rawTherapee/rtengine/curves.cc
2019-11-03 16:14:16 +01:00

2223 lines
71 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <vector>
#include <algorithm>
#include <memory>
#include <cmath>
#include <cstring>
#include <glib.h>
#include <glib/gstdio.h>
#include "rt_math.h"
#include "mytime.h"
#include "array2D.h"
#include "LUT.h"
#include "curves.h"
#include "opthelper.h"
#include "ciecam02.h"
#include "color.h"
#include "iccstore.h"
using namespace std;
namespace rtengine
{
bool sanitizeCurve(std::vector<double>& curve)
{
// A curve is valid under one of the following conditions:
// 1) Curve has exactly one entry which is D(F)CT_Linear
// 2) Number of curve entries is > 3 and odd
// 3) curve[0] == DCT_Parametric and curve size is >= 8 and curve[1] .. curve[3] are ordered ascending and are distinct
if (curve.empty()) {
curve.push_back (DCT_Linear);
return true;
} else if(curve.size() == 1 && curve[0] != DCT_Linear) {
curve[0] = DCT_Linear;
return true;
} else if((curve.size() % 2 == 0 || curve.size() < 5) && curve[0] != DCT_Parametric) {
curve.clear();
curve.push_back (DCT_Linear);
return true;
} else if(curve[0] == DCT_Parametric) {
if (curve.size() < 8) {
curve.clear();
curve.push_back (DCT_Linear);
return true;
} else {
// curve[1] to curve[3] must be ordered ascending and distinct
for (int i = 1; i < 3; i++) {
if (curve[i] >= curve[i + 1]) {
curve[1] = 0.25f;
curve[2] = 0.5f;
curve[3] = 0.75f;
break;
}
}
}
}
return false;
}
Curve::Curve () : N(0), ppn(0), x(nullptr), y(nullptr), mc(0.0), mfc(0.0), msc(0.0), mhc(0.0), hashSize(1000 /* has to be initialized to the maximum value */), ypp(nullptr), x1(0.0), y1(0.0), x2(0.0), y2(0.0), x3(0.0), y3(0.0), firstPointIncluded(false), increment(0.0), nbr_points(0) {}
void Curve::AddPolygons ()
{
if (firstPointIncluded) {
poly_x.push_back(x1);
poly_y.push_back(y1);
}
for (int k = 1; k < (nbr_points - 1); k++) {
double t = k * increment;
double t2 = t * t;
double tr = 1. - t;
double tr2 = tr * tr;
double tr2t = tr * 2 * t;
// adding a point to the polyline
poly_x.push_back( tr2 * x1 + tr2t * x2 + t2 * x3);
poly_y.push_back( tr2 * y1 + tr2t * y2 + t2 * y3);
}
// adding the last point of the sub-curve
poly_x.push_back(x3);
poly_y.push_back(y3);
}
void Curve::fillDyByDx ()
{
dyByDx.resize(poly_x.size() - 1);
for(unsigned int i = 0; i < poly_x.size() - 1; i++) {
double dx = poly_x[i + 1] - poly_x[i];
double dy = poly_y[i + 1] - poly_y[i];
dyByDx[i] = dy / dx;
}
}
void Curve::fillHash()
{
hash.resize(hashSize + 2);
unsigned int polyIter = 0;
double const increment = 1. / hashSize;
double milestone = 0.;
for (unsigned short i = 0; i < (hashSize + 1);) {
while(poly_x[polyIter] <= milestone) {
++polyIter;
}
hash.at(i).smallerValue = polyIter - 1;
++i;
milestone = i * increment;
}
milestone = 0.;
polyIter = 0;
for (unsigned int i = 0; i < hashSize + 1u;) {
while(poly_x[polyIter] < (milestone + increment)) {
++polyIter;
}
hash.at(i).higherValue = polyIter;
++i;
milestone = i * increment;
}
hash.at(hashSize + 1).smallerValue = poly_x.size() - 1;
hash.at(hashSize + 1).higherValue = poly_x.size();
/*
* Uncomment the code below to dump the polygon points and the hash table in files
if (poly_x.size() > 500) {
printf("Files generated (%d points)\n", poly_x.size());
FILE* f = fopen ("hash.txt", "wt");
for (unsigned int i=0; i<hashSize;i++) {
unsigned short s = hash.at(i).smallerValue;
unsigned short h = hash.at(i).higherValue;
fprintf (f, "%d: %d<%d (%.5f<%.5f)\n", i, s, h, poly_x[s], poly_x[h]);
}
fclose (f);
f = fopen ("poly_x.txt", "wt");
for (size_t i=0; i<poly_x.size();i++) {
fprintf (f, "%d: %.5f, %.5f\n", i, poly_x[i], poly_y[i]);
}
fclose (f);
}
*/
}
/** @ brief Return the number of control points of the curve
* This method return the number of control points of a curve. Not suitable for parametric curves.
