584 lines
25 KiB
C++
584 lines
25 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2004-2019 Gabor Horvath <hgabor@rawtherapee.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "array2D.h"
|
|
#include "median.h"
|
|
#include "pixelsmap.h"
|
|
#include "rawimage.h"
|
|
#include "rawimagesource.h"
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
/* interpolateBadPixelsBayer: correct raw pixels looking at the bitmap
|
|
* takes into consideration if there are multiple bad pixels in the neighborhood
|
|
*/
|
|
int RawImageSource::interpolateBadPixelsBayer(const PixelsMap &bitmapBads, array2D<float> &rawData)
|
|
{
|
|
constexpr float eps = 1.f;
|
|
int counter = 0;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int row = 2; row < H - 2; ++row) {
|
|
for (int col = 2; col < W - 2; ++col) {
|
|
const int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
|
|
|
if (sk) {
|
|
col += sk - 1; //-1 is because of col++ in cycle
|
|
continue;
|
|
}
|
|
|
|
if (!bitmapBads.get(col, row)) {
|
|
continue;
|
|
}
|
|
|
|
float wtdsum = 0.f, norm = 0.f;
|
|
|
|
// diagonal interpolation
|
|
if (FC(row, col) == 1) {
|
|
// green channel. We can use closer pixels than for red or blue channel. Distance to center pixel is sqrt(2) => weighting is 0.70710678
|
|
// For green channel following pixels will be used for interpolation. Pixel to be interpolated is in center.
|
|
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
|
// 0 0 0 0 0
|
|
// 0 1 0 1 0
|
|
// 0 0 0 0 0
|
|
// 0 1 0 1 0
|
|
// 0 0 0 0 0
|
|
for (int dx = -1; dx <= 1; dx += 2) {
|
|
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
|
continue;
|
|
}
|
|
|
|
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
|
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
|
norm += dirwt;
|
|
}
|
|
} else {
|
|
// red and blue channel. Distance to center pixel is sqrt(8) => weighting is 0.35355339
|
|
// For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in center.
|
|
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
|
// 1 0 0 0 1
|
|
// 0 0 0 0 0
|
|
// 0 0 0 0 0
|
|
// 0 0 0 0 0
|
|
// 1 0 0 0 1
|
|
for (int dx = -2; dx <= 2; dx += 4) {
|
|
if (bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) {
|
|
continue;
|
|
}
|
|
|
|
const float dirwt = 0.35355339f / (fabsf(rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps);
|
|
wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]);
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
// channel independent. Distance to center pixel is 2 => weighting is 0.5
|
|
// Additionally for all channel following pixels will be used for interpolation. Pixel to be interpolated is in center.
|
|
// 1 means that pixel is used in this step, if itself and his counterpart are not marked bad
|
|
// 0 0 1 0 0
|
|
// 0 0 0 0 0
|
|
// 1 0 0 0 1
|
|
// 0 0 0 0 0
|
|
// 0 0 1 0 0
|
|
|
|
// horizontal interpolation
|
|
if (!(bitmapBads.get(col - 2, row) || bitmapBads.get(col + 2, row))) {
|
|
const float dirwt = 0.5f / (fabsf(rawData[row][col - 2] - rawData[row][col + 2]) + eps);
|
|
wtdsum += dirwt * (rawData[row][col - 2] + rawData[row][col + 2]);
|
|
norm += dirwt;
|
|
}
|
|
|
|
// vertical interpolation
|
|
if (!(bitmapBads.get(col, row - 2) || bitmapBads.get(col, row + 2))) {
|
|
const float dirwt = 0.5f / (fabsf(rawData[row - 2][col] - rawData[row + 2][col]) + eps);
|
|
wtdsum += dirwt * (rawData[row - 2][col] + rawData[row + 2][col]);
|
|
norm += dirwt;
|
|
}
|
|
|
|
if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
|
rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
|
counter++;
|
|
} else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens
|
|
int tot = 0;
|
|
float sum = 0.f;
|
|
|
|
for (int dy = -2; dy <= 2; dy += 2) {
|
|
for (int dx = -2; dx <= 2; dx += 2) {
|
|
if (bitmapBads.get(col + dx, row + dy)) {
|
|
continue;
|
|
}
|
|
|
|
sum += rawData[row + dy][col + dx];
|
|
tot++;
|
|
}
|
|
}
|
|
|
|
if (tot > 0) {
|
|
rawData[row][col] = sum / tot;
|
|
counter ++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return counter; // Number of interpolated pixels.
