537 lines
24 KiB
C++
537 lines
24 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2004-2019 Gabor Horvath <hgabor@rawtherapee.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <new>
|
|
|
|
#include "rawimagesource.h"
|
|
#include "procparams.h"
|
|
#include "rawimage.h"
|
|
//#define BENCHMARK
|
|
//#include "StopWatch.h"
|
|
#include "opthelper.h"
|
|
|
|
namespace {
|
|
|
|
void cfaboxblur(const float* const * riFlatFile, float* cfablur, int boxH, int boxW, int H, int W)
|
|
{
|
|
if (boxW < 0 || boxH < 0 || (boxW == 0 && boxH == 0)) { // nothing to blur or negative values
|
|
memcpy(cfablur, riFlatFile[0], static_cast<unsigned long>(W) * H * sizeof(float));
|
|
return;
|
|
}
|
|
|
|
std::unique_ptr<float []> tmpBuffer;
|
|
float *cfatmp = cfablur;
|
|
|
|
|
|
if (boxH > 0 && boxW > 0) {
|
|
// we need a temporary buffer if we have to blur both directions
|
|
tmpBuffer.reset(new float [H * W]);
|
|
cfatmp = tmpBuffer.get();
|
|
}
|
|
|
|
// if boxW == 0 we can skip the horizontal blur and process the vertical blur from riFlatFile to cfablur without using a temporary buffer
|
|
const float* srcVertical = boxW == 0 ? riFlatFile[0] : cfatmp;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
|
|
if (boxW > 0) {
|
|
//box blur cfa image; box size = BS
|
|
//horizontal blur
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int row = 0; row < H; ++row) {
|
|
int len = boxW / 2 + 1;
|
|
cfatmp[row * W] = riFlatFile[row][0] / len;
|
|
cfatmp[row * W + 1] = riFlatFile[row][1] / len;
|
|
|
|
for (int j = 2; j <= boxW; j += 2) {
|
|
cfatmp[row * W] += riFlatFile[row][j] / len;
|
|
cfatmp[row * W + 1] += riFlatFile[row][j + 1] / len;
|
|
}
|
|
|
|
for (int col = 2; col <= boxW; col += 2) {
|
|
cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len + riFlatFile[row][boxW + col]) / (len + 1);
|
|
cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len + riFlatFile[row][boxW + col + 1]) / (len + 1);
|
|
len ++;
|
|
}
|
|
|
|
const float rlen = 1.f / len;
|
|
for (int col = boxW + 2; col < W - boxW; col++) {
|
|
cfatmp[row * W + col] = cfatmp[row * W + col - 2] + (riFlatFile[row][boxW + col] - cfatmp[row * W + col - boxW - 2]) * rlen;
|
|
}
|
|
|
|
for (int col = W - boxW; col < W; col += 2) {
|
|
cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len - cfatmp[row * W + col - boxW - 2]) / (len - 1);
|
|
|
|
if (col + 1 < W) {
|
|
cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len - cfatmp[row * W + col - boxW - 1]) / (len - 1);
|
|
}
|
|
|
|
len --;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (boxH > 0) {
|
|
//vertical blur
|
|
#ifdef __SSE2__
|
|
const vfloat leninitv = F2V(boxH / 2 + 1);
|
|
const vfloat onev = F2V(1.f);
|
|
#ifdef _OPENMP
|
|
#pragma omp for nowait
|
|
#endif
|
|
|
|
for (int col = 0; col < W - 7; col += 8) {
|
|
vfloat lenv = leninitv;
|
|
vfloat temp1v = LVFU(srcVertical[col]) / lenv;
|
|
vfloat temp2v = LVFU(srcVertical[W + col]) / lenv;
|
|
vfloat temp3v = LVFU(srcVertical[col + 4]) / lenv;