* @return number of control points of the curve. 0 will be sent back for Parametric curves
*/
int Curve::getSize () const
{
return N;
}
/** @ brief Return the a control point's value
* This method return a control points' value. Not suitable for parametric curves.
* @param cpNum id of the control points we're interested in
* @param x Y value of the control points, or -1 if invalid
* @param y Y value of the control points, or -1 if invalid
*/
void Curve::getControlPoint(int cpNum, double &x, double &y) const
{
if (this->x && cpNum < N) {
x = this->x[cpNum];
y = this->y[cpNum];
} else {
x = y = -1.;
}
}
// Wikipedia sRGB: Unlike most other RGB color spaces, the sRGB gamma cannot be expressed as a single numerical value.
// The overall gamma is approximately 2.2, consisting of a linear (gamma 1.0) section near black, and a non-linear section elsewhere involving a 2.4 exponent
// and a gamma (slope of log output versus log input) changing from 1.0 through about 2.3.
const double CurveFactory::sRGBGamma = 2.2;
const double CurveFactory::sRGBGammaCurve = 2.4;
void fillCurveArray(DiagonalCurve* diagCurve, LUTf &outCurve, int skip, bool needed)
{
if (needed) {
for (int i = 0; i <= 0xffff; i += i < 0xffff - skip ? skip : 1 ) {
// change to [0,1] range
float val = (float)i / 65535.f;
// apply custom/parametric/NURBS curve, if any
val = diagCurve->getVal (val);
// store result in a temporary array
outCurve[i] = val;
}
// if skip>1, let apply linear interpolation in the skipped points of the curve
if (skip > 1) {
float skipmul = 1.f / (float) skip;
for (int i = 0; i <= 0x10000 - skip; i += skip) {
for(int j = 1; j < skip; j++) {
outCurve[i + j] = ( outCurve[i] * (skip - j) + outCurve[i + skip] * j ) * skipmul;
}
}
}
outCurve *= 65535.f;
} else {
outCurve.makeIdentity();
}
}
void CurveFactory::curveLightBrightColor (const std::vector<double>& curvePoints1, const std::vector<double>& curvePoints2, const std::vector<double>& curvePoints3,
const LUTu & histogram, LUTu & outBeforeCCurveHistogram,//for Luminance
const LUTu & histogramC, LUTu & outBeforeCCurveHistogramC,//for chroma
ColorAppearance & customColCurve1, ColorAppearance & customColCurve2, ColorAppearance & customColCurve3, int skip)
{
outBeforeCCurveHistogram.clear();
outBeforeCCurveHistogramC.clear();
bool histNeeded = false;
customColCurve3.Reset();
if (!curvePoints3.empty() && curvePoints3[0] > DCT_Linear && curvePoints3[0] < DCT_Unchanged) {
DiagonalCurve tcurve(curvePoints3, CURVES_MIN_POLY_POINTS / skip);
if (outBeforeCCurveHistogramC) {
histogramC.compressTo(outBeforeCCurveHistogramC, 48000);
}
if (!tcurve.isIdentity()) {
customColCurve3.Set(tcurve);
}
}
customColCurve2.Reset();
if (!curvePoints2.empty() && curvePoints2[0] > DCT_Linear && curvePoints2[0] < DCT_Unchanged) {
DiagonalCurve tcurve(curvePoints2, CURVES_MIN_POLY_POINTS / skip);
if (outBeforeCCurveHistogram) {
histNeeded = true;
}
if (!tcurve.isIdentity()) {
customColCurve2.Set(tcurve);
}
}
// create first curve if needed
customColCurve1.Reset();
if (!curvePoints1.empty() && curvePoints1[0] > DCT_Linear && curvePoints1[0] < DCT_Unchanged) {
DiagonalCurve tcurve(curvePoints1, CURVES_MIN_POLY_POINTS / skip);
if (outBeforeCCurveHistogram) {
histNeeded = true;
}
if (!tcurve.isIdentity()) {
