1791 lines
60 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2012 Oliver Duis <www.oliverduis.de>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstring>
#include "dcp.h"
#include "safegtk.h"
#include "iccmatrices.h"
#include "iccstore.h"
#include "rawimagesource.h"
#include "improcfun.h"
#include "rt_math.h"
using namespace std;
using namespace rtengine;
using namespace rtexif;
static const float adobe_camera_raw_default_curve[] = {
0.00000f, 0.00078f, 0.00160f, 0.00242f,
0.00314f, 0.00385f, 0.00460f, 0.00539f,
0.00623f, 0.00712f, 0.00806f, 0.00906f,
0.01012f, 0.01122f, 0.01238f, 0.01359f,
0.01485f, 0.01616f, 0.01751f, 0.01890f,
0.02033f, 0.02180f, 0.02331f, 0.02485f,
0.02643f, 0.02804f, 0.02967f, 0.03134f,
0.03303f, 0.03475f, 0.03648f, 0.03824f,
0.04002f, 0.04181f, 0.04362f, 0.04545f,
0.04730f, 0.04916f, 0.05103f, 0.05292f,
0.05483f, 0.05675f, 0.05868f, 0.06063f,
0.06259f, 0.06457f, 0.06655f, 0.06856f,
0.07057f, 0.07259f, 0.07463f, 0.07668f,
0.07874f, 0.08081f, 0.08290f, 0.08499f,
0.08710f, 0.08921f, 0.09134f, 0.09348f,
0.09563f, 0.09779f, 0.09996f, 0.10214f,
0.10433f, 0.10652f, 0.10873f, 0.11095f,
0.11318f, 0.11541f, 0.11766f, 0.11991f,
0.12218f, 0.12445f, 0.12673f, 0.12902f,
0.13132f, 0.13363f, 0.13595f, 0.13827f,
0.14061f, 0.14295f, 0.14530f, 0.14765f,
0.15002f, 0.15239f, 0.15477f, 0.15716f,
0.15956f, 0.16197f, 0.16438f, 0.16680f,
0.16923f, 0.17166f, 0.17410f, 0.17655f,
0.17901f, 0.18148f, 0.18395f, 0.18643f,
0.18891f, 0.19141f, 0.19391f, 0.19641f,
0.19893f, 0.20145f, 0.20398f, 0.20651f,
0.20905f, 0.21160f, 0.21416f, 0.21672f,
0.21929f, 0.22185f, 0.22440f, 0.22696f,
0.22950f, 0.23204f, 0.23458f, 0.23711f,
0.23963f, 0.24215f, 0.24466f, 0.24717f,
0.24967f, 0.25216f, 0.25465f, 0.25713f,
0.25961f, 0.26208f, 0.26454f, 0.26700f,
0.26945f, 0.27189f, 0.27433f, 0.27676f,
0.27918f, 0.28160f, 0.28401f, 0.28641f,
0.28881f, 0.29120f, 0.29358f, 0.29596f,
0.29833f, 0.30069f, 0.30305f, 0.30540f,
0.30774f, 0.31008f, 0.31241f, 0.31473f,
0.31704f, 0.31935f, 0.32165f, 0.32395f,
0.32623f, 0.32851f, 0.33079f, 0.33305f,
0.33531f, 0.33756f, 0.33981f, 0.34205f,
0.34428f, 0.34650f, 0.34872f, 0.35093f,
0.35313f, 0.35532f, 0.35751f, 0.35969f,
0.36187f, 0.36404f, 0.36620f, 0.36835f,
0.37050f, 0.37264f, 0.37477f, 0.37689f,
0.37901f, 0.38112f, 0.38323f, 0.38533f,
0.38742f, 0.38950f, 0.39158f, 0.39365f,
0.39571f, 0.39777f, 0.39982f, 0.40186f,
0.40389f, 0.40592f, 0.40794f, 0.40996f,
0.41197f, 0.41397f, 0.41596f, 0.41795f,
0.41993f, 0.42191f, 0.42388f, 0.42584f,
0.42779f, 0.42974f, 0.43168f, 0.43362f,
0.43554f, 0.43747f, 0.43938f, 0.44129f,
0.44319f, 0.44509f, 0.44698f, 0.44886f,
0.45073f, 0.45260f, 0.45447f, 0.45632f,
0.45817f, 0.46002f, 0.46186f, 0.46369f,
0.46551f, 0.46733f, 0.46914f, 0.47095f,
0.47275f, 0.47454f, 0.47633f, 0.47811f,
0.47989f, 0.48166f, 0.48342f, 0.48518f,
0.48693f, 0.48867f, 0.49041f, 0.49214f,
0.49387f, 0.49559f, 0.49730f, 0.49901f,
0.50072f, 0.50241f, 0.50410f, 0.50579f,
0.50747f, 0.50914f, 0.51081f, 0.51247f,
0.51413f, 0.51578f, 0.51742f, 0.51906f,
0.52069f, 0.52232f, 0.52394f, 0.52556f,
0.52717f, 0.52878f, 0.53038f, 0.53197f,
0.53356f, 0.53514f, 0.53672f, 0.53829f,
0.53986f, 0.54142f, 0.54297f, 0.54452f,
0.54607f, 0.54761f, 0.54914f, 0.55067f,
0.55220f, 0.55371f, 0.55523f, 0.55673f,
0.55824f, 0.55973f, 0.56123f, 0.56271f,
0.56420f, 0.56567f, 0.56715f, 0.56861f,
0.57007f, 0.57153f, 0.57298f, 0.57443f,
0.57587f, 0.57731f, 0.57874f, 0.58017f,
0.58159f, 0.58301f, 0.58443f, 0.58583f,
0.58724f, 0.58864f, 0.59003f, 0.59142f,
0.59281f, 0.59419f, 0.59556f, 0.59694f,
0.59830f, 0.59966f, 0.60102f, 0.60238f,
0.60373f, 0.60507f, 0.60641f, 0.60775f,
0.60908f, 0.61040f, 0.61173f, 0.61305f,
0.61436f, 0.61567f, 0.61698f, 0.61828f,
0.61957f, 0.62087f, 0.62216f, 0.62344f,
0.62472f, 0.62600f, 0.62727f, 0.62854f,
0.62980f, 0.63106f, 0.63232f, 0.63357f,
0.63482f, 0.63606f, 0.63730f, 0.63854f,
0.63977f, 0.64100f, 0.64222f, 0.64344f,
0.64466f, 0.64587f, 0.64708f, 0.64829f,
0.64949f, 0.65069f, 0.65188f, 0.65307f,
0.65426f, 0.65544f, 0.65662f, 0.65779f,
0.65897f, 0.66013f, 0.66130f, 0.66246f,
0.66362f, 0.66477f, 0.66592f, 0.66707f,
0.66821f, 0.66935f, 0.67048f, 0.67162f,
0.67275f, 0.67387f, 0.67499f, 0.67611f,
0.67723f, 0.67834f, 0.67945f, 0.68055f,
0.68165f, 0.68275f, 0.68385f, 0.68494f,
0.68603f, 0.68711f, 0.68819f, 0.68927f,
0.69035f, 0.69142f, 0.69249f, 0.69355f,
0.69461f, 0.69567f, 0.69673f, 0.69778f,
0.69883f, 0.69988f, 0.70092f, 0.70196f,
0.70300f, 0.70403f, 0.70506f, 0.70609f,
0.70711f, 0.70813f, 0.70915f, 0.71017f,
0.71118f, 0.71219f, 0.71319f, 0.71420f,
0.71520f, 0.71620f, 0.71719f, 0.71818f,
0.71917f, 0.72016f, 0.72114f, 0.72212f,
0.72309f, 0.72407f, 0.72504f, 0.72601f,
0.72697f, 0.72794f, 0.72890f, 0.72985f,
0.73081f, 0.73176f, 0.73271f, 0.73365f,
0.73460f, 0.73554f, 0.73647f, 0.73741f,
0.73834f, 0.73927f, 0.74020f, 0.74112f,
0.74204f, 0.74296f, 0.74388f, 0.74479f,
0.74570f, 0.74661f, 0.74751f, 0.74842f,
0.74932f, 0.75021f, 0.75111f, 0.75200f,
0.75289f, 0.75378f, 0.75466f, 0.75555f,
0.75643f, 0.75730f, 0.75818f, 0.75905f,
0.75992f, 0.76079f, 0.76165f, 0.76251f,
0.76337f, 0.76423f, 0.76508f, 0.76594f,
0.76679f, 0.76763f, 0.76848f, 0.76932f,
0.77016f, 0.77100f, 0.77183f, 0.77267f,
0.77350f, 0.77432f, 0.77515f, 0.77597f,
