rawTherapee/rtengine/imagefloat.h

232 lines
7.4 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
//
// A class representing a 16 bit rgb image with separate planes and 16 byte aligned data
//
#ifndef _IMAGEFLOAT_
#define _IMAGEFLOAT_
#include "imageio.h"
#include "rtengine.h"
namespace rtengine
{
using namespace procparams;
class Image8;
class Image16;
/*
* Image type used by most tools; expected range: [0.0 ; 65535.0]
*/
class Imagefloat : public IImagefloat, public ImageIO
{
public:
Imagefloat ();
Imagefloat (int width, int height);
~Imagefloat () override;
Imagefloat* copy () const;
Imagefloat* copySubRegion (int x, int y, int width, int height);
Image8* to8() const;
Image16* to16() const;
void getStdImage (const ColorTemp &ctemp, int tran, Imagefloat* image, const PreviewProps &pp) const override;
const char* getType () const override
{
return sImagefloat;
}
int getBPS () const override
{
return 8 * sizeof(float);
}
void getScanline (int row, unsigned char* buffer, int bps, bool isFloat = false) const override;
void setScanline (int row, const unsigned char* buffer, int bps, unsigned int numSamples) override;
// functions inherited from IImagefloat:
MyMutex& getMutex () override
{
return mutex ();
}
cmsHPROFILE getProfile () const override
{
return getEmbeddedProfile ();
}
int getBitsPerPixel () const override
{
return 8 * sizeof(float);
}
int saveToFile (const Glib::ustring &fname) const override
{
return save (fname);
}
int saveAsPNG (const Glib::ustring &fname, int bps = -1) const override
{
return savePNG (fname, bps);
}
int saveAsJPEG (const Glib::ustring &fname, int quality = 100, int subSamp = 3) const override
{
return saveJPEG (fname, quality, subSamp);
}
int saveAsTIFF (const Glib::ustring &fname, int bps = -1, bool isFloat = false, bool uncompressed = false) const override
{
return saveTIFF (fname, bps, isFloat, uncompressed);
}
void setSaveProgressListener (ProgressListener* pl) override
{
setProgressListener (pl);
}
void free () override
{
delete this;
}
inline uint16_t DNG_FloatToHalf(float f) const
{
union {
float f;
uint32_t i;
} tmp;
tmp.f = f;
int32_t sign = (tmp.i >> 16) & 0x00008000;
int32_t exponent = ((tmp.i >> 23) & 0x000000ff) - (127 - 15);
int32_t mantissa = tmp.i & 0x007fffff;
if (exponent <= 0) {
if (exponent < -10) {
return (uint16_t)sign;
}
mantissa = (mantissa | 0x00800000) >> (1 - exponent);
if (mantissa & 0x00001000)
mantissa += 0x00002000;
return (uint16_t)(sign | (mantissa >> 13));
} else if (exponent == 0xff - (127 - 15)) {
if (mantissa == 0) {
return (uint16_t)(sign | 0x7c00);
} else {
return (uint16_t)(sign | 0x7c00 | (mantissa >> 13));
}
}
if (mantissa & 0x00001000) {
mantissa += 0x00002000;
if (mantissa & 0x00800000) {
mantissa = 0; // overflow in significand,
exponent += 1; // adjust exponent
}
}
if (exponent > 30) {
return (uint16_t)(sign | 0x7c00); // infinity with the same sign as f.
}
return (uint16_t)(sign | (exponent << 10) | (mantissa >> 13));
}
// From DNG SDK dng_utils.h
inline float DNG_HalfToFloat(uint16_t halfValue)
{
union {
float f;
uint32_t i;
} tmp;
int32_t sign = (halfValue >> 15) & 0x00000001;
int32_t exponent = (halfValue >> 10) & 0x0000001f;
int32_t mantissa = halfValue & 0x000003ff;
if (exponent == 0) {
if (mantissa == 0) {
// Plus or minus zero
tmp.i = (uint32_t) (sign << 31);
return tmp.f;
} else {
// Denormalized number -- renormalize it
while (!(mantissa & 0x00000400)) {
mantissa <<= 1;
exponent -= 1;
}
exponent += 1;
mantissa &= ~0x00000400;
}
} else if (exponent == 31) {
if (mantissa == 0) {
// Positive or negative infinity, convert to maximum (16 bit) values.
tmp.i = (uint32_t)((sign << 31) | ((0x1eL + 127 - 15) << 23) | (0x3ffL << 13));
return tmp.f;
} else {
// Nan -- Just set to zero.
return 0;
}
}
// Normalized number
exponent += (127 - 15);
mantissa <<= 13;
// Assemble sign, exponent and mantissa.
tmp.i = (uint32_t) ((sign << 31) | (exponent << 23) | mantissa);
return tmp.f;
}
inline uint32_t DNG_FP24ToFloat(const uint8_t * input)
{
int32_t sign = (input [0] >> 7) & 0x01;
int32_t exponent = (input [0] ) & 0x7F;
int32_t mantissa = (((int32_t) input [1]) << 8) | input[2];
if (exponent == 0) {
if (mantissa == 0) {
// Plus or minus zero
return (uint32_t) (sign << 31);
} else {
// Denormalized number -- renormalize it
while (!(mantissa & 0x00010000)) {
mantissa <<= 1;
exponent -= 1;
}
exponent += 1;
mantissa &= ~0x00010000;
}
} else if (exponent == 127) {
if (mantissa == 0) {
// Positive or negative infinity, convert to maximum (24 bit) values.
return (uint32_t) ((sign << 31) | ((0x7eL + 128 - 64) << 23) | (0xffffL << 7));
} else {
// Nan -- Just set to zero.
return 0;
}
}
// Normalized number
exponent += (128 - 64);
mantissa <<= 7;
// Assemble sign, exponent and mantissa.
return (uint32_t) ((sign << 31) | (exponent << 23) | mantissa);
}
void normalizeFloat(float srcMinVal, float srcMaxVal) override;
void normalizeFloatTo1();
void normalizeFloatTo65535();
void calcCroppedHistogram(const ProcParams &params, float scale, LUTu & hist);
void ExecCMSTransform(cmsHTRANSFORM hTransform);
void ExecCMSTransform(cmsHTRANSFORM hTransform, const LabImage &labImage, int cx, int cy);
};
}
#endif