customColCurve1.Set(tcurve);
}
}
if (histNeeded) {
histogram.compressTo(outBeforeCCurveHistogram, 32768);
}
}
void CurveFactory::curveBW ( const std::vector<double>& curvePointsbw, const std::vector<double>& curvePointsbw2,
const LUTu & histogrambw, LUTu & outBeforeCCurveHistogrambw,//for Luminance
ToneCurve & customToneCurvebw1, ToneCurve & customToneCurvebw2, int skip)
{
const float gamma_ = Color::sRGBGammaCurve;
outBeforeCCurveHistogrambw.clear();
bool histNeeded = false;
customToneCurvebw2.Reset();
if (!curvePointsbw2.empty() && curvePointsbw2[0] > DCT_Linear && curvePointsbw2[0] < DCT_Unchanged) {
DiagonalCurve tcurve(curvePointsbw2, CURVES_MIN_POLY_POINTS / skip);
if (outBeforeCCurveHistogrambw) {
histNeeded = true;
}
if (!tcurve.isIdentity()) {
customToneCurvebw2.Set(tcurve, gamma_);
}
}
customToneCurvebw1.Reset();
if (!curvePointsbw.empty() && curvePointsbw[0] > DCT_Linear && curvePointsbw[0] < DCT_Unchanged) {
DiagonalCurve tcurve(curvePointsbw, CURVES_MIN_POLY_POINTS / skip);
if (outBeforeCCurveHistogrambw ) {
histNeeded = true;
}
if (!tcurve.isIdentity()) {
customToneCurvebw1.Set(tcurve, gamma_);
}
}
// create first curve if needed
if (histNeeded) {
histogrambw.compressTo(outBeforeCCurveHistogrambw, 32768);
}
}
// add curve Lab : C=f(L)
void CurveFactory::curveCL ( bool & clcutili, const std::vector<double>& clcurvePoints, LUTf & clCurve, int skip)
{
clcutili = false;
std::unique_ptr<DiagonalCurve> dCurve;
if (!clcurvePoints.empty() && clcurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(clcurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (dCurve && !dCurve->isIdentity()) {
clcutili = true;
}
}
fillCurveArray(dCurve.get(), clCurve, skip, clcutili);
}
void CurveFactory::mapcurve ( bool & mapcontlutili, const std::vector<double>& mapcurvePoints, LUTf & mapcurve, int skip, const LUTu & histogram, LUTu & outBeforeCurveHistogram)
{
bool needed = false;
std::unique_ptr<DiagonalCurve> dCurve;
outBeforeCurveHistogram.clear();
bool histNeeded = false;
if (!mapcurvePoints.empty() && mapcurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(mapcurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (outBeforeCurveHistogram) {
histNeeded = true;
}
if (dCurve && !dCurve->isIdentity()) {
needed = true;
mapcontlutili = true;
}
}
if (histNeeded) {
histogram.compressTo(outBeforeCurveHistogram, 32768);
}
fillCurveArray(dCurve.get(), mapcurve, skip, needed);
}
void CurveFactory::curveDehaContL ( bool & dehacontlutili, const std::vector<double>& dehaclcurvePoints, LUTf & dehaclCurve, int skip, const LUTu & histogram, LUTu & outBeforeCurveHistogram)
{
bool needed = false;
std::unique_ptr<DiagonalCurve> dCurve;
outBeforeCurveHistogram.clear();
bool histNeeded = false;
if (!dehaclcurvePoints.empty() && dehaclcurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(dehaclcurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (outBeforeCurveHistogram) {
histNeeded = true;
}
if (dCurve && !dCurve->isIdentity()) {
needed = true;
dehacontlutili = true;
}
}
if (histNeeded) {
histogram.compressTo(outBeforeCurveHistogram, 32768);
}
fillCurveArray(dCurve.get(), dehaclCurve, skip, needed);
}
// add curve Lab wavelet : Cont=f(L)
