SSE2__
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
#ifdef __SSE2__
|
|
for(j = 0; j < width-3; j+=4) {
|
|
interav = LVFU(sraa[i][j]);
|
|
interbv = LVFU(srbb[i][j]);
|
|
_mm_storeu_ps(&ncie->h_p[i][j],(xatan2f(interbv,interav))/piidv);
|
|
_mm_storeu_ps(&ncie->C_p[i][j], _mm_sqrt_ps(SQRV(interbv)+SQRV(interav)));
|
|
}
|
|
for(; j < width; j++) {
|
|
float intera = sraa[i][j];
|
|
float interb = srbb[i][j];
|
|
ncie->h_p[i][j]=(xatan2f(interb,intera))/piid;
|
|
ncie->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
|
|
}
|
|
|
|
#else
|
|
for(j = 0; j < width; j++) {
|
|
float intera = sraa[i][j];
|
|
float interb = srbb[i][j];
|
|
ncie->h_p[i][j]=(xatan2f(interb,intera))/piid;
|
|
ncie->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|