|
|
}
|
|
|
|
/* interpolateBadPixelsNcolors: correct raw pixels looking at the bitmap
|
|
* takes into consideration if there are multiple bad pixels in the neighborhood
|
|
*/
|
|
int RawImageSource::interpolateBadPixelsNColours(const PixelsMap &bitmapBads, const int colors)
|
|
{
|
|
constexpr float eps = 1.f;
|
|
int counter = 0;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int row = 2; row < H - 2; ++row) {
|
|
for (int col = 2; col < W - 2; ++col) {
|
|
const int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
|
|
|
if (sk) {
|
|
col += sk - 1; //-1 is because of col++ in cycle
|
|
continue;
|
|
}
|
|
|
|
if (!bitmapBads.get(col, row)) {
|
|
continue;
|
|
}
|
|
|
|
float wtdsum[colors];
|
|
float norm[colors];
|
|
for (int c = 0; c < colors; ++c) {
|
|
wtdsum[c] = norm[c] = 0.f;
|
|
}
|
|
|
|
// diagonal interpolation
|
|
for (int dx = -1; dx <= 1; dx += 2) {
|
|
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
|
continue;
|
|
}
|
|
|
|
for (int c = 0; c < colors; ++c) {
|
|
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][(col + dx) * colors + c] - rawData[row + 1][(col - dx) * colors + c]) + eps);
|
|
wtdsum[c] += dirwt * (rawData[row - 1][(col + dx) * colors + c] + rawData[row + 1][(col - dx) * colors + c]);
|
|
norm[c] += dirwt;
|
|
}
|
|
}
|
|
|
|
// horizontal interpolation
|
|
if (!(bitmapBads.get(col - 1, row) || bitmapBads.get(col + 1, row))) {
|
|
for (int c = 0; c < colors; ++c) {
|
|
const float dirwt = 1.f / (fabsf(rawData[row][(col - 1) * colors + c] - rawData[row][(col + 1) * colors + c]) + eps);
|
|
wtdsum[c] += dirwt * (rawData[row][(col - 1) * colors + c] + rawData[row][(col + 1) * colors + c]);
|
|
norm[c] += dirwt;
|
|
}
|
|
}
|
|
|
|
// vertical interpolation
|
|
if (!(bitmapBads.get(col, row - 1) || bitmapBads.get(col, row + 1))) {
|
|
for (int c = 0; c < colors; ++c) {
|
|
const float dirwt = 1.f / (fabsf(rawData[row - 1][col * colors + c] - rawData[row + 1][col * colors + c]) + eps);
|
|
wtdsum[c] += dirwt * (rawData[row - 1][col * colors + c] + rawData[row + 1][col * colors + c]);
|
|
norm[c] += dirwt;
|
|
}
|
|
}
|
|
|
|
if (LIKELY(norm[0] > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
|
for (int c = 0; c < colors; ++c) {
|
|
rawData[row][col * colors + c] = wtdsum[c] / (2.f * norm[c]); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
|
}
|
|
|
|
counter++;
|
|
} else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens
|
|
int tot = 0;
|
|
float sum[colors];
|
|
for (int c = 0; c < colors; ++c) {
|
|
sum[c] = 0.f;
|
|
}
|
|
|
|
for (int dy = -2; dy <= 2; dy += 2) {
|
|
for (int dx = -2; dx <= 2; dx += 2) {
|
|
if (bitmapBads.get(col + dx, row + dy)) {
|
|
continue;
|
|
}
|
|
|
|
for (int c = 0; c < colors; ++c) {
|
|
sum[c] += rawData[row + dy][(col + dx) * colors + c];
|
|
}
|
|
|
|
tot++;
|
|
}
|
|
}
|
|
|
|
if (tot > 0) {
|
|
for (int c = 0; c < colors; ++c) {
|
|
rawData[row][col * colors + c] = sum[c] / tot;
|
|
}
|
|
|
|
counter ++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return counter; // Number of interpolated pixels.