0.77680f, 0.77761f, 0.77843f, 0.77924f,
0.78006f, 0.78087f, 0.78167f, 0.78248f,
0.78328f, 0.78408f, 0.78488f, 0.78568f,
0.78647f, 0.78726f, 0.78805f, 0.78884f,
0.78962f, 0.79040f, 0.79118f, 0.79196f,
0.79274f, 0.79351f, 0.79428f, 0.79505f,
0.79582f, 0.79658f, 0.79735f, 0.79811f,
0.79887f, 0.79962f, 0.80038f, 0.80113f,
0.80188f, 0.80263f, 0.80337f, 0.80412f,
0.80486f, 0.80560f, 0.80634f, 0.80707f,
0.80780f, 0.80854f, 0.80926f, 0.80999f,
0.81072f, 0.81144f, 0.81216f, 0.81288f,
0.81360f, 0.81431f, 0.81503f, 0.81574f,
0.81645f, 0.81715f, 0.81786f, 0.81856f,
0.81926f, 0.81996f, 0.82066f, 0.82135f,
0.82205f, 0.82274f, 0.82343f, 0.82412f,
0.82480f, 0.82549f, 0.82617f, 0.82685f,
0.82753f, 0.82820f, 0.82888f, 0.82955f,
0.83022f, 0.83089f, 0.83155f, 0.83222f,
0.83288f, 0.83354f, 0.83420f, 0.83486f,
0.83552f, 0.83617f, 0.83682f, 0.83747f,
0.83812f, 0.83877f, 0.83941f, 0.84005f,
0.84069f, 0.84133f, 0.84197f, 0.84261f,
0.84324f, 0.84387f, 0.84450f, 0.84513f,
0.84576f, 0.84639f, 0.84701f, 0.84763f,
0.84825f, 0.84887f, 0.84949f, 0.85010f,
0.85071f, 0.85132f, 0.85193f, 0.85254f,
0.85315f, 0.85375f, 0.85436f, 0.85496f,
0.85556f, 0.85615f, 0.85675f, 0.85735f,
0.85794f, 0.85853f, 0.85912f, 0.85971f,
0.86029f, 0.86088f, 0.86146f, 0.86204f,
0.86262f, 0.86320f, 0.86378f, 0.86435f,
0.86493f, 0.86550f, 0.86607f, 0.86664f,
0.86720f, 0.86777f, 0.86833f, 0.86889f,
0.86945f, 0.87001f, 0.87057f, 0.87113f,
0.87168f, 0.87223f, 0.87278f, 0.87333f,
0.87388f, 0.87443f, 0.87497f, 0.87552f,
0.87606f, 0.87660f, 0.87714f, 0.87768f,
0.87821f, 0.87875f, 0.87928f, 0.87981f,
0.88034f, 0.88087f, 0.88140f, 0.88192f,
0.88244f, 0.88297f, 0.88349f, 0.88401f,
0.88453f, 0.88504f, 0.88556f, 0.88607f,
0.88658f, 0.88709f, 0.88760f, 0.88811f,
0.88862f, 0.88912f, 0.88963f, 0.89013f,
0.89063f, 0.89113f, 0.89163f, 0.89212f,
0.89262f, 0.89311f, 0.89360f, 0.89409f,
0.89458f, 0.89507f, 0.89556f, 0.89604f,
0.89653f, 0.89701f, 0.89749f, 0.89797f,
0.89845f, 0.89892f, 0.89940f, 0.89987f,
0.90035f, 0.90082f, 0.90129f, 0.90176f,
0.90222f, 0.90269f, 0.90316f, 0.90362f,
0.90408f, 0.90454f, 0.90500f, 0.90546f,
0.90592f, 0.90637f, 0.90683f, 0.90728f,
0.90773f, 0.90818f, 0.90863f, 0.90908f,
0.90952f, 0.90997f, 0.91041f, 0.91085f,
0.91130f, 0.91173f, 0.91217f, 0.91261f,
0.91305f, 0.91348f, 0.91392f, 0.91435f,
0.91478f, 0.91521f, 0.91564f, 0.91606f,
0.91649f, 0.91691f, 0.91734f, 0.91776f,
0.91818f, 0.91860f, 0.91902f, 0.91944f,
0.91985f, 0.92027f, 0.92068f, 0.92109f,
0.92150f, 0.92191f, 0.92232f, 0.92273f,
0.92314f, 0.92354f, 0.92395f, 0.92435f,
0.92475f, 0.92515f, 0.92555f, 0.92595f,
0.92634f, 0.92674f, 0.92713f, 0.92753f,
0.92792f, 0.92831f, 0.92870f, 0.92909f,
0.92947f, 0.92986f, 0.93025f, 0.93063f,
0.93101f, 0.93139f, 0.93177f, 0.93215f,
0.93253f, 0.93291f, 0.93328f, 0.93366f,
0.93403f, 0.93440f, 0.93478f, 0.93515f,
0.93551f, 0.93588f, 0.93625f, 0.93661f,
0.93698f, 0.93734f, 0.93770f, 0.93807f,
0.93843f, 0.93878f, 0.93914f, 0.93950f,
0.93986f, 0.94021f, 0.94056f, 0.94092f,
0.94127f, 0.94162f, 0.94197f, 0.94231f,
0.94266f, 0.94301f, 0.94335f, 0.94369f,
0.94404f, 0.94438f, 0.94472f, 0.94506f,
0.94540f, 0.94573f, 0.94607f, 0.94641f,
0.94674f, 0.94707f, 0.94740f, 0.94774f,
0.94807f, 0.94839f, 0.94872f, 0.94905f,
0.94937f, 0.94970f, 0.95002f, 0.95035f,
0.95067f, 0.95099f, 0.95131f, 0.95163f,
0.95194f, 0.95226f, 0.95257f, 0.95289f,
0.95320f, 0.95351f, 0.95383f, 0.95414f,
0.95445f, 0.95475f, 0.95506f, 0.95537f,
0.95567f, 0.95598f, 0.95628f, 0.95658f,
0.95688f, 0.95718f, 0.95748f, 0.95778f,
0.95808f, 0.95838f, 0.95867f, 0.95897f,
0.95926f, 0.95955f, 0.95984f, 0.96013f,
0.96042f, 0.96071f, 0.96100f, 0.96129f,
0.96157f, 0.96186f, 0.96214f, 0.96242f,
0.96271f, 0.96299f, 0.96327f, 0.96355f,
0.96382f, 0.96410f, 0.96438f, 0.96465f,
0.96493f, 0.96520f, 0.96547f, 0.96574f,
0.96602f, 0.96629f, 0.96655f, 0.96682f,
0.96709f, 0.96735f, 0.96762f, 0.96788f,
0.96815f, 0.96841f, 0.96867f, 0.96893f,
0.96919f, 0.96945f, 0.96971f, 0.96996f,
0.97022f, 0.97047f, 0.97073f, 0.97098f,
0.97123f, 0.97149f, 0.97174f, 0.97199f,
0.97223f, 0.97248f, 0.97273f, 0.97297f,
0.97322f, 0.97346f, 0.97371f, 0.97395f,
0.97419f, 0.97443f, 0.97467f, 0.97491f,
0.97515f, 0.97539f, 0.97562f, 0.97586f,
0.97609f, 0.97633f, 0.97656f, 0.97679f,
0.97702f, 0.97725f, 0.97748f, 0.97771f,
0.97794f, 0.97817f, 0.97839f, 0.97862f,
0.97884f, 0.97907f, 0.97929f, 0.97951f,
0.97973f, 0.97995f, 0.98017f, 0.98039f,
0.98061f, 0.98082f, 0.98104f, 0.98125f,
0.98147f, 0.98168f, 0.98189f, 0.98211f,
0.98232f, 0.98253f, 0.98274f, 0.98295f,
0.98315f, 0.98336f, 0.98357f, 0.98377f,
0.98398f, 0.98418f, 0.98438f, 0.98458f,
0.98478f, 0.98498f, 0.98518f, 0.98538f,
0.98558f, 0.98578f, 0.98597f, 0.98617f,
0.98636f, 0.98656f, 0.98675f, 0.98694f,
0.98714f, 0.98733f, 0.98752f, 0.98771f,
0.98789f, 0.98808f, 0.98827f, 0.98845f,
0.98864f, 0.98882f, 0.98901f, 0.98919f,
0.98937f, 0.98955f, 0.98973f, 0.98991f,
0.99009f, 0.99027f, 0.99045f, 0.99063f,
0.99080f, 0.99098f, 0.99115f, 0.99133f,
0.99150f, 0.99167f, 0.99184f, 0.99201f,
0.99218f, 0.99235f, 0.99252f, 0.99269f,
0.99285f, 0.99302f, 0.99319f, 0.99335f,
0.99351f, 0.99368f, 0.99384f, 0.99400f,
0.99416f, 0.99432f, 0.99448f, 0.99464f,
0.99480f, 0.99495f, 0.99511f, 0.99527f,
0.99542f, 0.99558f, 0.99573f, 0.99588f,
0.99603f, 0.99619f, 0.99634f, 0.99649f,
