rawTherapee/rtengine/colorclip.h

170 lines
5.2 KiB
C

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
inline double tightestroot (double L, double a, double b, double r1, double r2, double r3);
#ifndef __COLORCLIP__
#define __COLORCLIP__
#include <cmath>
#include "median.h"
// gives back the tightest >0 amplification by which color clipping occures
inline double tightestroot (double L, double a, double b, double r1, double r2, double r3)
{
double an = a / 500.0, bn = b / 200.0, p = (L + 16.0) / 116.0;
double coeff3 = r1 * an * an * an - r3 * bn * bn * bn;
double coeff2 = 3.0 * p * (r1 * an * an + r3 * bn * bn);
double coeff1 = 3.0 * p * p * (r1 * an - r3 * bn);
double coeff0 = p * p * p * (r1 + r2 + r3) - 1.0;
double a1 = coeff2 / coeff3;
double a2 = coeff1 / coeff3;
double a3 = coeff0 / coeff3;
double Q = (a1 * a1 - 3.0 * a2) / 9.0;
double R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0;
double Qcubed = Q * Q * Q;
double d = Qcubed - R * R;
// printf ("input L=%g, a=%g, b=%g\n", L, a, b);
// printf ("c1=%g, c2=%g, c3=%g, c4=%g\n", coeff3, coeff2, coeff1, coeff0);
/* Three real roots */
if (d >= 0) {
double theta = acos(R / sqrt(Qcubed));
double sqrtQ = sqrt(Q);
double x0 = -2.0 * sqrtQ * cos( theta / 3.0) - a1 / 3.0;
double x1 = -2.0 * sqrtQ * cos((theta + 2.0 * M_PI) / 3.0) - a1 / 3.0;
double x2 = -2.0 * sqrtQ * cos((theta + 4.0 * M_PI) / 3.0) - a1 / 3.0;
// printf ("3 roots: %g, %g, %g\n", x0, x1, x2);
SORT3 (x0, x1, x2, a1, a2, a3);
if (a1 > 0) {
return a1;
}
if (a2 > 0) {
return a2;
}
if (a3 > 0) {
return a3;
}
return -1;
}
/* One real root */
else {
// double e = pow(sqrt(-d) + fabs(R), 1.0 / 3.0);
double e = exp (1.0 / 3.0 * log (sqrt(-d) + fabs(R)));
if (R > 0) {
e = -e;
}
double x0 = (e + Q / e) - a1 / 3.0;
// printf ("1 root: %g\n", x0);
if (x0 < 0) {
return -1;
} else {
return x0;
}
}
}
/*******************************************************************************
* FindCubicRoots
* --------------
*
* Copyright (C) 1997-2001 Ken Turkowski. <turk_at_computer.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ------------------------------------------------------------------------
*
* Solve:
* coeff[3] * x^3 + coeff[2] * x^2 + coeff[1] * x + coeff[0] = 0
*
* returns:
* 3 - 3 real roots
* 1 - 1 real root (2 complex conjugate)
*
*******************************************************************************/
/*long
FindCubicRoots(const FLOAT coeff[4], FLOAT x[3])
{
FLOAT a1 = coeff[2] / coeff[3];
FLOAT a2 = coeff[1] / coeff[3];
FLOAT a3 = coeff[0] / coeff[3];
double_t Q = (a1 * a1 - 3 * a2) / 9;
double_t R = (2 * a1 * a1 * a1 - 9 * a1 * a2 + 27 * a3) / 54;
double_t Qcubed = Q * Q * Q;
double_t d = Qcubed - R * R;
// Three real roots
if (d >= 0) {
double_t theta = acos(R / sqrt(Qcubed));
double_t sqrtQ = sqrt(Q);
x[0] = -2 * sqrtQ * cos( theta / 3) - a1 / 3;
x[1] = -2 * sqrtQ * cos((theta + 2 * pi) / 3) - a1 / 3;
x[2] = -2 * sqrtQ * cos((theta + 4 * pi) / 3) - a1 / 3;
return (3);
}
// One real root
else {
double_t e = pow(sqrt(-d) + fabs(R), 1. / 3.);
if (R > 0)
e = -e;
x[0] = (e + Q / e) - a1 / 3.;
return (1);
}
}
*/
#endif