|
|
}
|
|
|
|
/* interpolateBadPixelsXtrans: correct raw pixels looking at the bitmap
|
|
* takes into consideration if there are multiple bad pixels in the neighborhood
|
|
*/
|
|
int RawImageSource::interpolateBadPixelsXtrans(const PixelsMap &bitmapBads)
|
|
{
|
|
constexpr float eps = 1.f;
|
|
int counter = 0;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int row = 2; row < H - 2; ++row) {
|
|
for (int col = 2; col < W - 2; ++col) {
|
|
const int skip = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero
|
|
|
|
if (skip) {
|
|
col += skip - 1; //-1 is because of col++ in cycle
|
|
continue;
|
|
}
|
|
|
|
if (!bitmapBads.get(col, row)) {
|
|
continue;
|
|
}
|
|
|
|
float wtdsum = 0.f, norm = 0.f;
|
|
const unsigned int pixelColor = ri->XTRANSFC(row, col);
|
|
|
|
if (pixelColor == 1) {
|
|
// green channel. A green pixel can either be a solitary green pixel or a member of a 2x2 square of green pixels
|
|
if (ri->XTRANSFC(row, col - 1) == ri->XTRANSFC(row, col + 1)) {
|
|
// If left and right neighbor have same color, then this is a solitary green pixel
|
|
// For these the following pixels will be used for interpolation. Pixel to be interpolated is in center and marked with a P.
|
|
// Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad
|
|
// 0 means, the pixel has a different color and will not be used
|
|
// 0 1 0 2 0
|
|
// 3 5 0 6 4
|
|
// 0 0 P 0 0
|
|
// 4 6 0 5 3
|
|
// 0 2 0 1 0
|
|
for (int dx = -1; dx <= 1; dx += 2) { // pixels marked 5 or 6 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f
|
|
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
|
continue;
|
|
}
|
|
|
|
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
|
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
|
norm += dirwt;
|
|
}
|
|
|
|
for (int dx = -1; dx <= 1; dx += 2) { // pixels marked 1 or 2 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
|
if (bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) {
|
|
continue;
|
|
}
|
|
|
|
const float dirwt = 0.44721359f / (fabsf(rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps);
|
|
wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]);
|
|
norm += dirwt;
|
|
}
|
|
|
|
for (int dx = -2; dx <= 2; dx += 4) { // pixels marked 3 or 4 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
|
if (bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) {
|
|
continue;
|
|
}
|
|
|
|
const float dirwt = 0.44721359f / (fabsf(rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps);
|
|
wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]);
|
|
norm += dirwt;
|
|
}
|
|
} else {
|
|
// this is a member of a 2x2 square of green pixels
|
|
// For these the following pixels will be used for interpolation. Pixel to be interpolated is at position P in the example.
|
|
// Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad
|
|
// 0 means, the pixel has a different color and will not be used
|
|
// 1 0 0 3
|
|
// 0 P 2 0
|
|
// 0 2 1 0
|
|
// 3 0 0 0
|
|
|
|
// pixels marked 1 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f
|
|
const int offset1 = ri->XTRANSFC(row - 1, col - 1) == ri->XTRANSFC(row + 1, col + 1) ? 1 : -1;
|
|
|
|
if (!(bitmapBads.get(col - offset1, row - 1) || bitmapBads.get(col + offset1, row + 1))) {
|
|
const float dirwt = 0.70710678f / (fabsf(rawData[row - 1][col - offset1] - rawData[row + 1][col + offset1]) + eps);
|
|
wtdsum += dirwt * (rawData[row - 1][col - offset1] + rawData[row + 1][col + offset1]);
|
|
norm += dirwt;
|
|
}
|
|
|
|
// pixels marked 2 in above example. Distance to P is 1 => weighting is 1.f
|
|
int offsety = ri->XTRANSFC(row - 1, col) != 1 ? 1 : -1;
|
|
int offsetx = offset1 * offsety;
|
|
|
|
if (!(bitmapBads.get(col + offsetx, row) || bitmapBads.get(col, row + offsety))) {
|
|
const float dirwt = 1.f / (fabsf(rawData[row][col + offsetx] - rawData[row + offsety][col]) + eps);
|
|
wtdsum += dirwt * (rawData[row][col + offsetx] + rawData[row + offsety][col]);
|
|
norm += dirwt;
|
|
}
|
|
|
|
const int offsety2 = -offsety;
|
|
const int offsetx2 = -offsetx;
|
|
offsetx *= 2;
|
|
offsety *= 2;
|
|
|
|
// pixels marked 3 in above example. Distance to P is sqrt(5) => weighting is 0.44721359f
|
|
if (!(bitmapBads.get(col + offsetx, row + offsety2) || bitmapBads.get(col + offsetx2, row + offsety))) {
|
|
const float dirwt = 0.44721359f / (fabsf(rawData[row + offsety2][col + offsetx] - rawData[row + offsety][col + offsetx2]) + eps);
|
|
wtdsum += dirwt * (rawData[row + offsety2][col + offsetx] + rawData[row + offsety][col + offsetx2]);
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
} else {
|
|
// red and blue channel.
|
|
// Each red or blue pixel has exactly one neighbor of same color in distance 2 and four neighbors of same color which can be reached by a move of a knight in chess.