0.99664f, 0.99678f, 0.99693f, 0.99708f,
0.99722f, 0.99737f, 0.99751f, 0.99766f,
0.99780f, 0.99794f, 0.99809f, 0.99823f,
0.99837f, 0.99851f, 0.99865f, 0.99879f,
0.99892f, 0.99906f, 0.99920f, 0.99933f,
0.99947f, 0.99960f, 0.99974f, 0.99987f,
1.00000f
};
// This sRGB gamma is taken from DNG reference code, with the added linear extension past 1.0, as we run clipless here
static float sRGBGammaForward (const float x)
{
if (x <= 0.0031308) {
return x * 12.92;
} else if (x > 1.0) {
return 1.0 + (x - 1.0) * (1.055 * (1.0 / 2.4)); // linear extension
} else {
return 1.055 * pow (x, 1.0 / 2.4) - 0.055;
}
}
static float sRGBGammaInverse (const float y)
{
if (y <= 0.0031308 * 12.92) {
return y * (1.0 / 12.92);
} else if (y > 1.0) {
return 1.0 + (y - 1.0) / (1.055 * (1.0 / 2.4));
} else {
return pow ((y + 0.055) * (1.0 / 1.055), 2.4);
}
}
static void Invert3x3(const double (*A)[3], double (*B)[3])
{
double a00 = A[0][0];
double a01 = A[0][1];
double a02 = A[0][2];
double a10 = A[1][0];
double a11 = A[1][1];
double a12 = A[1][2];
double a20 = A[2][0];
double a21 = A[2][1];
double a22 = A[2][2];
double temp [3][3];
temp[0][0] = a11 * a22 - a21 * a12;
temp[0][1] = a21 * a02 - a01 * a22;
temp[0][2] = a01 * a12 - a11 * a02;
temp[1][0] = a20 * a12 - a10 * a22;
temp[1][1] = a00 * a22 - a20 * a02;
temp[1][2] = a10 * a02 - a00 * a12;
temp[2][0] = a10 * a21 - a20 * a11;
temp[2][1] = a20 * a01 - a00 * a21;
temp[2][2] = a00 * a11 - a10 * a01;
double det = a00 * temp[0][0] + a01 * temp[1][0] + a02 * temp[2][0];
if (fabs(det) < 1.0E-10) {
abort(); // can't be inverted, we shouldn't be dealing with such matrices
}
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
B[j][k] = temp[j][k] / det;
}
}
}
static void Multiply3x3(const double (*A)[3], const double (*B)[3], double (*C)[3])
{
// use temp to support having output same as input
double M[3][3];
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
M[i][j] = 0;
for (int k = 0; k < 3; k++) {
M[i][j] += A[i][k] * B[k][j];
}
}
}
memcpy(C, M, 3 * 3 * sizeof(double));
}
static void Multiply3x3_v3(const double (*A)[3], const double B[3], double C[3])
{
// use temp to support having output same as input
double M[3] = { 0, 0, 0 };
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
M[i] += A[i][j] * B[j];
}
}
memcpy(C, M, 3 * sizeof(double));
}
static void Mix3x3(const double (*A)[3], double mulA, const double (*B)[3], double mulB, double (*C)[3])
{
double M[3][3];
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
M[i][j] = A[i][j] * mulA + B[i][j] * mulB;
}
}
memcpy(C, M, 3 * 3 * sizeof(double));
}
static void MapWhiteMatrix(const double white1[3], const double white2[3], double (*B)[3])
{
// code adapted from dng_color_spec::MapWhiteMatrix
// Use the linearized Bradford adaptation matrix.
double Mb[3][3] = { { 0.8951, 0.2664, -0.1614 }, { -0.7502, 1.7135, 0.0367 }, { 0.0389, -0.0685, 1.0296 }};
double w1[3];
Multiply3x3_v3(Mb, white1, w1);
double w2[3];
Multiply3x3_v3(Mb, white2, w2);
// Negative white coordinates are kind of meaningless.
w1[0] = std::max(w1[0], 0.0);
w1[1] = std::max(w1[1], 0.0);
w1[2] = std::max(w1[2], 0.0);
w2[0] = std::max(w2[0], 0.0);
w2[1] = std::max(w2[1], 0.0);
w2[2] = std::max(w2[2], 0.0);
// Limit scaling to something reasonable.
double A[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
A[0][0] = std::max(0.1, std::min(w1[0] > 0.0 ? w2[0] / w1[0] : 10.0, 10.0));
A[1][1] = std::max(0.1, std::min(w1[1] > 0.0 ? w2[1] / w1[1] : 10.0, 10.0));
A[2][2] = std::max(0.1, std::min(w1[2] > 0.0 ? w2[2] / w1[2] : 10.0, 10.0));
double temp[3][3];
Invert3x3(Mb, temp);
Multiply3x3(temp, A, temp);
Multiply3x3(temp, Mb, B);
}
static void XYZtoXY(const double XYZ[3], double XY[2])
{
double X = XYZ[0];
double Y = XYZ[1];
double Z = XYZ[2];
double total = X + Y + Z;
if (total > 0.0) {
XY[0] = X / total;
XY[1] = Y / total;
} else {
XY[0] = 0.3457;
XY[1] = 0.3585;
}
}
static void XYtoXYZ(const double XY[2], double XYZ[3])
{
double temp[2] = { XY[0], XY[1] };
// Restrict xy coord to someplace inside the range of real xy coordinates.
// This prevents math from doing strange things when users specify
// extreme temperature/tint coordinates.
temp[0] = std::max(0.000001, std::min(temp[0], 0.999999));
temp[1] = std::max(0.000001, std::min(temp[1], 0.999999));
if (temp[0] + temp[1] > 0.999999) {
double scale = 0.999999 / (temp[0] + temp[1]);
temp[0] *= scale;
temp[1] *= scale;
}
XYZ[0] = temp[0] / temp[1];
XYZ[1] = 1.0;
XYZ[2] = (1.0 - temp[0] - temp[1]) / temp[1];
}
enum dngCalibrationIlluminant {
lsUnknown = 0,
lsDaylight = 1,
lsFluorescent = 2,
lsTungsten = 3,
lsFlash = 4,
lsFineWeather = 9,
lsCloudyWeather = 10,
lsShade = 11,
lsDaylightFluorescent = 12, // D 5700 - 7100K
lsDayWhiteFluorescent = 13, // N 4600 - 5500K
lsCoolWhiteFluorescent = 14, // W 3800 - 4500K
lsWhiteFluorescent = 15, // WW 3250 - 3800K
lsWarmWhiteFluorescent = 16, // L 2600 - 3250K
lsStandardLightA = 17,
lsStandardLightB = 18,
lsStandardLightC = 19,
lsD55 = 20,
lsD65 = 21,
lsD75 = 22,
lsD50 = 23,
lsISOStudioTungsten = 24,
lsOther = 255
};
// should probably be moved to colortemp.cc
static double calibrationIlluminantToTemperature(int light)
{
// these temperatures are those found in DNG SDK reference code.