|
|
vfloat temp4v = LVFU(srcVertical[W + col + 4]) / lenv;
|
|
|
|
for (int i = 2; i < boxH + 2; i += 2) {
|
|
temp1v += LVFU(srcVertical[i * W + col]) / lenv;
|
|
temp2v += LVFU(srcVertical[(i + 1) * W + col]) / lenv;
|
|
temp3v += LVFU(srcVertical[i * W + col + 4]) / lenv;
|
|
temp4v += LVFU(srcVertical[(i + 1) * W + col + 4]) / lenv;
|
|
}
|
|
|
|
STVFU(cfablur[col], temp1v);
|
|
STVFU(cfablur[W + col], temp2v);
|
|
STVFU(cfablur[col + 4], temp3v);
|
|
STVFU(cfablur[W + col + 4], temp4v);
|
|
|
|
int row;
|
|
for (row = 2; row < boxH + 2; row += 2) {
|
|
const vfloat lenp1v = lenv + onev;
|
|
temp1v = (temp1v * lenv + LVFU(srcVertical[(row + boxH) * W + col])) / lenp1v;
|
|
temp2v = (temp2v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col])) / lenp1v;
|
|
temp3v = (temp3v * lenv + LVFU(srcVertical[(row + boxH) * W + col + 4])) / lenp1v;
|
|
temp4v = (temp4v * lenv + LVFU(srcVertical[(row + boxH + 1) * W + col + 4])) / lenp1v;
|
|
STVFU(cfablur[row * W + col], temp1v);
|
|
STVFU(cfablur[(row + 1) * W + col], temp2v);
|
|
STVFU(cfablur[row * W + col + 4], temp3v);
|
|
STVFU(cfablur[(row + 1) * W + col + 4], temp4v);
|
|
lenv = lenp1v;
|
|
}
|
|
|
|
for (; row < H - boxH - 1; row += 2) {
|
|
temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv;
|
|
temp2v = temp2v + (LVFU(srcVertical[(row + 1 + boxH) * W + col]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col])) / lenv;
|
|
temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv;
|
|
temp4v = temp4v + (LVFU(srcVertical[(row + 1 + boxH) * W + col + 4]) - LVFU(srcVertical[(row + 1 - boxH - 2) * W + col + 4])) / lenv;
|
|
STVFU(cfablur[row * W + col], temp1v);
|
|
STVFU(cfablur[(row + 1) * W + col], temp2v);
|
|
STVFU(cfablur[row * W + col + 4], temp3v);
|
|
STVFU(cfablur[(row + 1) * W + col + 4], temp4v);
|
|
}
|
|
|
|
if (row < H - boxH) {
|
|
temp1v = temp1v + (LVFU(srcVertical[(row + boxH) * W + col]) - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenv;
|
|
temp3v = temp3v + (LVFU(srcVertical[(row + boxH) * W + col + 4]) - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenv;
|
|
STVFU(cfablur[row * W + col], temp1v);
|
|
STVFU(cfablur[row * W + col + 4], temp3v);
|
|
vfloat swapv = temp1v;
|
|
temp1v = temp2v;
|
|
temp2v = swapv;
|
|
swapv = temp3v;
|
|
temp3v = temp4v;
|
|
temp4v = swapv;
|
|
++row;
|
|
}
|
|
|
|
for (; row < H - 1; row += 2) {
|
|
const vfloat lenm1v = lenv - onev;
|
|
temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v;
|
|
temp2v = (temp2v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col])) / lenm1v;
|
|
temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v;
|
|
temp4v = (temp4v * lenv - LVFU(srcVertical[(row - boxH - 1) * W + col + 4])) / lenm1v;
|
|
STVFU(cfablur[row * W + col], temp1v);
|
|
STVFU(cfablur[(row + 1) * W + col], temp2v);
|
|
STVFU(cfablur[row * W + col + 4], temp3v);
|
|
STVFU(cfablur[(row + 1) * W + col + 4], temp4v);
|
|
lenv = lenm1v;
|
|
}
|
|
|
|