void CurveFactory::curveWavContL ( bool & wavcontlutili, const std::vector<double>& wavclcurvePoints, LUTf & wavclCurve, /*LUTu & histogramwavcl, LUTu & outBeforeWavCLurveHistogram,*/int skip)
{
bool needed = false;
std::unique_ptr<DiagonalCurve> dCurve;
if (!wavclcurvePoints.empty() && wavclcurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(wavclcurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (dCurve && !dCurve->isIdentity()) {
needed = true;
wavcontlutili = true;
}
}
fillCurveArray(dCurve.get(), wavclCurve, skip, needed);
}
// add curve Colortoning : C=f(L) and CLf(L)
void CurveFactory::curveToning ( const std::vector<double>& curvePoints, LUTf & ToningCurve, int skip)
{
bool needed = false;
std::unique_ptr<DiagonalCurve> dCurve;
if (!curvePoints.empty() && curvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(curvePoints, CURVES_MIN_POLY_POINTS / skip));
if (dCurve && !dCurve->isIdentity()) {
needed = true;
}
}
fillCurveArray(dCurve.get(), ToningCurve, skip, needed);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void CurveFactory::complexsgnCurve (bool & autili, bool & butili, bool & ccutili, bool & cclutili,
const std::vector<double>& acurvePoints, const std::vector<double>& bcurvePoints, const std::vector<double>& cccurvePoints,
const std::vector<double>& lccurvePoints, LUTf & aoutCurve, LUTf & boutCurve, LUTf & satCurve, LUTf & lhskCurve,
int skip)
{
autili = butili = ccutili = cclutili = false;
std::unique_ptr<DiagonalCurve> dCurve;
// create a curve if needed
if (!acurvePoints.empty() && acurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(acurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (dCurve && !dCurve->isIdentity()) {
autili = true;
}
}
fillCurveArray(dCurve.get(), aoutCurve, skip, autili);
dCurve = nullptr;
//-----------------------------------------------------
if (!bcurvePoints.empty() && bcurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(bcurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (dCurve && !dCurve->isIdentity()) {
butili = true;
}
}
fillCurveArray(dCurve.get(), boutCurve, skip, butili);
dCurve = nullptr;
//-----------------------------------------------
if (!cccurvePoints.empty() && cccurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(cccurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (dCurve && !dCurve->isIdentity()) {
ccutili = true;
}
}
fillCurveArray(dCurve.get(), satCurve, skip, ccutili);
dCurve = nullptr;
//----------------------------
if (!lccurvePoints.empty() && lccurvePoints[0] != 0) {
dCurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(lccurvePoints, CURVES_MIN_POLY_POINTS / skip));
if (dCurve && !dCurve->isIdentity()) {
cclutili = true;
}
}
fillCurveArray(dCurve.get(), lhskCurve, skip, cclutili);
}
void CurveFactory::complexCurve (double ecomp, double black, double hlcompr, double hlcomprthresh,
double shcompr, double br, double contr,
const std::vector<double>& curvePoints,
const std::vector<double>& curvePoints2,
const LUTu & histogram,
LUTf & hlCurve, LUTf & shCurve, LUTf & outCurve,
LUTu & outBeforeCCurveHistogram,
ToneCurve & customToneCurve1,
ToneCurve & customToneCurve2,
int skip)
{
// the curve shapes are defined in sRGB gamma, but the output curves will operate on linear floating point data,
// hence we do both forward and inverse gamma conversions here.