|
|
// For the distance 2 pixel (marked with an X) we generate a virtual counterpart (marked with a V)
|
|
// For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in center and marked with a P.
|
|
// Pairs of pixels used in this step are numbered except for distance 2 pixels which are marked X and V. A pair will be used if none of the pixels of the pair is marked bad
|
|
// 0 1 0 0 0 0 0 X 0 0 remaining cases are symmetric
|
|
// 0 0 0 0 2 1 0 0 0 2
|
|
// X 0 P 0 V 0 0 P 0 0
|
|
// 0 0 0 0 1 0 0 0 0 0
|
|
// 0 2 0 0 0 0 2 V 1 0
|
|
|
|
// Find two knight moves landing on a pixel of same color as the pixel to be interpolated.
|
|
// If we look at first and last row of 5x5 square, we will find exactly two knight pixels.
|
|
// Additionally we know that the column of this pixel has 1 or -1 horizontal distance to the center pixel
|
|
// When we find a knight pixel, we get its counterpart, which has distance (+-3,+-3), where the signs of distance depend on the corner of the found knight pixel.
|
|
// These pixels are marked 1 or 2 in above examples. Distance to P is sqrt(5) => weighting is 0.44721359f
|
|
// The following loop simply scans the four possible places. To keep things simple, it does not stop after finding two knight pixels, because it will not find more than two
|
|
for (int d1 = -2, offsety = 3; d1 <= 2; d1 += 4, offsety -= 6) {
|
|
for (int d2 = -1, offsetx = 3; d2 < 1; d2 += 2, offsetx -= 6) {
|
|
if (ri->XTRANSFC(row + d1, col + d2) == pixelColor) {
|
|
if (!(bitmapBads.get(col + d2, row + d1) || bitmapBads.get(col + d2 + offsetx, row + d1 + offsety))) {
|
|
const float dirwt = 0.44721359f / (fabsf(rawData[row + d1][col + d2] - rawData[row + d1 + offsety][col + d2 + offsetx]) + eps);
|
|
wtdsum += dirwt * (rawData[row + d1][col + d2] + rawData[row + d1 + offsety][col + d2 + offsetx]);
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// now scan for the pixel of same color in distance 2 in each direction (marked with an X in above examples).
|
|
bool distance2PixelFound = false;
|
|
int dx, dy;
|
|
|
|
// check horizontal
|
|
for (dx = -2, dy = 0; dx <= 2; dx += 4) {
|
|
if (ri->XTRANSFC(row, col + dx) == pixelColor) {
|
|
distance2PixelFound = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!distance2PixelFound) {
|
|
// no distance 2 pixel on horizontal, check vertical
|
|
for (dx = 0, dy = -2; dy <= 2; dy += 4) {
|
|
if (ri->XTRANSFC(row + dy, col) == pixelColor) {
|
|
distance2PixelFound = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate the value of its virtual counterpart (marked with a V in above examples)
|
|
float virtualPixel;
|
|
|
|
if (dy == 0) {
|
|
virtualPixel = 0.5f * (rawData[row - 1][col - dx] + rawData[row + 1][col - dx]);
|
|
} else {
|
|
virtualPixel = 0.5f * (rawData[row - dy][col - 1] + rawData[row - dy][col + 1]);
|
|
}
|
|
|
|
// and weight as usual. Distance to P is 2 => weighting is 0.5f
|
|
const float dirwt = 0.5f / (fabsf(virtualPixel - rawData[row + dy][col + dx]) + eps);
|
|
wtdsum += dirwt * (virtualPixel + rawData[row + dy][col + dx]);
|
|
norm += dirwt;
|
|
}
|
|
|
|
if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelihood of this case is about 99.999%
|
|
rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps
|
|
counter++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return counter; // Number of interpolated pixels.