if (row < H) {
|
|
vfloat lenm1v = lenv - onev;
|
|
temp1v = (temp1v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col])) / lenm1v;
|
|
temp3v = (temp3v * lenv - LVFU(srcVertical[(row - boxH - 2) * W + col + 4])) / lenm1v;
|
|
STVFU(cfablur[row * W + col], temp1v);
|
|
STVFU(cfablur[row * W + col + 4], temp3v);
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp single
|
|
#endif
|
|
|
|
for (int col = W - (W % 8); col < W; ++col) {
|
|
int len = boxH / 2 + 1;
|
|
cfablur[col] = srcVertical[col] / len;
|
|
cfablur[W + col] = srcVertical[W + col] / len;
|
|
|
|
for (int i = 2; i < boxH + 2; i += 2) {
|
|
cfablur[col] += srcVertical[i * W + col] / len;
|
|
cfablur[W + col] += srcVertical[(i + 1) * W + col] / len;
|
|
}
|
|
|
|
for (int row = 2; row < boxH + 2; row += 2) {
|
|
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1);
|
|
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1);
|
|
++len;
|
|
}
|
|
|
|
for (int row = boxH + 2; row < H - boxH; ++row) {
|
|
cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len;
|
|
}
|
|
|
|
for (int row = H - boxH; row < H; row += 2) {
|
|
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1);
|
|
|
|
if (row + 1 < H) {
|
|
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1);
|
|
}
|
|
--len;
|
|
}
|
|
}
|
|
|
|
#else
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int col = 0; col < W; ++col) {
|
|
int len = boxH / 2 + 1;
|
|
cfablur[col] = srcVertical[col] / len;
|
|
cfablur[W + col] = srcVertical[W + col] / len;
|
|
|
|
for (int i = 2; i < boxH + 2; i += 2) {
|
|
cfablur[col] += srcVertical[i * W + col] / len;
|
|
cfablur[W + col] += srcVertical[(i + 1) * W + col] / len;
|
|
}
|
|
|
|
for (int row = 2; row < boxH + 2; row += 2) {
|
|
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + srcVertical[(row + boxH) * W + col]) / (len + 1);
|
|
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len + srcVertical[(row + boxH + 1) * W + col]) / (len + 1);
|
|
++len;
|
|
}
|
|
|
|
for (int row = boxH + 2; row < H - boxH; ++row) {
|
|
cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (srcVertical[(row + boxH) * W + col] - srcVertical[(row - boxH - 2) * W + col]) / len;
|
|
}
|
|
|
|
for (int row = H - boxH; row < H; row += 2) {
|
|
cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - srcVertical[(row - boxH - 2) * W + col]) / (len - 1);
|
|
|
|
if (row + 1 < H) {
|
|
cfablur[(row + 1) * W + col] = (cfablur[(row - 1) * W + col] * len - srcVertical[(row - boxH - 1) * W + col]) / (len - 1);
|
|
}
|
|
--len;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
void RawImageSource::processFlatField(const procparams::RAWParams &raw, const RawImage *riFlatFile, const float black[4])
|
|
{
|
|
// BENCHFUN
|
|
std::unique_ptr<float[]> cfablur(new float[H * W]);
|
|
|
|
const int BS = raw.ff_BlurRadius + (raw.ff_BlurRadius & 1);
|
|
|
|
if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::V)) {
|
|
cfaboxblur(riFlatFile->data, cfablur.get(), 2 * BS, 0, H, W);