switch (light) {
case lsStandardLightA:
case lsTungsten:
return 2850.0;
case lsISOStudioTungsten:
return 3200.0;
case lsD50:
return 5000.0;
case lsD55:
case lsDaylight:
case lsFineWeather:
case lsFlash:
case lsStandardLightB:
return 5500.0;
case lsD65:
case lsStandardLightC:
case lsCloudyWeather:
return 6500.0;
case lsD75:
case lsShade:
return 7500.0;
case lsDaylightFluorescent:
return (5700.0 + 7100.0) * 0.5;
case lsDayWhiteFluorescent:
return (4600.0 + 5500.0) * 0.5;
case lsCoolWhiteFluorescent:
case lsFluorescent:
return (3800.0 + 4500.0) * 0.5;
case lsWhiteFluorescent:
return (3250.0 + 3800.0) * 0.5;
case lsWarmWhiteFluorescent:
return (2600.0 + 3250.0) * 0.5;
default:
return 0.0;
}
}
void DCPProfile::MakeXYZCAM(ColorTemp &wb, double pre_mul[3], double camWbMatrix[3][3], int preferredIlluminant, double (*mXYZCAM)[3]) const
{
// code adapted from dng_color_spec::FindXYZtoCamera
// note that we do not support monochrome or colorplanes > 3 (no reductionMatrix support)
// we do not support cameracalibration either
double neutral[3]; // same as the DNG "AsShotNeutral" tag if white balance is Camera's own
{
/* A bit messy matrixing and conversions to get the neutral[] array from RT's own white balance which is stored in
sRGB space, while the DCP code needs multipliers in CameraRGB space */
double r, g, b;
wb.getMultipliers(r, g, b);
// camWbMatrix == imatrices.xyz_cam
double cam_xyz[3][3];
Invert3x3(camWbMatrix, cam_xyz);
double cam_rgb[3][3];
Multiply3x3(cam_xyz, xyz_sRGB, cam_rgb);
double camwb_red = cam_rgb[0][0] * r + cam_rgb[0][1] * g + cam_rgb[0][2] * b;
double camwb_green = cam_rgb[1][0] * r + cam_rgb[1][1] * g + cam_rgb[1][2] * b;
double camwb_blue = cam_rgb[2][0] * r + cam_rgb[2][1] * g + cam_rgb[2][2] * b;
neutral[0] = camwb_red / pre_mul[0];
neutral[1] = camwb_green / pre_mul[1];
neutral[2] = camwb_blue / pre_mul[2];
double maxentry = 0;
for (int i = 0; i < 3; i++) {
if (neutral[i] > maxentry) {
maxentry = neutral[i];
}
}
for (int i = 0; i < 3; i++) {
neutral[i] /= maxentry;
}
}
/* Calculate what the RGB multipliers corresponds to as a white XY coordinate, based on the
DCP ColorMatrix or ColorMatrices if dual-illuminant. This is the DNG reference code way to
do it, which is a bit different from RT's own white balance model at the time of writing.
When RT's white balance can make use of the DCP color matrices we could use that instead. */
double white_xy[2];
dngref_NeutralToXY(neutral, preferredIlluminant, white_xy);
bool hasFwd1 = hasForwardMatrix1;
bool hasFwd2 = hasForwardMatrix2;
bool hasCol1 = hasColorMatrix1;
bool hasCol2 = hasColorMatrix2;
if (preferredIlluminant == 1) {
if (hasFwd1) {
hasFwd2 = false;
}
if (hasCol1) {
hasCol2 = false;
}
} else if (preferredIlluminant == 2) {
if (hasFwd2) {
hasFwd1 = false;
}
if (hasCol2) {
hasCol1 = false;
}
}
// mix if we have two matrices
double mix = 1.0;
if ((hasCol1 && hasCol2) || (hasFwd1 && hasFwd2)) {
double wbtemp;
/* DNG ref way to convert XY to temperature, which affect matrix mixing. A different model here
typically does not affect the result too much, ie it's probably not strictly necessary to
use the DNG reference code here, but we do it for now. */
dngref_XYCoord2Temperature(white_xy, &wbtemp, NULL);
if (wbtemp <= temperature1) {
mix = 1.0;
} else if (wbtemp >= temperature2) {
mix = 0.0;
} else {
double invT = 1.0 / wbtemp;
mix = (invT - (1.0 / temperature2)) / ((1.0 / temperature1) - (1.0 / temperature2));
}
}
// Colormatrix
double mCol[3][3];
if (hasCol1 && hasCol2) {
// interpolate
if (mix >= 1.0) {
memcpy(mCol, mColorMatrix1, sizeof(mCol));
} else if (mix <= 0.0) {
memcpy(mCol, mColorMatrix2, sizeof(mCol));
} else {
Mix3x3(mColorMatrix1, mix, mColorMatrix2, 1.0 - mix, mCol);
}
} else if (hasCol1) {
memcpy(mCol, mColorMatrix1, sizeof(mCol));
} else {
memcpy(mCol, mColorMatrix2, sizeof(mCol));
}
/*
The exact position of the white XY coordinate affects the result very much, thus
it's important that the result is very similar or the same as DNG reference code.
Especially important is it that the raw-embedded "AsShot" multipliers is translated
to the same white XY coordinate as the DNG reference code, or else third party DCPs
will show incorrect color.
*/
double white_xyz[3];
XYtoXYZ(white_xy, white_xyz);
double cam_xyz[3][3];
if (hasFwd1 || hasFwd2) {
// always prefer ForwardMatrix ahead of ColorMatrix
double mFwd[3][3];
if (hasFwd1 && hasFwd2) {
// interpolate
if (mix >= 1.0) {
memcpy(mFwd, mForwardMatrix1, sizeof(mFwd));
} else if (mix <= 0.0) {
memcpy(mFwd, mForwardMatrix2, sizeof(mFwd));
} else {
Mix3x3(mForwardMatrix1, mix, mForwardMatrix2, 1.0 - mix, mFwd);
}
} else if (hasFwd1) {
memcpy(mFwd, mForwardMatrix1, sizeof(mFwd));
} else {
memcpy(mFwd, mForwardMatrix2, sizeof(mFwd));
}
// adapted from dng_color_spec::SetWhiteXY
double CameraWhite[3];
Multiply3x3_v3(mCol, white_xyz, CameraWhite);
double whiteDiag[3][3] = {{CameraWhite[0], 0, 0}, {0, CameraWhite[1], 0}, {0, 0, CameraWhite[2]}};
double whiteDiagInv[3][3];
Invert3x3(whiteDiag, whiteDiagInv);
double xyz_cam[3][3];
Multiply3x3(mFwd, whiteDiagInv, xyz_cam);
Invert3x3(xyz_cam, cam_xyz);
} else {
double whiteMatrix[3][3];
const double white_d50[3] = { 0.3457, 0.3585, 0.2958 }; // D50
MapWhiteMatrix(white_d50, white_xyz, whiteMatrix);
Multiply3x3(mCol, whiteMatrix, cam_xyz);
}
// convert cam_xyz (XYZ D50 to CameraRGB, "PCS to Camera" in DNG terminology) to mXYZCAM
{
// This block can probably be simplified, seems unnecessary to pass through the sRGB matrix
// (probably dcraw legacy), it does no harm though as we don't clip anything.
int i, j, k;
// Multiply out XYZ colorspace
double cam_rgb[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
for (k = 0; k < 3; k++) {
cam_rgb[i][j] += cam_xyz[i][k] * xyz_sRGB[k][j];
}
// Normalize cam_rgb so that: cam_rgb * (1,1,1) is (1,1,1,1)
double num;
for (i = 0; i < 3; i++) {
for (num = j = 0; j < 3; j++) {
num += cam_rgb[i][j];
}
for (j = 0; j < 3; j++) {
cam_rgb[i][j] /= num;
}
}
double rgb_cam[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
RawImageSource::inverse33 (cam_rgb, rgb_cam);
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++) {
mXYZCAM[i][j] = 0;
}
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
for (k = 0; k < 3; k++) {
mXYZCAM[i][j] += xyz_sRGB[i][k] * rgb_cam[k][j];
}
}
}
const DCPProfile::HSBModify* DCPProfile::MakeHueSatMap(ColorTemp &wb, int preferredIlluminant, HSBModify **deleteHandle) const
{
*deleteHandle = NULL;
if (!aDeltas1) {
return NULL;
}
if (!aDeltas2) {
return aDeltas1;
}
if (preferredIlluminant == 1) {
return aDeltas1;
} else if (preferredIlluminant == 2) {
return aDeltas2;
}
// Interpolate based on color temperature.
if (temperature1 <= 0.0 || temperature2 <= 0.0 || temperature1 == temperature2) {
return aDeltas1;
}
bool reverseOrder = temperature1 > temperature2;
double t1, t2;
if (reverseOrder) {
t1 = temperature2;
t2 = temperature1;
} else {
t1 = temperature1;
t2 = temperature2;
}
double mix;
if (wb.getTemp() <= t1) {
mix = 1.0;
} else if (wb.getTemp() >= t2) {
mix = 0.0;
} else {
double invT = 1.0 / wb.getTemp();
mix = (invT - (1.0 / t2)) / ((1.0 / t1) - (1.0 / t2));
}
if (reverseOrder) {
mix = 1.0 - mix;
}
if (mix >= 1.0) {
return aDeltas1;
} else if (mix <= 0.0) {
return aDeltas2;
}
// Interpolate between the tables.
