rawTherapee/rtengine/PF_correct_RT.cc
2019-10-28 15:43:58 +01:00

1175 lines
45 KiB
C++

////////////////////////////////////////////////////////////////
//
// Chromatic Aberration Auto-correction
//
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
//
//
// code dated: November 24, 2010
// optimized: September 2013, Ingo Weyrich
// further optimized: February 2018, Ingo Weyrich
//
// Ingo Weyrich March 2018: The above comment 'Chromatic Aberration Auto-correction' sounds wrong
// I guess it should have been 'Purple fringe correction' though it's not restricted to 'Purple'
//
// PF_correct_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
#include "gauss.h"
#include "improcfun.h"
#include "cieimage.h"
#include "sleef.c"
#include "../rtgui/myflatcurve.h"
#include "rt_math.h"
#include "opthelper.h"
#include "median.h"
#include "jaggedarray.h"
#include "StopWatch.h"
#include "procparams.h"
namespace rtengine
{
// Defringe in Lab mode
void ImProcFunctions::PF_correct_RT(LabImage * lab, double radius, int thresh)
{
BENCHFUN
std::unique_ptr<FlatCurve> chCurve;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
chCurve.reset(new FlatCurve(params->defringe.huecurve));
}
const int width = lab->W, height = lab->H;
// temporary array to store chromaticity
const std::unique_ptr<float[]> fringe(new float[width * height]);
JaggedArray<float> tmpa(width, height);
JaggedArray<float> tmpb(width, height);
double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(lab->a, tmpa, width, height, radius);
gaussianBlur(lab->b, tmpb, width, height, radius);
#ifdef _OPENMP
#pragma omp for reduction(+:chromave) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
// vectorized per row precalculation of the atan2 values
if (chCurve) {
int k = 0;
for (; k < width - 3; k += 4) {
STVFU(fringe[i * width + k], xatan2f(LVFU(lab->b[i][k]), LVFU(lab->a[i][k])));
}
for (; k < width; k++) {
fringe[i * width + k] = xatan2f(lab->b[i][k], lab->a[i][k]);
}
}
#endif
for (int j = 0; j < width; j++) {
float chromaChfactor = 1.f;
if (chCurve) {
#ifdef __SSE2__
// use the precalculated atan values
const float HH = fringe[i * width + j];
#else
// no precalculated values without SSE => calculate
const float HH = xatan2f(lab->b[i][j], lab->a[i][j]);
#endif
float chparam = chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f; // get C=f(H)
if (chparam < 0.f) {
chparam *= 2.f; // increased action if chparam < 0
}
chromaChfactor = SQR(1.f + chparam);
}
const float chroma = chromaChfactor * (SQR(lab->a[i][j] - tmpa[i][j]) + SQR(lab->b[i][j] - tmpb[i][j])); // modulate chroma function hue
chromave += chroma;
fringe[i * width + j] = chroma;
}
}
}
chromave /= height * width;
if (chromave > 0.0) {
// now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future
#ifdef _OPENMP
#pragma omp parallel for simd
#endif
for (int j = 0; j < width * height; j++) {
fringe[j] = 1.f / (fringe[j] + chromave);
}
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
const int halfwin = std::ceil(2 * radius) + 1;
// Issue 1674:
// often, colour fringe is not evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < halfwin - 1; j++) {
// test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int j1 = 0; j1 < j + halfwin; j1++) {
// neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
for (; j < width - halfwin + 1; j++) {
// test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
// neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
for (; j < width; j++) {
// test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
// neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
} // end of ab channel averaging
}
}
// Defringe in CIECAM02 mode
void ImProcFunctions::PF_correct_RTcam(CieImage * ncie, double radius, int thresh)
{
BENCHFUN
std::unique_ptr<FlatCurve> chCurve;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
chCurve.reset(new FlatCurve(params->defringe.huecurve));
}
const int width = ncie->W, height = ncie->H;
// temporary array to store chromaticity
const std::unique_ptr<float[]> fringe(new float[width * height]);
float** const sraa = ncie->h_p; // we use the ncie->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure
float** const srbb = ncie->C_p; // we use the ncie->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure
JaggedArray<float> tmaa(width, height);
JaggedArray<float> tmbb(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
const vfloat piDiv180v = F2V(RT_PI_F_180);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
STVFU(sraa[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.y);
STVFU(srbb[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.x);
}
#endif
for (; j < width; j++) {
const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
}
}
}
double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(sraa, tmaa, width, height, radius);
gaussianBlur(srbb, tmbb, width, height, radius);
float chromaChfactor = 1.f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
// vectorized per row precalculation of the atan2 values
if (chCurve) {
int j = 0;