|
|
} else if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::H)) {
|
|
cfaboxblur(riFlatFile->data, cfablur.get(), 0, 2 * BS, H, W);
|
|
} else if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::VH)) {
|
|
//slightly more complicated blur if trying to correct both vertical and horizontal anomalies
|
|
cfaboxblur(riFlatFile->data, cfablur.get(), BS, BS, H, W); //first do area blur to correct vignette
|
|
} else { //(raw.ff_BlurType == RAWParams::getFlatFieldBlurTypeString(RAWParams::area_ff))
|
|
cfaboxblur(riFlatFile->data, cfablur.get(), BS, BS, H, W);
|
|
}
|
|
|
|
if (ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) {
|
|
float refcolor[2][2];
|
|
|
|
// find center values by channel
|
|
for (int m = 0; m < 2; ++m)
|
|
for (int n = 0; n < 2; ++n) {
|
|
const int row = 2 * (H >> 2) + m;
|
|
const int col = 2 * (W >> 2) + n;
|
|
const int c = ri->get_colors() != 1 ? FC(row, col) : 0;
|
|
const int c4 = ri->get_colors() != 1 ? ((c == 1 && !(row & 1)) ? 3 : c) : 0;
|
|
refcolor[m][n] = std::max(0.0f, cfablur[row * W + col] - black[c4]);
|
|
}
|
|
|
|
float limitFactor = 1.f;
|
|
|
|
if (raw.ff_AutoClipControl) {
|
|
bool clippedBefore = false;
|
|
for (int m = 0; m < 2 && !clippedBefore; ++m) {
|
|
for (int n = 0; n < 2 && !clippedBefore; ++n) {
|
|
float maxval = 0.f;
|
|
const int c = ri->get_colors() != 1 ? FC(m, n) : 0;
|
|
const int c4 = ri->get_colors() != 1 ? ((c == 1 && !(m & 1)) ? 3 : c) : 0;
|
|
const float clipVal = ri->get_white(c4);
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(max:maxval) schedule(dynamic, 16)
|
|
#endif
|
|
for (int row = 0; row < H - m; row += 2) {
|
|
for (int col = 0; col < W - n && !clippedBefore; col += 2) {
|
|
const float rawVal = rawData[row + m][col + n];
|
|
if (rawVal >= clipVal) {
|
|
clippedBefore = true;
|
|
break;
|
|
}
|
|
const float tempval = (rawVal - black[c4]) * (refcolor[m][n] / std::max(1e-5f, cfablur[(row + m) * W + col + n] - black[c4]));
|
|
maxval = std::max(maxval, tempval);
|
|
}
|
|
}
|
|
|
|
// now we have the max value for the channel
|
|
// if it clips, calculate factor to avoid clipping
|
|
if (maxval + black[c4] >= ri->get_white(c4)) {
|
|
if (!clippedBefore) {
|
|
limitFactor = std::min(limitFactor, ri->get_white(c4) / (maxval + black[c4]));
|
|
} else {
|
|
limitFactor = 1.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui
|
|
} else {
|
|
limitFactor = std::max((100 - raw.ff_clipControl) / 100.f, 0.01f);
|
|
}
|
|
|
|
for (int m = 0; m < 2; ++m)
|
|
for (int n = 0; n < 2; ++n) {
|
|
refcolor[m][n] *= limitFactor;
|
|
}
|
|
|
|
unsigned int c[2][2] {};
|
|
unsigned int c4[2][2] {};
|
|
if (ri->get_colors() != 1) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
c[i][j] = FC(i, j);
|
|
}
|
|
}
|
|
c4[0][0] = (c[0][0] == 1) ? 3 : c[0][0];
|
|
c4[0][1] = (c[0][1] == 1) ? 3 : c[0][1];
|
|
c4[1][0] = c[1][0];
|
|
c4[1][1] = c[1][1];
|
|
}
|
|
|
|
constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied.