const float gamma_ = Color::sRGBGammaCurve;
const float start = expf(gamma_ * logf( -0.055 / ((1.0 / gamma_ - 1.0) * 1.055 )));
const float slope = 1.055 * powf (start, 1.0 / gamma_ - 1) - 0.055 / start;
const float mul = 1.055;
const float add = 0.055;
// a: slope of the curve, black: starting point at the x axis
const float a = powf (2.0, ecomp);
// clear array that stores histogram valid before applying the custom curve
outBeforeCCurveHistogram.clear();
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// tone curve base. a: slope (from exp.comp.), b: black, def_mul: max. x value (can be>1), hr,sr: highlight,shadow recovery
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
std::unique_ptr<DiagonalCurve> brightcurve;
// check if brightness curve is needed
if (br > 0.00001 || br < -0.00001) {
std::vector<double> brightcurvePoints(9);
brightcurvePoints[0] = DCT_NURBS;
brightcurvePoints[1] = 0.; //black point. Value in [0 ; 1] range
brightcurvePoints[2] = 0.; //black point. Value in [0 ; 1] range
if(br > 0) {
brightcurvePoints[3] = 0.1; //toe point
brightcurvePoints[4] = 0.1 + br / 150.0; //value at toe point
brightcurvePoints[5] = 0.7; //shoulder point
brightcurvePoints[6] = min(1.0, 0.7 + br / 300.0); //value at shoulder point
} else {
brightcurvePoints[3] = max(0.0, 0.1 - br / 150.0); //toe point
brightcurvePoints[4] = 0.1; //value at toe point
brightcurvePoints[5] = 0.7 - br / 300.0; //shoulder point
brightcurvePoints[6] = 0.7; //value at shoulder point
}
brightcurvePoints[7] = 1.; // white point
brightcurvePoints[8] = 1.; // value at white point
brightcurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(brightcurvePoints, CURVES_MIN_POLY_POINTS / skip));
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hlCurve.setClip(LUT_CLIP_BELOW); // used LUT_CLIP_BELOW, because we want to have a baseline of 2^expcomp in this curve. If we don't clip the lut we get wrong values, see Issue 2621 #14 for details
float exp_scale = a;
float scale = 65536.0;
float comp = (max(0.0, ecomp) + 1.0) * hlcompr / 100.0;
float shoulder = ((scale / max(1.0f, exp_scale)) * (hlcomprthresh / 200.0)) + 0.1;
if (comp <= 0.0f) {
hlCurve.makeConstant(exp_scale);
} else {
hlCurve.makeConstant(exp_scale, shoulder + 1);
float scalemshoulder = scale - shoulder;
#ifdef __SSE2__
int i = shoulder + 1;
if(i & 1) { // original formula, slower than optimized formulas below but only used once or none, so I let it as is for reference
// change to [0,1] range
float val = (float)i - shoulder;
float R = val * comp / (scalemshoulder);
hlCurve[i] = xlog(1.0 + R * exp_scale) / R; // don't use xlogf or 1.f here. Leads to errors caused by too low precision
i++;
}
vdouble onev = _mm_set1_pd(1.0);
vdouble Rv = _mm_set_pd((i + 1 - shoulder) * (double)comp / scalemshoulder, (i - shoulder) * (double)comp / scalemshoulder);
vdouble incrementv = _mm_set1_pd(2.0 * comp / scalemshoulder);
vdouble exp_scalev = _mm_set1_pd(exp_scale);
for (; i < 0x10000; i += 2) {
// change to [0,1] range
vdouble resultv = xlog(onev + Rv * exp_scalev) / Rv;
vfloat resultfv = _mm_cvtpd_ps(resultv);
_mm_store_ss(&hlCurve[i], resultfv);
resultfv = PERMUTEPS(resultfv, _MM_SHUFFLE(1, 1, 1, 1));
_mm_store_ss(&hlCurve[i + 1], resultfv);
Rv += incrementv;
}
#else
float R = comp / scalemshoulder;
float increment = R;
for (int i = shoulder + 1; i < 0x10000; i++) {
// change to [0,1] range
hlCurve[i] = xlog(1.0 + R * exp_scale) / R; // don't use xlogf or 1.f here. Leads to errors caused by too low precision
R += increment;
}
#endif
}
// curve without contrast
LUTf dcurve(0x10000);
//%%%%%%%%%%%%%%%%%%%%%%%%%%
// change to [0,1] range
shCurve.setClip(LUT_CLIP_ABOVE); // used LUT_CLIP_ABOVE, because the curve converges to 1.0 at the upper end and we don't want to exceed this value.