for (; j < width - 3; j += 4) {
STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j])));
}
for (; j < width; j++) {
fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]);
}
}
#endif
for (int j = 0; j < width; j++) {
if (chCurve) {
#ifdef __SSE2__
// use the precalculated atan2 values
const float HH = fringe[i * width + j];
#else
// no precalculated values without SSE => calculate
const float HH = xatan2f(srbb[i][j], sraa[i][j]);
#endif
float chparam = chCurve->getVal(Color::huelab_to_huehsv2(HH)) - 0.5f; //get C=f(H)
if (chparam < 0.f) {
chparam *= 2.f; // increase action if chparam < 0
}
chromaChfactor = SQR(1.f + chparam);
}
const float chroma = chromaChfactor * (SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j])); //modulate chroma function hue
chromave += chroma;
fringe[i * width + j] = chroma;
}
}
}
chromave /= height * width;
if (chromave > 0.0) {
// now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future
#ifdef _OPENMP
#pragma omp parallel for simd
#endif
for (int j = 0; j < width * height; j++) {
fringe[j] = 1.f / (fringe[j] + chromave);
}
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
const int halfwin = std::ceil(2 * radius) + 1;
// Issue 1674:
// often, colour fringe is not evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < halfwin - 1; j++) {
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = 0; j1 < j + halfwin; j1++) {
// neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
}
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
}
}
for (; j < width - halfwin + 1; j++) {
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
// neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
}
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
}
}
for (; j < width; j++) {
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
// neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
}
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
}
}
} // end of ab channel averaging
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++) {
int j = 0;
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
const vfloat interav = LVFU(tmaa[i][j]);
const vfloat interbv = LVFU(tmbb[i][j]);
STVFU(ncie->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180));
STVFU(ncie->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav)));
}
#endif
for (; j < width; j++) {
const float intera = tmaa[i][j];
const float interb = tmbb[i][j];
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
}
}
// CIECAM02 hot/bad pixel filter
void ImProcFunctions::Badpixelscam(CieImage * ncie, double radius, int thresh, int mode, float chrom, bool hotbad)
{
BENCHFUN
if (mode == 2 && radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
return;
}
const int width = ncie->W, height = ncie->H;
constexpr float eps = 1.f;
JaggedArray<float> tmL(width, height);
const std::unique_ptr<float[]> badpix(new float[width * height]);
if (radius >= 0.5) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
// luma badpixels
// for bad pixels in sh channel we need 0 / != 0 information. Use 1 byte per pixel instead of 4 to reduce memory pressure
uint8_t *badpixb = reinterpret_cast<uint8_t*>(badpix.get());
constexpr float sh_thr = 4.5f; // low value for luma sh_p to avoid artifacts
constexpr float shthr = sh_thr / 24.0f; // divide by 24 because we are using a 5x5 grid and centre point is excluded from summation
#ifdef _OPENMP
#pragma omp parallel
#endif
{
//luma sh_p
gaussianBlur(ncie->sh_p, tmL, width, height, radius / 2.0); // low value to avoid artifacts
#ifdef __SSE2__
const vfloat shthrv = F2V(shthr);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < 2; j++) {
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
}
}
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
}
#ifdef __SSE2__
for (; j < width - 5; j += 4) {
const vfloat shfabsv = vabsf(LVFU(ncie->sh_p[i][j]) - LVFU(tmL[i][j]));
vfloat shmedv = ZEROV;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmedv += vabsf(LVFU(ncie->sh_p[i1][j1]) - LVFU(tmL[i1][j1]));
}
}
uint8_t mask = _mm_movemask_ps((vfloat)vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv));
badpixb[i * width + j] = mask & 1;
badpixb[i * width + j + 1] = mask & 2;
badpixb[i * width + j + 2] = mask & 4;
badpixb[i * width + j + 3] = mask & 8;
}
#endif
for (; j < width - 2; j++) {
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
}
}
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
}
for (; j < width; j++) {
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
}
}
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
}
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < 2; j++) {
if (badpixb[i * width + j]) {
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
if (!badpixb[i1 * width + j1]) {
sum += ncie->sh_p[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) {
ncie->sh_p[i][j] = sum / tot;
}
}
}
for (; j < width - 2; j++) {
if (badpixb[i * width + j]) {
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
if (!badpixb[i1 * width + j1]) {
sum += ncie->sh_p[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) {