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat refcolorv[2] = {_mm_set_ps(refcolor[0][1], refcolor[0][0], refcolor[0][1], refcolor[0][0]),
|
|
_mm_set_ps(refcolor[1][1], refcolor[1][0], refcolor[1][1], refcolor[1][0])
|
|
};
|
|
const vfloat blackv[2] = {_mm_set_ps(black[c4[0][1]], black[c4[0][0]], black[c4[0][1]], black[c4[0][0]]),
|
|
_mm_set_ps(black[c4[1][1]], black[c4[1][0]], black[c4[1][1]], black[c4[1][0]])
|
|
};
|
|
|
|
const vfloat onev = F2V(1.f);
|
|
const vfloat minValuev = F2V(minValue);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int row = 0; row < H; ++row) {
|
|
int col = 0;
|
|
#ifdef __SSE2__
|
|
const vfloat rowBlackv = blackv[row & 1];
|
|
const vfloat rowRefcolorv = refcolorv[row & 1];
|
|
|
|
for (; col < W - 3; col += 4) {
|
|
const vfloat blurv = LVFU(cfablur[row * W + col]) - rowBlackv;
|
|
vfloat vignettecorrv = rowRefcolorv / blurv;
|
|
vignettecorrv = vself(vmaskf_le(blurv, minValuev), onev, vignettecorrv);
|
|
const vfloat valv = LVFU(rawData[row][col]) - rowBlackv;
|
|
STVFU(rawData[row][col], valv * vignettecorrv + rowBlackv);
|
|
}
|
|
|
|
#endif
|
|
|
|
for (; col < W; ++col) {
|
|
const float blur = cfablur[row * W + col] - black[c4[row & 1][col & 1]];
|
|
const float vignettecorr = blur <= minValue ? 1.f : refcolor[row & 1][col & 1] / blur;
|
|
rawData[row][col] = (rawData[row][col] - black[c4[row & 1][col & 1]]) * vignettecorr + black[c4[row & 1][col & 1]];
|
|
}
|
|
}
|
|
} else if (ri->getSensorType() == ST_FUJI_XTRANS) {
|
|
float refcolor[3] = {0.f};
|
|
int cCount[3] = {0};
|
|
|
|
// find center average values by channel
|
|
for (int m = -3; m < 3; ++m)
|
|
for (int n = -3; n < 3; ++n) {
|
|
const int row = 2 * (H >> 2) + m;
|
|
const int col = 2 * (W >> 2) + n;
|
|
const int c = riFlatFile->XTRANSFC(row, col);
|
|
refcolor[c] += std::max(0.0f, cfablur[row * W + col] - black[c]);
|
|
cCount[c] ++;
|
|
}
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
refcolor[c] = refcolor[c] / cCount[c];
|
|
}
|
|
|
|
float limitFactor = 1.f;
|
|
|
|
if (raw.ff_AutoClipControl) {
|
|
// determine maximum calculated value to avoid clipping
|
|
bool clippedBefore = false;
|
|
const float clipVal = ri->get_white(0);
|
|
float maxval = 0.f;
|
|
// xtrans files have only one black level actually, so we can simplify the code a bit
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(max:maxval) schedule(dynamic,16)
|
|
#endif
|
|
for (int row = 0; row < H; ++row) {
|
|
for (int col = 0; col < W && !clippedBefore; ++col) {
|
|
const float rawVal = rawData[row][col];
|
|
if (rawVal >= clipVal) {
|
|
clippedBefore = true;
|
|
break;
|
|
}
|
|
const float tempval = (rawVal - black[0]) * (refcolor[ri->XTRANSFC(row, col)] / std::max(1e-5f, cfablur[(row) * W + col] - black[0]));
|
|
maxval = std::max(maxval, tempval);
|
|
}
|
|
}
|
|
|
|
// there's only one white level for xtrans
|
|
if (!clippedBefore && maxval + black[0] > ri->get_white(0)) {
|
|
limitFactor = ri->get_white(0) / (maxval + black[0]);
|
|
flatFieldAutoClipValue = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui
|
|
}
|
|
} else {
|
|
limitFactor = std::max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f);
|
|
}
|
|
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
refcolor[c] *= limitFactor;
|
|
}
|
|
|
|
constexpr float minValue = 1.f; // if the pixel value in the flat field is less or equal this value, no correction will be applied.