if (black == 0.0) {
shCurve.makeConstant(1.f);
} else {
const float val = 1.f / 65535.f;
shCurve[0] = simplebasecurve(val, black, 0.015 * shcompr) / val;
}
// gamma correction
float val0 = Color::gammatab_srgb1[0];
// apply brightness curve
if (brightcurve) {
val0 = brightcurve->getVal(val0); // TODO: getVal(double) is very slow! Optimize with a LUTf
}
// store result in a temporary array
dcurve[0] = LIM01<float>(val0);
for (int i = 1; i < 0x10000; i++) {
if (black != 0.0) {
const float val = i / 65535.f;
shCurve[i] = simplebasecurve(val, black, 0.015 * shcompr) / val;
}
// gamma correction
float val = Color::gammatab_srgb1[i];
// apply brightness curve
if (brightcurve) {
val = LIM01<float>(brightcurve->getVal (val)); // TODO: getVal(double) is very slow! Optimize with a LUTf
}
// store result in a temporary array
dcurve[i] = val;
}
brightcurve = nullptr;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// check if contrast curve is needed
if (contr > 0.00001 || contr < -0.00001) {
// compute mean luminance of the image with the curve applied
unsigned int sum = 0;
float avg = 0;
for (int i = 0; i <= 0xffff; i++) {
float fi = i * hlCurve[i];
avg += dcurve[(int)(shCurve[fi] * fi)] * histogram[i];
sum += histogram[i];
}
avg /= sum;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
std::vector<double> contrastcurvePoints(9);
contrastcurvePoints[0] = DCT_NURBS;
contrastcurvePoints[1] = 0; //black point. Value in [0 ; 1] range
contrastcurvePoints[2] = 0; //black point. Value in [0 ; 1] range
contrastcurvePoints[3] = avg - avg * (0.6 - contr / 250.0); //toe point
contrastcurvePoints[4] = avg - avg * (0.6 + contr / 250.0); //value at toe point
contrastcurvePoints[5] = avg + (1 - avg) * (0.6 - contr / 250.0); //shoulder point
contrastcurvePoints[6] = avg + (1 - avg) * (0.6 + contr / 250.0); //value at shoulder point
contrastcurvePoints[7] = 1.; // white point
contrastcurvePoints[8] = 1.; // value at white point
const DiagonalCurve contrastcurve(contrastcurvePoints, CURVES_MIN_POLY_POINTS / skip);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// apply contrast enhancement
for (int i = 0; i <= 0xffff; i++) {
dcurve[i] = contrastcurve.getVal (dcurve[i]);
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create second curve if needed
bool histNeeded = false;
customToneCurve2.Reset();
if (!curvePoints2.empty() && curvePoints2[0] > DCT_Linear && curvePoints2[0] < DCT_Unchanged) {
const DiagonalCurve tcurve(curvePoints2, CURVES_MIN_POLY_POINTS / skip);
if (!tcurve.isIdentity()) {
customToneCurve2.Set(tcurve, gamma_);
}
if (outBeforeCCurveHistogram ) {
histNeeded = true;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create first curve if needed
customToneCurve1.Reset();
if (!curvePoints.empty() && curvePoints[0] > DCT_Linear && curvePoints[0] < DCT_Unchanged) {
const DiagonalCurve tcurve(curvePoints, CURVES_MIN_POLY_POINTS / skip);
if (!tcurve.isIdentity()) {
customToneCurve1.Set(tcurve, gamma_);
}
if (outBeforeCCurveHistogram) {
histNeeded = true;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef __SSE2__
vfloat gamma_v = F2V(gamma_);
vfloat startv = F2V(start);
vfloat slopev = F2V(slope);
vfloat mulv = F2V(mul);
vfloat addv = F2V(add);
vfloat c65535v = F2V(65535.f);
for (int i = 0; i <= 0xffff; i += 4) {
vfloat valv = LVFU(dcurve[i]);
valv = igamma (valv, gamma_v, startv, slopev, mulv, addv);
STVFU(outCurve[i], c65535v * valv);
}
#else
for (int i = 0; i <= 0xffff; i++) {
float val = dcurve[i];
val = igamma (val, gamma_, start, slope, mul, add);