ncie->sh_p[i][j] = sum / tot;
}
}
}
for (; j < width; j++) {
if (badpixb[i * width + j]) {
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
if (!badpixb[i1 * width + j1]) {
sum += ncie->sh_p[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) {
ncie->sh_p[i][j] = sum / tot;
}
}
}
}
} // end luma badpixels
if (hotbad) {
JaggedArray<float> sraa(width, height);
JaggedArray<float> srbb(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
const vfloat piDiv180v = F2V(RT_PI_F_180);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
STVFU(sraa[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.y);
STVFU(srbb[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.x);
}
#endif
for (; j < width; j++) {
const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
}
}
}
float** const tmaa = tmL; // reuse tmL buffer
JaggedArray<float> tmbb(width, height);
if (mode == 2) { // choice of gaussian blur
#ifdef _OPENMP
#pragma omp parallel
#endif
{
//chroma a and b
gaussianBlur(sraa, tmaa, width, height, radius);
gaussianBlur(srbb, tmbb, width, height, radius);
}
} else if (mode == 1) { // choice of median
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for nowait // nowait because next loop inside this parallel region is independent on this one
#endif
for (int i = 0; i < height; i++) {
const int ip = i < 2 ? i + 2 : i - 2;
const int in = i > height - 3 ? i - 2 : i + 2;
for (int j = 0; j < width; j++) {
const int jp = j < 2 ? j + 2 : j -2;
const int jn = j > width - 3 ? j - 2 : j + 2;
tmaa[i][j] = median(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn]);
}
}
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
const int ip = i < 2 ? i + 2 : i - 2;
const int in = i > height - 3 ? i - 2 : i + 2;
for (int j = 0; j < width; j++) {
const int jp = j < 2 ? j + 2 : j -2;
const int jn = j > width - 3 ? j - 2 : j + 2;
tmbb[i][j] = median(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn]);
}
}
}
}
// begin chroma badpixels
double chrommed = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel for reduction(+:chrommed)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
const float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]);
chrommed += chroma;
badpix[i * width + j] = chroma;
}
}
chrommed /= height * width;
if (chrommed > 0.0) {
// now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future
const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed);
const int halfwin = std::ceil(2 * radius) + 1;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
const vfloat chrommedv = F2V(chrommed);
const vfloat onev = F2V(1.f);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv));
}
#endif
for (; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed);
}
}
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < halfwin; j++) {
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = 0; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
}
const float intera = atot / norm;
const float interb = btot / norm;
const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) {
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = CC;
}
}
}
#ifdef __SSE2__
const vfloat threshfactorv = F2V(threshfactor);
const vfloat chromv = F2V(chrom);
const vfloat piDiv180v = F2V(RT_PI_F_180);
for (; j < width - halfwin - 3; j+=4) {
vmask selMask = vmaskf_lt(LVFU(badpix[i * width + j]), threshfactorv);
if (_mm_movemask_ps((vfloat)selMask)) {
vfloat atotv = ZEROV, btotv = ZEROV, normv = ZEROV;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const vfloat wtv = LVFU(badpix[i1 * width + j1]);
atotv += wtv * LVFU(sraa[i1][j1]);
btotv += wtv * LVFU(srbb[i1][j1]);
normv += wtv;
}
}
const vfloat interav = atotv / normv;
const vfloat interbv = btotv / normv;
const vfloat CCv = vsqrtf(SQRV(interbv) + SQRV(interav));
selMask = vandm(selMask, vmaskf_lt(CCv, chromv));
if (_mm_movemask_ps((vfloat)selMask)) {
STVFU(ncie->h_p[i][j], vself(selMask, xatan2f(interbv, interav) / piDiv180v, LVFU(ncie->h_p[i][j])));
STVFU(ncie->C_p[i][j], vself(selMask, CCv, LVFU(ncie->C_p[i][j])));
}
}
}
#endif
for (; j < width - halfwin; j++) {
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
}
const float intera = atot / norm;
const float interb = btot / norm;
const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) {
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = CC;
}
}
}
for (; j < width; j++) {
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
}
const float intera = atot / norm;
const float interb = btot / norm;
const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) {
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = CC;
}
}
}
}
}
}
}
}
// CbDL reduce artifacts
void ImProcFunctions::BadpixelsLab(LabImage * lab, double radius, int thresh, float chrom)
{
BENCHFUN
if (radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
return;
}
const int halfwin = std::ceil(2 * radius) + 1;
const int width = lab->W, height = lab->H;
constexpr float eps = 1.f;
JaggedArray<float> tmL(width, height);
const std::unique_ptr<float[]> badpix(new float[width * height]);