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
|
|
for (int row = 0; row < H; ++row) {
|
|
for (int col = 0; col < W; ++col) {
|
|
const int c = ri->XTRANSFC(row, col);
|
|
const float blur = cfablur[(row) * W + col] - black[c];
|
|
const float vignettecorr = blur <= minValue ? 1.f : refcolor[c] / blur;
|
|
rawData[row][col] = (rawData[row][col] - black[c]) * vignettecorr + black[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (raw.ff_BlurType == procparams::RAWParams::getFlatFieldBlurTypeString(procparams::RAWParams::FlatFieldBlurType::VH)) {
|
|
std::unique_ptr<float []> cfablur1(new float[H * W]);
|
|
std::unique_ptr<float []> cfablur2(new float[H * W]);
|
|
//slightly more complicated blur if trying to correct both vertical and horizontal anomalies
|
|
cfaboxblur(riFlatFile->data, cfablur1.get(), 0, 2 * BS, H, W); //now do horizontal blur
|
|
cfaboxblur(riFlatFile->data, cfablur2.get(), 2 * BS, 0, H, W); //now do vertical blur
|
|
|
|
if (ri->getSensorType() == ST_BAYER || ri->get_colors() == 1) {
|
|
unsigned int c[2][2] {};
|
|
unsigned int c4[2][2] {};
|
|
if (ri->get_colors() != 1) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
c[i][j] = FC(i, j);
|
|
}
|
|
}
|
|
c4[0][0] = (c[0][0] == 1) ? 3 : c[0][0];
|
|
c4[0][1] = (c[0][1] == 1) ? 3 : c[0][1];
|
|
c4[1][0] = c[1][0];
|
|
c4[1][1] = c[1][1];
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat blackv[2] = {_mm_set_ps(black[c4[0][1]], black[c4[0][0]], black[c4[0][1]], black[c4[0][0]]),
|
|
_mm_set_ps(black[c4[1][1]], black[c4[1][0]], black[c4[1][1]], black[c4[1][0]])
|
|
};
|
|
|
|
const vfloat epsv = F2V(1e-5f);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int row = 0; row < H; ++row) {
|
|
int col = 0;
|
|
#ifdef __SSE2__
|
|
const vfloat rowBlackv = blackv[row & 1];
|
|
|
|
for (; col < W - 3; col += 4) {
|
|
const vfloat linecorrv = SQRV(vmaxf(LVFU(cfablur[row * W + col]) - rowBlackv, epsv)) /
|
|
(vmaxf(LVFU(cfablur1[row * W + col]) - rowBlackv, epsv) * vmaxf(LVFU(cfablur2[row * W + col]) - rowBlackv, epsv));
|
|
const vfloat valv = LVFU(rawData[row][col]) - rowBlackv;
|
|
STVFU(rawData[row][col], valv * linecorrv + rowBlackv);
|
|
}
|
|
|
|
#endif
|
|
|
|
for (; col < W; ++col) {
|
|
const float linecorr = SQR(std::max(1e-5f, cfablur[row * W + col] - black[c4[row & 1][col & 1]])) /
|
|
(std::max(1e-5f, cfablur1[row * W + col] - black[c4[row & 1][col & 1]]) * std::max(1e-5f, cfablur2[row * W + col] - black[c4[row & 1][col & 1]]));
|
|
rawData[row][col] = (rawData[row][col] - black[c4[row & 1][col & 1]]) * linecorr + black[c4[row & 1][col & 1]];
|
|
}
|
|
}
|
|
} else if (ri->getSensorType() == ST_FUJI_XTRANS) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
|
|
for (int row = 0; row < H; ++row) {
|
|
for (int col = 0; col < W; ++col) {
|
|
const int c = ri->XTRANSFC(row, col);
|
|
const float hlinecorr = std::max(1e-5f, cfablur[(row) * W + col] - black[c]) / std::max(1e-5f, cfablur1[(row) * W + col] - black[c]);
|
|
const float vlinecorr = std::max(1e-5f, cfablur[(row) * W + col] - black[c]) / std::max(1e-5f, cfablur2[(row) * W + col] - black[c]);
|
|
rawData[row][col] = (rawData[row][col] - black[c]) * hlinecorr * vlinecorr + black[c];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} /* namespace */
|