HSBModify *aDeltas = new HSBModify[DeltaInfo.iArrayCount];
*deleteHandle = aDeltas;
float w1 = (float)mix;
float w2 = 1.0f - (float)mix;
for (int i = 0; i < DeltaInfo.iArrayCount; i++) {
aDeltas[i].fHueShift = w1 * aDeltas1[i].fHueShift + w2 * aDeltas2[i].fHueShift;
aDeltas[i].fSatScale = w1 * aDeltas1[i].fSatScale + w2 * aDeltas2[i].fSatScale;
aDeltas[i].fValScale = w1 * aDeltas1[i].fValScale + w2 * aDeltas2[i].fValScale;
}
return aDeltas;
}
DCPProfile::DCPProfile(Glib::ustring fname)
{
const int TIFFFloatSize = 4;
const int TagColorMatrix1 = 50721, TagColorMatrix2 = 50722, TagProfileHueSatMapDims = 50937;
const int TagForwardMatrix1 = 50964, TagForwardMatrix2 = 50965;
const int TagProfileHueSatMapData1 = 50938, TagProfileHueSatMapData2 = 50939;
const int TagCalibrationIlluminant1 = 50778, TagCalibrationIlluminant2 = 50779;
const int TagProfileLookTableData = 50982, TagProfileLookTableDims = 50981; // ProfileLookup is the low quality variant
const int TagProfileHueSatMapEncoding = 51107, TagProfileLookTableEncoding = 51108;
const int TagProfileToneCurve = 50940, TagBaselineExposureOffset = 51109;
const int TagProfileCopyright = 50942;
aDeltas1 = aDeltas2 = aLookTable = NULL;
FILE *pFile = safe_g_fopen(fname, "rb");
TagDirectory *tagDir = ExifManager::parseTIFF(pFile, false);
Tag* tag = tagDir->getTag(TagCalibrationIlluminant1);
iLightSource1 = (tag != NULL ? tag->toInt(0, rtexif::SHORT) : -1);
tag = tagDir->getTag(TagCalibrationIlluminant2);
iLightSource2 = (tag != NULL ? tag->toInt(0, rtexif::SHORT) : -1);
temperature1 = calibrationIlluminantToTemperature(iLightSource1);
temperature2 = calibrationIlluminantToTemperature(iLightSource2);
bool hasSecondHueSat = tagDir->getTag(TagProfileHueSatMapData2) != NULL; // some profiles have two matrices, but just one huesat
// Fetch Forward Matrices, if any
hasForwardMatrix1 = false;
hasForwardMatrix2 = false;
hasColorMatrix1 = false;
hasColorMatrix2 = false;
hasToneCurve = false;
hasBaselineExposureOffset = false;
baselineExposureOffset = 0;
tag = tagDir->getTag(TagForwardMatrix1);
if (tag) {
hasForwardMatrix1 = true;
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
mForwardMatrix1[row][col] = (float)tag->toDouble((col + row * 3) * 8);
}
}
}
tag = tagDir->getTag(TagForwardMatrix2);
if (tag) {
hasForwardMatrix2 = true;
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
mForwardMatrix2[row][col] = (float)tag->toDouble((col + row * 3) * 8);
}
}
}
// Color Matrix (1 is always there)
tag = tagDir->getTag(TagColorMatrix1);
if (!tag) {
// FIXME: better error handling
fprintf(stderr, "Bad DCP, no ColorMatrix1\n");
abort();
}
hasColorMatrix1 = true;
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
mColorMatrix1[row][col] = (float)tag->toDouble((col + row * 3) * 8);
}
}
tag = tagDir->getTag(TagProfileLookTableDims);
if (tag != NULL) {
LookInfo.iHueDivisions = tag->toInt(0);
LookInfo.iSatDivisions = tag->toInt(4);
LookInfo.iValDivisions = tag->toInt(8);
tag = tagDir->getTag(TagProfileLookTableEncoding);
LookInfo.sRGBGamma = tag != NULL && tag->toInt(0);
tag = tagDir->getTag(TagProfileLookTableData);
LookInfo.iArrayCount = tag->getCount() / 3;
aLookTable = new HSBModify[LookInfo.iArrayCount];
for (int i = 0; i < LookInfo.iArrayCount; i++) {
aLookTable[i].fHueShift = tag->toDouble((i * 3) * TIFFFloatSize);
aLookTable[i].fSatScale = tag->toDouble((i * 3 + 1) * TIFFFloatSize);
aLookTable[i].fValScale = tag->toDouble((i * 3 + 2) * TIFFFloatSize);
}
// precalculated constants for table application
LookInfo.pc.hScale = (LookInfo.iHueDivisions < 2) ? 0.0f : (LookInfo.iHueDivisions * (1.0f / 6.0f));
LookInfo.pc.sScale = (float) (LookInfo.iSatDivisions - 1);
LookInfo.pc.vScale = (float) (LookInfo.iValDivisions - 1);
LookInfo.pc.maxHueIndex0 = LookInfo.iHueDivisions - 1;
LookInfo.pc.maxSatIndex0 = LookInfo.iSatDivisions - 2;
LookInfo.pc.maxValIndex0 = LookInfo.iValDivisions - 2;
LookInfo.pc.hueStep = LookInfo.iSatDivisions;
LookInfo.pc.valStep = LookInfo.iHueDivisions * LookInfo.pc.hueStep;
}
tag = tagDir->getTag(TagProfileHueSatMapDims);
if (tag != NULL) {
DeltaInfo.iHueDivisions = tag->toInt(0);
DeltaInfo.iSatDivisions = tag->toInt(4);
DeltaInfo.iValDivisions = tag->toInt(8);
tag = tagDir->getTag(TagProfileHueSatMapEncoding);
DeltaInfo.sRGBGamma = tag != NULL && tag->toInt(0);
tag = tagDir->getTag(TagProfileHueSatMapData1);
DeltaInfo.iArrayCount = tag->getCount() / 3;
aDeltas1 = new HSBModify[DeltaInfo.iArrayCount];
for (int i = 0; i < DeltaInfo.iArrayCount; i++) {
aDeltas1[i].fHueShift = tag->toDouble((i * 3) * TIFFFloatSize);
aDeltas1[i].fSatScale = tag->toDouble((i * 3 + 1) * TIFFFloatSize);
aDeltas1[i].fValScale = tag->toDouble((i * 3 + 2) * TIFFFloatSize);
}
DeltaInfo.pc.hScale = (DeltaInfo.iHueDivisions < 2) ? 0.0f : (DeltaInfo.iHueDivisions * (1.0f / 6.0f));
DeltaInfo.pc.sScale = (float) (DeltaInfo.iSatDivisions - 1);
DeltaInfo.pc.vScale = (float) (DeltaInfo.iValDivisions - 1);
DeltaInfo.pc.maxHueIndex0 = DeltaInfo.iHueDivisions - 1;
DeltaInfo.pc.maxSatIndex0 = DeltaInfo.iSatDivisions - 2;
DeltaInfo.pc.maxValIndex0 = DeltaInfo.iValDivisions - 2;
DeltaInfo.pc.hueStep = DeltaInfo.iSatDivisions;
DeltaInfo.pc.valStep = DeltaInfo.iHueDivisions * DeltaInfo.pc.hueStep;
}
if (iLightSource2 != -1) {
// Second matrix
tag = tagDir->getTag(TagColorMatrix2);
hasColorMatrix2 = true;
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
mColorMatrix2[row][col] = (tag != NULL ? (float)tag->toDouble((col + row * 3) * 8) : mColorMatrix1[row][col]);
}
}
// Second huesatmap
if (hasSecondHueSat) {
aDeltas2 = new HSBModify[DeltaInfo.iArrayCount];
// Saturation maps. Need to be unwinded.
tag = tagDir->getTag(TagProfileHueSatMapData2);
for (int i = 0; i < DeltaInfo.iArrayCount; i++) {
aDeltas2[i].fHueShift = tag->toDouble((i * 3) * TIFFFloatSize);
aDeltas2[i].fSatScale = tag->toDouble((i * 3 + 1) * TIFFFloatSize);
aDeltas2[i].fValScale = tag->toDouble((i * 3 + 2) * TIFFFloatSize);
}
}
}
tag = tagDir->getTag(TagBaselineExposureOffset);
if (tag) {
hasBaselineExposureOffset = true;
baselineExposureOffset = tag->toDouble();
}
// Read tone curve points, if any, but disable to RTs own profiles
tag = tagDir->getTag(TagProfileToneCurve);
if (tag != NULL) {
std::vector<double> cPoints;
cPoints.push_back(double(DCT_Spline)); // The first value is the curve type
// push back each X/Y coordinates in a loop
bool curve_is_linear = true;
for (int i = 0; i < tag->getCount(); i += 2) {
double x = tag->toDouble((i + 0) * TIFFFloatSize);
double y = tag->toDouble((i + 1) * TIFFFloatSize);
if (x != y) {
curve_is_linear = false;
}
cPoints.push_back( x );
cPoints.push_back( y );
}
if (!curve_is_linear) {
// Create the curve
DiagonalCurve rawCurve(cPoints, CURVES_MIN_POLY_POINTS);
toneCurve.Set((Curve*)&rawCurve);
hasToneCurve = true;
}
} else if (tag == NULL) {
tag = tagDir->getTag(TagProfileCopyright);
if (tag != NULL && tag->valueToString().find("Adobe Systems") != std::string::npos) {
// an Adobe profile without tone curve is expected to have the Adobe Default Curve, we add that
std::vector<double> cPoints;
cPoints.push_back(double(DCT_Spline));
const size_t tc_len = sizeof(adobe_camera_raw_default_curve) / sizeof(adobe_camera_raw_default_curve[0]);
for (size_t i = 0; i < tc_len; i++) {
double x = (double)i / (tc_len - 1);
double y = (double)adobe_camera_raw_default_curve[i];
cPoints.push_back( x );
cPoints.push_back( y );
}
DiagonalCurve rawCurve(cPoints, CURVES_MIN_POLY_POINTS);
toneCurve.Set((Curve*)&rawCurve);
hasToneCurve = true;
}
}
willInterpolate = false;
if (hasForwardMatrix1) {
if (hasForwardMatrix2) {
if (memcmp(mForwardMatrix1, mForwardMatrix2, sizeof(mForwardMatrix1)) != 0) {
// common that forward matrices are the same!