if (radius >= 0.5) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
//luma badpixels
// for bad pixels in L channel we need 0 / != 0 information. Use 1 byte per pixel instead of 4 to reduce memory pressure
uint8_t *badpixb = reinterpret_cast<uint8_t*>(badpix.get());
constexpr float sh_thr = 4.5f; // low value for luma L to avoid artifacts
constexpr float shthr = sh_thr / 24.0f; // divide by 24 because we are using a 5x5 grid and centre point is excluded from summation
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// blur L channel
gaussianBlur(lab->L, tmL, width, height, radius / 2.0); // low value to avoid artifacts
#ifdef __SSE2__
const vfloat shthrv = F2V(shthr);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < 2; j++) {
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
}
}
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
}
#ifdef __SSE2__
for (; j < width - 5; j += 4) {
const vfloat shfabsv = vabsf(LVFU(lab->L[i][j]) - LVFU(tmL[i][j]));
vfloat shmedv = ZEROV;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmedv += vabsf(LVFU(lab->L[i1][j1]) - LVFU(tmL[i1][j1]));
}
}
uint8_t mask = _mm_movemask_ps((vfloat)vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv));
badpixb[i * width + j] = mask & 1;
badpixb[i * width + j + 1] = mask & 2;
badpixb[i * width + j + 2] = mask & 4;
badpixb[i * width + j + 3] = mask & 8;
}
#endif
for (; j < width - 2; j++) {
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
}
}
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
}
for (; j < width; j++) {
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
}
}
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
}
}
}
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < 2; j++) {
if (badpixb[i * width + j]) {
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
if (!badpixb[i1 * width + j1]) {
sum += lab->L[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * lab->L[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) {
lab->L[i][j] = sum / tot;
}
}
}
for (; j < width - 2; j++) {
if (badpixb[i * width + j]) {
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
if (!badpixb[i1 * width + j1]) {
sum += lab->L[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * lab->L[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) {
lab->L[i][j] = sum / tot;
}
}
}
for (; j < width; j++) {
if (badpixb[i * width + j]) {
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
if (!badpixb[i1 * width + j1]) {
sum += lab->L[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * lab->L[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) {
lab->L[i][j] = sum / tot;
}
}
}
}
} // end luma badpixels
float** const tmaa = tmL; // reuse tmL buffer
JaggedArray<float> tmbb(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// blur chroma a and b
gaussianBlur(lab->a, tmaa, width, height, radius);
gaussianBlur(lab->b, tmbb, width, height, radius);
}
// begin chroma badpixels
double chrommed = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel for reduction(+:chrommed)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
const float chroma = SQR(lab->a[i][j] - tmaa[i][j]) + SQR(lab->b[i][j] - tmbb[i][j]);
chrommed += chroma;
badpix[i * width + j] = chroma;
}
}
chrommed /= height * width;
if (chrommed > 0.0) {
// now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
const vfloat chrommedv = F2V(chrommed);
const vfloat onev = F2V(1.f);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv));
}
#endif
for (; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed);
}
}
}
const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed);
chrom *= 327.68f;
chrom *= chrom;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < halfwin; j++) {
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = 0; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
}
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
}
#ifdef __SSE2__
const vfloat chromv = F2V(chrom);
const vfloat threshfactorv = F2V(threshfactor);
for (; j < width - halfwin - 3; j += 4) {
vmask selMask = vmaskf_lt(LVFU(badpix[i * width + j]), threshfactorv);
if (_mm_movemask_ps(reinterpret_cast<vfloat>(selMask))) {
vfloat atotv = ZEROV, btotv = ZEROV, normv = ZEROV;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const vfloat wtv = LVFU(badpix[i1 * width + j1]);
atotv += wtv * LVFU(lab->a[i1][j1]);
btotv += wtv * LVFU(lab->b[i1][j1]);
normv += wtv;
}
}
selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv)));
if (_mm_movemask_ps(reinterpret_cast<vfloat>(selMask))) {
const vfloat aOrig = LVFU(lab->a[i][j]);
const vfloat bOrig = LVFU(lab->b[i][j]);
STVFU(lab->a[i][j], vself(selMask, atotv / normv, aOrig));
STVFU(lab->b[i][j], vself(selMask, btotv / normv, bOrig));
}
}
}
#endif
for (; j < width - halfwin; j++) {
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
}
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
}
for (; j < width; j++) {
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
}
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
}
}
}
}
}