outCurve[i] = (65535.f * val);
}
#endif
if (histNeeded) {
for (int i = 0; i <= 0xffff; i++) {
float fi = i;
float hval = hlCurve[i] * fi;
hval = dcurve[shCurve[hval] * hval];
int hi = (int)(255.f * (hval));
outBeforeCCurveHistogram[hi] += histogram[i] ;
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void CurveFactory::complexLCurve (double br, double contr, const std::vector<double>& curvePoints,
const LUTu & histogram, LUTf & outCurve,
LUTu & outBeforeCCurveHistogram, int skip, bool & utili)
{
utili = false;
// clear array that stores histogram valid before applying the custom curve
if (outBeforeCCurveHistogram) {
outBeforeCCurveHistogram.clear();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// tone curve base. a: slope (from exp.comp.), b: black, def_mul: max. x value (can be>1), hr,sr: highlight,shadow recovery
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// check if brightness curve is needed
if (br > 0.00001 || br < -0.00001) {
utili = true;
std::vector<double> brightcurvePoints;
brightcurvePoints.resize(9);
brightcurvePoints.at(0) = double(DCT_NURBS);
brightcurvePoints.at(1) = 0.; // black point. Value in [0 ; 1] range
brightcurvePoints.at(2) = 0.; // black point. Value in [0 ; 1] range
if (br > 0) {
brightcurvePoints.at(3) = 0.1; // toe point
brightcurvePoints.at(4) = 0.1 + br / 150.0; //value at toe point
brightcurvePoints.at(5) = 0.7; // shoulder point
brightcurvePoints.at(6) = min(1.0, 0.7 + br / 300.0); //value at shoulder point
} else {
brightcurvePoints.at(3) = 0.1 - br / 150.0; // toe point
brightcurvePoints.at(4) = 0.1; // value at toe point
brightcurvePoints.at(5) = min(1.0, 0.7 - br / 300.0); // shoulder point
brightcurvePoints.at(6) = 0.7; // value at shoulder point
}
brightcurvePoints.at(7) = 1.; // white point
brightcurvePoints.at(8) = 1.; // value at white point
DiagonalCurve brightcurve(brightcurvePoints, CURVES_MIN_POLY_POINTS / skip);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Applying brightness curve
for (int i = 0; i < 32768; i++) { // L values range up to 32767, higher values are for highlight overflow
// change to [0,1] range
float val = (float)i / 32767.0;
// apply brightness curve
val = brightcurve.getVal (val);
// store result in a temporary array
outCurve[i] = LIM01<float>(val);
}
} else {
outCurve.makeIdentity(32767.f);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// check if contrast curve is needed
if (contr > 0.00001 || contr < -0.00001) {
utili = true;
// compute mean luminance of the image with the curve applied
int sum = 0;
float avg = 0;
for (int i = 0; i < 32768; i++) {
avg += outCurve[i] * histogram[i];
sum += histogram[i];
}
std::vector<double> contrastcurvePoints;
if(sum) {
avg /= sum;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
contrastcurvePoints.resize(9);
contrastcurvePoints.at(0) = double(DCT_NURBS);
contrastcurvePoints.at(1) = 0.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(2) = 0.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(3) = avg - avg * (0.6 - contr / 250.0); // toe point
contrastcurvePoints.at(4) = avg - avg * (0.6 + contr / 250.0); // value at toe point
contrastcurvePoints.at(5) = avg + (1 - avg) * (0.6 - contr / 250.0); // shoulder point
contrastcurvePoints.at(6) = avg + (1 - avg) * (0.6 + contr / 250.0); // value at shoulder point
contrastcurvePoints.at(7) = 1.; // white point
contrastcurvePoints.at(8) = 1.; // value at white point
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
} else {