willInterpolate = true;
}
if (aDeltas1 && aDeltas2) {
// we assume tables are different
willInterpolate = true;
}
}
}
if (hasColorMatrix1 && hasColorMatrix2) {
if (memcmp(mColorMatrix1, mColorMatrix2, sizeof(mColorMatrix1)) != 0) {
willInterpolate = true;
}
if (aDeltas1 && aDeltas2) {
willInterpolate = true;
}
}
if (pFile != NULL) {
fclose(pFile);
}
delete tagDir;
}
DCPProfile::~DCPProfile()
{
delete[] aDeltas1;
delete[] aDeltas2;
delete[] aLookTable;
}
void DCPProfile::HSDApply(const HSDTableInfo &ti, const HSBModify *tableBase, float &h, float &s, float &v) const
{
// Apply the HueSatMap. Ported from Adobes reference implementation
float hueShift, satScale, valScale;
float vEncoded = v;
if (ti.iValDivisions < 2) { // Optimize most common case of "2.5D" table.
float hScaled = h * ti.pc.hScale;
float sScaled = s * ti.pc.sScale;
int hIndex0 = max((int)hScaled, 0);
int sIndex0 = max(min((int)sScaled, ti.pc.maxSatIndex0), 0);
int hIndex1 = hIndex0 + 1;
if (hIndex0 >= ti.pc.maxHueIndex0) {
hIndex0 = ti.pc.maxHueIndex0;
hIndex1 = 0;
}
float hFract1 = hScaled - (float) hIndex0;
float sFract1 = sScaled - (float) sIndex0;
float hFract0 = 1.0f - hFract1;
float sFract0 = 1.0f - sFract1;
const HSBModify *entry00 = tableBase + hIndex0 * ti.pc.hueStep + sIndex0;
const HSBModify *entry01 = entry00 + (hIndex1 - hIndex0) * ti.pc.hueStep;
float hueShift0 = hFract0 * entry00->fHueShift + hFract1 * entry01->fHueShift;
float satScale0 = hFract0 * entry00->fSatScale + hFract1 * entry01->fSatScale;
float valScale0 = hFract0 * entry00->fValScale + hFract1 * entry01->fValScale;
entry00++;
entry01++;
float hueShift1 = hFract0 * entry00->fHueShift +
hFract1 * entry01->fHueShift;
float satScale1 = hFract0 * entry00->fSatScale +
hFract1 * entry01->fSatScale;
float valScale1 = hFract0 * entry00->fValScale +
hFract1 * entry01->fValScale;
hueShift = sFract0 * hueShift0 + sFract1 * hueShift1;
satScale = sFract0 * satScale0 + sFract1 * satScale1;
valScale = sFract0 * valScale0 + sFract1 * valScale1;
} else {
float hScaled = h * ti.pc.hScale;
float sScaled = s * ti.pc.sScale;
if (ti.sRGBGamma) {
vEncoded = sRGBGammaForward(v);
}
float vScaled = vEncoded * ti.pc.vScale;
int hIndex0 = (int) hScaled;
int sIndex0 = max(min((int)sScaled, ti.pc.maxSatIndex0), 0);
int vIndex0 = max(min((int)vScaled, ti.pc.maxValIndex0), 0);
int hIndex1 = hIndex0 + 1;
if (hIndex0 >= ti.pc.maxHueIndex0) {
hIndex0 = ti.pc.maxHueIndex0;
hIndex1 = 0;
}
float hFract1 = hScaled - (float) hIndex0;
float sFract1 = sScaled - (float) sIndex0;
float vFract1 = vScaled - (float) vIndex0;
float hFract0 = 1.0f - hFract1;
float sFract0 = 1.0f - sFract1;
float vFract0 = 1.0f - vFract1;
const HSBModify *entry00 = tableBase + vIndex0 * ti.pc.valStep + hIndex0 * ti.pc.hueStep + sIndex0;
const HSBModify *entry01 = entry00 + (hIndex1 - hIndex0) * ti.pc.hueStep;
const HSBModify *entry10 = entry00 + ti.pc.valStep;
const HSBModify *entry11 = entry01 + ti.pc.valStep;
float hueShift0 = vFract0 * (hFract0 * entry00->fHueShift +
hFract1 * entry01->fHueShift) +
vFract1 * (hFract0 * entry10->fHueShift +
hFract1 * entry11->fHueShift);
float satScale0 = vFract0 * (hFract0 * entry00->fSatScale +
hFract1 * entry01->fSatScale) +
vFract1 * (hFract0 * entry10->fSatScale +
hFract1 * entry11->fSatScale);
float valScale0 = vFract0 * (hFract0 * entry00->fValScale +
hFract1 * entry01->fValScale) +
vFract1 * (hFract0 * entry10->fValScale +
hFract1 * entry11->fValScale);
entry00++;
entry01++;
entry10++;
entry11++;
float hueShift1 = vFract0 * (hFract0 * entry00->fHueShift +
hFract1 * entry01->fHueShift) +
vFract1 * (hFract0 * entry10->fHueShift +
hFract1 * entry11->fHueShift);
float satScale1 = vFract0 * (hFract0 * entry00->fSatScale +
hFract1 * entry01->fSatScale) +
vFract1 * (hFract0 * entry10->fSatScale +
hFract1 * entry11->fSatScale);
float valScale1 = vFract0 * (hFract0 * entry00->fValScale +
hFract1 * entry01->fValScale) +
vFract1 * (hFract0 * entry10->fValScale +
hFract1 * entry11->fValScale);
hueShift = sFract0 * hueShift0 + sFract1 * hueShift1;
satScale = sFract0 * satScale0 + sFract1 * satScale1;
valScale = sFract0 * valScale0 + sFract1 * valScale1;
}
hueShift *= (6.0f / 360.0f); // Convert to internal hue range.
h += hueShift;
s *= satScale; // no clipping here, we are RT float :-)
if (ti.sRGBGamma) {
v = sRGBGammaInverse(vEncoded * valScale);
} else {
v *= valScale;
}
}
struct ruvt {
double r;
double u;
double v;
double t;
};
static const double kTintScale = -3000.0;
static const ruvt kTempTable [] = {
{ 0, 0.18006, 0.26352, -0.24341 },
{ 10, 0.18066, 0.26589, -0.25479 },
{ 20, 0.18133, 0.26846, -0.26876 },
{ 30, 0.18208, 0.27119, -0.28539 },
{ 40, 0.18293, 0.27407, -0.30470 },
{ 50, 0.18388, 0.27709, -0.32675 },
{ 60, 0.18494, 0.28021, -0.35156 },
{ 70, 0.18611, 0.28342, -0.37915 },
{ 80, 0.18740, 0.28668, -0.40955 },
{ 90, 0.18880, 0.28997, -0.44278 },
{ 100, 0.19032, 0.29326, -0.47888 },
{ 125, 0.19462, 0.30141, -0.58204 },
{ 150, 0.19962, 0.30921, -0.70471 },
{ 175, 0.20525, 0.31647, -0.84901 },
{ 200, 0.21142, 0.32312, -1.0182 },
{ 225, 0.21807, 0.32909, -1.2168 },
{ 250, 0.22511, 0.33439, -1.4512 },
{ 275, 0.23247, 0.33904, -1.7298 },
{ 300, 0.24010, 0.34308, -2.0637 },
{ 325, 0.24702, 0.34655, -2.4681 },
{ 350, 0.25591, 0.34951, -2.9641 },
{ 375, 0.26400, 0.35200, -3.5814 },
{ 400, 0.27218, 0.35407, -4.3633 },
{ 425, 0.28039, 0.35577, -5.3762 },
{ 450, 0.28863, 0.35714, -6.7262 },
{ 475, 0.29685, 0.35823, -8.5955 },
{ 500, 0.30505, 0.35907, -11.324 },
{ 525, 0.31320, 0.35968, -15.628 },
{ 550, 0.32129, 0.36011, -23.325 },
{ 575, 0.32931, 0.36038, -40.770 },
{ 600, 0.33724, 0.36051, -116.45 }
};
void DCPProfile::dngref_XYCoord2Temperature(const double whiteXY[2], double *temp, double *tint) const
{
double fTemperature = 0;
double fTint = 0;
// Convert to uv space.