|
|
}
|
|
|
|
/* Search for hot or dead pixels in the image and update the map
|
|
* For each pixel compare its value to the average of similar color surrounding
|
|
* (Taken from Emil Martinec idea)
|
|
* (Optimized by Ingo Weyrich 2013 and 2015)
|
|
*/
|
|
int RawImageSource::findHotDeadPixels(PixelsMap &bpMap, const float thresh, const bool findHotPixels, const bool findDeadPixels) const
|
|
{
|
|
const float varthresh = (20.0 * (thresh / 100.0) + 1.0) / 24.f;
|
|
|
|
// allocate temporary buffer
|
|
float* cfablur = new float[H * W];
|
|
|
|
// counter for dead or hot pixels
|
|
int counter = 0;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16) nowait
|
|
#endif
|
|
|
|
for (int i = 2; i < H - 2; i++) {
|
|
for (int j = 2; j < W - 2; j++) {
|
|
const float temp = median(rawData[i - 2][j - 2], rawData[i - 2][j], rawData[i - 2][j + 2],
|
|
rawData[i][j - 2], rawData[i][j], rawData[i][j + 2],
|
|
rawData[i + 2][j - 2], rawData[i + 2][j], rawData[i + 2][j + 2]);
|
|
cfablur[i * W + j] = rawData[i][j] - temp;
|
|
}
|
|
}
|
|
|
|
// process borders. Former version calculated the median using mirrored border which does not make sense because the original pixel loses weight
|
|
// Setting the difference between pixel and median for border pixels to zero should do the job not worse then former version
|
|
#ifdef _OPENMP
|
|
#pragma omp single
|
|
#endif
|
|
{
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < W; ++j) {
|
|
cfablur[i * W + j] = 0.f;
|
|
}
|
|
}
|
|
|
|
for (int i = 2; i < H - 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
cfablur[i * W + j] = 0.f;
|
|
}
|
|
|
|
for (int j = W - 2; j < W; ++j) {
|
|
cfablur[i * W + j] = 0.f;
|
|
}
|
|
}
|
|
|
|
for (int i = H - 2; i < H; ++i) {
|
|
for (int j = 0; j < W; ++j) {
|
|
cfablur[i * W + j] = 0.f;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp barrier // barrier because of nowait clause above
|
|
|
|
#pragma omp for reduction(+:counter) schedule(dynamic,16)
|
|
#endif
|
|
|
|
//cfa pixel heat/death evaluation
|
|
for (int rr = 2; rr < H - 2; ++rr) {
|
|
for (int cc = 2, rrmWpcc = rr * W + 2; cc < W - 2; ++cc, ++rrmWpcc) {
|
|
//evaluate pixel for heat/death
|
|
float pixdev = cfablur[rrmWpcc];
|
|
|
|
if (pixdev == 0.f) {
|
|
continue;
|
|
}
|
|
|
|
if ((!findDeadPixels) && pixdev < 0) {
|
|
continue;
|
|
}
|
|
|
|
if ((!findHotPixels) && pixdev > 0) {
|
|
continue;
|
|
}
|
|
|
|
pixdev = fabsf(pixdev);
|
|
float hfnbrave = -pixdev;
|
|
|
|
#ifdef __SSE2__
|
|
// sum up 5*4 = 20 values using SSE
|
|
// 10 fabs function calls and 10 float additions with SSE
|
|
vfloat sum = vabsf(LVFU(cfablur[(rr - 2) * W + cc - 2])) + vabsf(LVFU(cfablur[(rr - 1) * W + cc - 2]));
|
|
sum += vabsf(LVFU(cfablur[(rr) * W + cc - 2]));
|
|
sum += vabsf(LVFU(cfablur[(rr + 1) * W + cc - 2]));
|
|
sum += vabsf(LVFU(cfablur[(rr + 2) * W + cc - 2]));
|
|
// horizontally add the values and add the result to hfnbrave
|
|
hfnbrave += vhadd(sum);
|
|
|
|
// add remaining 5 values of last column
|
|
for (int mm = rr - 2; mm <= rr + 2; ++mm) {
|
|
hfnbrave += fabsf(cfablur[mm * W + cc + 2]);
|
|
}
|
|
|
|
#else
|
|
|
|
// 25 fabs function calls and 25 float additions without SSE
|
|
for (int mm = rr - 2; mm <= rr + 2; ++mm) {
|
|
for (int nn = cc - 2; nn <= cc + 2; ++nn) {
|
|
hfnbrave += fabsf(cfablur[mm * W + nn]);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
if (pixdev > varthresh * hfnbrave) {
|
|
// mark the pixel as "bad"
|
|
bpMap.set(cc, rr);
|
|
counter++;
|
|
}
|
|
}//end of pixel evaluation
|
|
}
|
|
}//end of parallel processing
|
|
delete [] cfablur;
|
|
return counter;
|
|
}
|
|
|
|
int RawImageSource::findZeroPixels(PixelsMap &bpMap) const
|
|
{
|
|
int counter = 0;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:counter) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < H; ++i) {
|
|
for (int j = 0; j < W; ++j) {
|
|
if (ri->data[i][j] == 0.f) {
|
|
bpMap.set(j, i);
|
|
counter++;
|
|
}
|
|
}
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
|
|
}
|