double u = 2.0 * whiteXY[0] / (1.5 - whiteXY[0] + 6.0 * whiteXY[1]);
double v = 3.0 * whiteXY[1] / (1.5 - whiteXY[0] + 6.0 * whiteXY[1]);
// Search for line pair coordinate is between.
double last_dt = 0.0;
double last_dv = 0.0;
double last_du = 0.0;
for (uint32_t index = 1; index <= 30; index++) {
// Convert slope to delta-u and delta-v, with length 1.
double du = 1.0;
double dv = kTempTable [index] . t;
double len = sqrt (1.0 + dv * dv);
du /= len;
dv /= len;
// Find delta from black body point to test coordinate.
double uu = u - kTempTable [index] . u;
double vv = v - kTempTable [index] . v;
// Find distance above or below line.
double dt = - uu * dv + vv * du;
// If below line, we have found line pair.
if (dt <= 0.0 || index == 30) {
// Find fractional weight of two lines.
if (dt > 0.0) {
dt = 0.0;
}
dt = -dt;
double f;
if (index == 1) {
f = 0.0;
} else {
f = dt / (last_dt + dt);
}
// Interpolate the temperature.
fTemperature = 1.0E6 / (kTempTable [index - 1] . r * f +
kTempTable [index ] . r * (1.0 - f));
// Find delta from black body point to test coordinate.
uu = u - (kTempTable [index - 1] . u * f +
kTempTable [index ] . u * (1.0 - f));
vv = v - (kTempTable [index - 1] . v * f +
kTempTable [index ] . v * (1.0 - f));
// Interpolate vectors along slope.
du = du * (1.0 - f) + last_du * f;
dv = dv * (1.0 - f) + last_dv * f;
len = sqrt (du * du + dv * dv);
du /= len;
dv /= len;
// Find distance along slope.
fTint = (uu * du + vv * dv) * kTintScale;
break;
}
// Try next line pair.
last_dt = dt;
last_du = du;
last_dv = dv;
}
if (temp != NULL) {
*temp = fTemperature;
}
if (tint != NULL) {
*tint = fTint;
}
}
void DCPProfile::dngref_FindXYZtoCamera(const double whiteXY[2], int preferredIlluminant, double (*xyzToCamera)[3]) const
{
bool hasCol1 = hasColorMatrix1;
bool hasCol2 = hasColorMatrix2;
if (preferredIlluminant == 1) {
if (hasCol1) {
hasCol2 = false;
}
} else if (preferredIlluminant == 2) {
if (hasCol2) {
hasCol1 = false;
}
}
// mix if we have two matrices
double mix;
if (hasCol1 && hasCol2) {
double wbtemp;
/*
Note: we're using DNG SDK reference code for XY to temperature translation to get the exact same mix as
the reference code does.
*/
dngref_XYCoord2Temperature(whiteXY, &wbtemp, NULL);
if (wbtemp <= temperature1) {
mix = 1.0;
} else if (wbtemp >= temperature2) {
mix = 0.0;
} else {
double invT = 1.0 / wbtemp;
mix = (invT - (1.0 / temperature2)) / ((1.0 / temperature1) - (1.0 / temperature2));
}
}
// Interpolate the color matrix.
double mCol[3][3];
if (hasCol1 && hasCol2) {
// interpolate
if (mix >= 1.0) {
memcpy(mCol, mColorMatrix1, sizeof(mCol));
} else if (mix <= 0.0) {
memcpy(mCol, mColorMatrix2, sizeof(mCol));
} else {
Mix3x3(mColorMatrix1, mix, mColorMatrix2, 1.0 - mix, mCol);
}
} else if (hasCol1) {
memcpy(mCol, mColorMatrix1, sizeof(mCol));
} else {
memcpy(mCol, mColorMatrix2, sizeof(mCol));
}
memcpy(xyzToCamera, mCol, sizeof(mCol));
}
void DCPProfile::dngref_NeutralToXY(double neutral[3], int preferredIlluminant, double XY[2]) const
{
const int kMaxPasses = 30;
double lastXY[2] = { 0.3457, 0.3585 }; // D50
for (int pass = 0; pass < kMaxPasses; pass++) {
double xyzToCamera[3][3];
dngref_FindXYZtoCamera(lastXY, preferredIlluminant, xyzToCamera);
double invM[3][3], nextXYZ[3], nextXY[2];
Invert3x3(xyzToCamera, invM);
Multiply3x3_v3(invM, neutral, nextXYZ);
XYZtoXY(nextXYZ, nextXY);
if (fabs(nextXY[0] - lastXY[0]) +
fabs(nextXY[1] - lastXY[1]) < 0.0000001) {
XY[0] = nextXY[0];
XY[1] = nextXY[1];
return;
}
// If we reach the limit without converging, we are most likely
// in a two value oscillation. So take the average of the last
// two estimates and give up.
if (pass == kMaxPasses - 1) {
nextXY[0] = (lastXY[0] + nextXY[0]) * 0.5;
nextXY[1] = (lastXY[1] + nextXY[1]) * 0.5;
}
lastXY[0] = nextXY[0];
lastXY[1] = nextXY[1];
}
XY[0] = lastXY[0];
XY[1] = lastXY[1];
}
void DCPProfile::Apply(Imagefloat *pImg, int preferredIlluminant, Glib::ustring workingSpace, ColorTemp &wb, double pre_mul[3], double camWbMatrix[3][3], bool useToneCurve, bool applyHueSatMap, bool applyLookTable) const
{
TMatrix mWork = iccStore->workingSpaceInverseMatrix (workingSpace);
double mXYZCAM[3][3]; // Camera RGB to XYZ D50 matrix
MakeXYZCAM(wb, pre_mul, camWbMatrix, preferredIlluminant, mXYZCAM);
HSBModify *deleteTableHandle;
const HSBModify *deltaBase = MakeHueSatMap(wb, preferredIlluminant, &deleteTableHandle);
if (!deltaBase) {
applyHueSatMap = false;
}
if (!aLookTable) {
applyLookTable = false;
}
useToneCurve &= toneCurve;
if (!applyHueSatMap && !applyLookTable && !useToneCurve) {
//===== The fast path: no LUT and not tone curve- Calculate matrix for direct conversion raw>working space
double mat[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
mat[i][j] += mWork[i][k] * mXYZCAM[k][j];
}
// Apply the matrix part
#pragma omp parallel for
for (int y = 0; y < pImg->height; y++) {
float newr, newg, newb;
for (int x = 0; x < pImg->width; x++) {
newr = mat[0][0] * pImg->r(y, x) + mat[0][1] * pImg->g(y, x) + mat[0][2] * pImg->b(y, x);
newg = mat[1][0] * pImg->r(y, x) + mat[1][1] * pImg->g(y, x) + mat[1][2] * pImg->b(y, x);
newb = mat[2][0] * pImg->r(y, x) + mat[2][1] * pImg->g(y, x) + mat[2][2] * pImg->b(y, x);
pImg->r(y, x) = newr;
pImg->g(y, x) = newg;
pImg->b(y, x) = newb;
}
}
} else {
//===== LUT available- Calculate matrix for conversion raw>ProPhoto
double m2ProPhoto[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
m2ProPhoto[i][j] += prophoto_xyz[i][k] * mXYZCAM[k][j];
}
double m2Work[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
m2Work[i][j] += mWork[i][k] * xyz_prophoto[k][j];
}
// Convert to prophoto and apply LUT
#pragma omp parallel for
for (int y = 0; y < pImg->height; y++) {
float newr, newg, newb, h, s, v, hs, ss, vs;
for (int x = 0; x < pImg->width; x++) {
newr = m2ProPhoto[0][0] * pImg->r(y, x) + m2ProPhoto[0][1] * pImg->g(y, x) + m2ProPhoto[0][2] * pImg->b(y, x);
newg = m2ProPhoto[1][0] * pImg->r(y, x) + m2ProPhoto[1][1] * pImg->g(y, x) + m2ProPhoto[1][2] * pImg->b(y, x);
newb = m2ProPhoto[2][0] * pImg->r(y, x) + m2ProPhoto[2][1] * pImg->g(y, x) + m2ProPhoto[2][2] * pImg->b(y, x);
// if point is in negative area, just the matrix, but not the LUT
if ((applyHueSatMap || applyLookTable) && newr >= 0 && newg >= 0 && newb >= 0) {
Color::rgb2hsv(newr, newg, newb, h , s, v);
h *= 6.f; // RT calculates in [0,1]
if (applyHueSatMap) {
HSDApply(DeltaInfo, deltaBase, h, s, v);
}
if (applyLookTable) {
HSDApply(LookInfo, aLookTable, h, s, v);
}
// RT range correction
if (h < 0.0f) {
h += 6.0f;
}
if (h >= 6.0f) {
h -= 6.0f;
}
h /= 6.f;
Color::hsv2rgb( h, s, v, newr, newg, newb);
}
// tone curve
if (useToneCurve) {
toneCurve.Apply(newr, newg, newb);
}
pImg->r(y, x) = m2Work[0][0] * newr + m2Work[0][1] * newg + m2Work[0][2] * newb;
pImg->g(y, x) = m2Work[1][0] * newr + m2Work[1][1] * newg + m2Work[1][2] * newb;
pImg->b(y, x) = m2Work[2][0] * newr + m2Work[2][1] * newg + m2Work[2][2] * newb;
}
}
}
if (deleteTableHandle) {
delete[] deleteTableHandle;
}
}
void DCPProfile::setStep2ApplyState(Glib::ustring workingSpace, bool useToneCurve, bool applyLookTable, bool applyBaselineExposure)
{
applyState.useToneCurve = useToneCurve;
applyState.applyLookTable = applyLookTable;
applyState.blScale = 1.0;
if (!aLookTable) {
applyState.applyLookTable = false;
}
if (!hasToneCurve) {
applyState.useToneCurve = false;
}
if (hasBaselineExposureOffset && applyBaselineExposure) {
applyState.blScale = powf(2, baselineExposureOffset);
}
if (workingSpace == "ProPhoto") {
applyState.alreadyProPhoto = true;
} else {
applyState.alreadyProPhoto = false;
TMatrix mWork;
mWork = iccStore->workingSpaceMatrix (workingSpace);
memset(applyState.m2ProPhoto, 0, sizeof(applyState.m2ProPhoto));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
applyState.m2ProPhoto[i][j] += prophoto_xyz[i][k] * mWork[k][j];
}
mWork = iccStore->workingSpaceInverseMatrix (workingSpace);
memset(applyState.m2Work, 0, sizeof(applyState.m2Work));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
applyState.m2Work[i][j] += mWork[i][k] * xyz_prophoto[k][j];
}
}
}
void DCPProfile::step2ApplyTile(float *rc, float *gc, float *bc, int width, int height, int tileWidth) const
{
#define FCLIP(a) ((a)>0.0?((a)<65535.5?(a):65535.5):0.0)
#define CLIP01(a) ((a)>0?((a)<1?(a):1):0)
float exp_scale = 1.0;
exp_scale *= applyState.blScale;
if (!applyState.useToneCurve && !applyState.applyLookTable) {
if (exp_scale == 1.0) {
return;
}
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
rc[y * tileWidth + x] *= exp_scale;
gc[y * tileWidth + x] *= exp_scale;
bc[y * tileWidth + x] *= exp_scale;
}
}
} else {
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
float r = rc[y * tileWidth + x];
float g = gc[y * tileWidth + x];
float b = bc[y * tileWidth + x];
if (exp_scale != 1.0) {
r *= exp_scale;
g *= exp_scale;
b *= exp_scale;
}
float newr, newg, newb;
if (applyState.alreadyProPhoto) {
newr = r;
newg = g;
newb = b;
} else {
newr = applyState.m2ProPhoto[0][0] * r + applyState.m2ProPhoto[0][1] * g + applyState.m2ProPhoto[0][2] * b;
newg = applyState.m2ProPhoto[1][0] * r + applyState.m2ProPhoto[1][1] * g + applyState.m2ProPhoto[1][2] * b;
newb = applyState.m2ProPhoto[2][0] * r + applyState.m2ProPhoto[2][1] * g + applyState.m2ProPhoto[2][2] * b;
}
// with looktable and tonecurve we need to clip
newr = FCLIP(newr);
newg = FCLIP(newg);
newb = FCLIP(newb);
if (applyState.applyLookTable) {
float h, s, v;
Color::rgb2hsv(newr, newg, newb, h, s, v);
h *= 6.f; // RT calculates in [0,1]
HSDApply(LookInfo, aLookTable, h, s, v);
s = CLIP01(s);
v = CLIP01(v);
// RT range correction
if (h < 0.0f) {
h += 6.0f;
}
if (h >= 6.0f) {
h -= 6.0f;
}
h /= 6.f;
Color::hsv2rgb( h, s, v, newr, newg, newb);
}
if (applyState.useToneCurve) {
toneCurve.Apply(newr, newg, newb);
}
if (applyState.alreadyProPhoto) {
rc[y * tileWidth + x] = newr;
gc[y * tileWidth + x] = newg;
bc[y * tileWidth + x] = newb;
} else {
rc[y * tileWidth + x] = applyState.m2Work[0][0] * newr + applyState.m2Work[0][1] * newg + applyState.m2Work[0][2] * newb;
gc[y * tileWidth + x] = applyState.m2Work[1][0] * newr + applyState.m2Work[1][1] * newg + applyState.m2Work[1][2] * newb;
bc[y * tileWidth + x] = applyState.m2Work[2][0] * newr + applyState.m2Work[2][1] * newg + applyState.m2Work[2][2] * newb;
}
}
}
}
}
// Generates as singleton
DCPStore* DCPStore::getInstance()
{
static DCPStore instance_;
return &instance_;
}
// Reads all profiles from the given profiles dir
void DCPStore::init (Glib::ustring rtProfileDir)
{
MyMutex::MyLock lock(mtx);
fileStdProfiles.clear();
Glib::ustring rootDirName = rtProfileDir;
if (rootDirName != "") {
std::deque<Glib::ustring> qDirs;
qDirs.push_front(rootDirName);
while (!qDirs.empty()) {
// process directory
Glib::ustring dirname = qDirs.back();
qDirs.pop_back();
Glib::Dir* dir = NULL;
try {
if (!safe_file_test (dirname, Glib::FILE_TEST_IS_DIR)) {
return;
}
dir = new Glib::Dir (dirname);
} catch (Glib::Exception& fe) {
return;
}
dirname = dirname + "/";
for (Glib::DirIterator i = dir->begin(); i != dir->end(); ++i) {
Glib::ustring fname = dirname + *i;
Glib::ustring sname = *i;
// ignore directories
if (!safe_file_test (fname, Glib::FILE_TEST_IS_DIR)) {
size_t lastdot = sname.find_last_of ('.');
if (lastdot != Glib::ustring::npos && lastdot <= sname.size() - 4 && (!sname.casefold().compare (lastdot, 4, ".dcp"))) {
Glib::ustring camShortName = sname.substr(0, lastdot).uppercase();
fileStdProfiles[camShortName] = fname; // they will be loaded and cached on demand
}
} else {
qDirs.push_front(fname); // for later scanning
}
}
delete dir;
}
}
}
DCPProfile* DCPStore::getProfile (Glib::ustring filename)
{
MyMutex::MyLock lock(mtx);
std::map<Glib::ustring, DCPProfile*>::iterator r = profileCache.find (filename);
if (r != profileCache.end()) {
return r->second;
}
// Add profile
profileCache[filename] = new DCPProfile(filename);
return profileCache[filename];
}
DCPProfile* DCPStore::getStdProfile(Glib::ustring camShortName)
{
Glib::ustring name2 = camShortName.uppercase();
// Warning: do NOT use map.find(), since it does not seem to work reliably here
for (std::map<Glib::ustring, Glib::ustring>::iterator i = fileStdProfiles.begin(); i != fileStdProfiles.end(); i++)
if (name2 == (*i).first) {
return getProfile((*i).second);
}
return NULL;
}
bool DCPStore::isValidDCPFileName(Glib::ustring filename) const
{
if (!safe_file_test (filename, Glib::FILE_TEST_EXISTS) || safe_file_test (filename, Glib::FILE_TEST_IS_DIR)) {
return false;
}
size_t pos = filename.find_last_of ('.');
return pos > 0 && (!filename.casefold().compare (pos, 4, ".dcp") || !filename.casefold().compare (pos, 4, ".dng"));
}