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// sum has an invalid value (next to 0, producing a division by zero, so we create a fake contrast curve, producing a white image
contrastcurvePoints.resize(5);
contrastcurvePoints.at(0) = double(DCT_NURBS);
contrastcurvePoints.at(1) = 0.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(2) = 1.; // black point. Value in [0 ; 1] range
contrastcurvePoints.at(3) = 1.; // white point
contrastcurvePoints.at(4) = 1.; // value at white point
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
DiagonalCurve contrastcurve(contrastcurvePoints, CURVES_MIN_POLY_POINTS / skip);
// apply contrast enhancement
for (int i = 0; i < 32768; i++) {
outCurve[i] = contrastcurve.getVal (outCurve[i]);
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// create a curve if needed
std::unique_ptr<DiagonalCurve> tcurve;
bool histNeeded = false;
if (!curvePoints.empty() && curvePoints[0] != 0) {
tcurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve (curvePoints, CURVES_MIN_POLY_POINTS / skip));
if (outBeforeCCurveHistogram) {
histNeeded = true;
}
}
if (tcurve && tcurve->isIdentity()) {
tcurve = nullptr;
}
if (tcurve) {
utili = true; //if active
// L values go up to 32767, last stop is for highlight overflow
for (int i = 0; i < 32768; i++) {
float val;
if (histNeeded) {
float hval = outCurve[i];
int hi = (int)(255.f * hval);
outBeforeCCurveHistogram[hi] += histogram[i] ;
}
// apply custom/parametric/NURBS curve, if any
val = tcurve->getVal (outCurve[i]);
outCurve[i] = (32767.f * val);
}
} else {
// Skip the slow getval method if no curve is used (or an identity curve)
// L values go up to 32767, last stop is for highlight overflow
if(histNeeded) {
histogram.compressTo(outBeforeCCurveHistogram, 32768, outCurve);
}
outCurve *= 32767.f;
}
for (int i = 32768; i < 32770; i++) { // set last two elements of lut to 32768 and 32769 to allow linear interpolation
outCurve[i] = (float)i;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void CurveFactory::RGBCurve (const std::vector<double>& curvePoints, LUTf & outCurve, int skip)
{
// create a curve if needed
std::unique_ptr<DiagonalCurve> tcurve;
if (!curvePoints.empty() && curvePoints[0] != 0) {
tcurve = std::unique_ptr<DiagonalCurve>(new DiagonalCurve(curvePoints, CURVES_MIN_POLY_POINTS / skip));
}
if (tcurve && tcurve->isIdentity()) {
tcurve = nullptr;
}
if (tcurve) {
if (!outCurve) {
outCurve(65536, 0);
}
for (int i = 0; i < 65536; i++) {
// apply custom/parametric/NURBS curve, if any
// RGB curves are defined with sRGB gamma, but operate on linear data
float val = Color::gamma2curve[i] / 65535.f;
val = tcurve->getVal(val);
outCurve[i] = Color::igammatab_srgb[val * 65535.f];
}
} else { // let the LUTf empty for identity curves
outCurve.reset();
}
}
void ColorAppearance::Reset()
{
lutColCurve.reset();
}
// Fill a LUT with X/Y, ranged 0xffff
void ColorAppearance::Set(const Curve &pCurve)
{
lutColCurve(65536);
for (int i = 0; i < 65536; i++) {
lutColCurve[i] = pCurve.getVal(double(i) / 65535.) * 65535.;
}
}
//
RetinextransmissionCurve::RetinextransmissionCurve() {}
void RetinextransmissionCurve::Reset()
{
luttransmission.reset();
}
void RetinextransmissionCurve::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
luttransmission.reset(); // raise this value if the quality suffers from this number of samples
return;
}
luttransmission(501); // raise this value if the quality suffers from this number of samples
for (int i = 0; i < 501; i++) {
luttransmission[i] = pCurve.getVal(double(i) / 500.);
}
}
void RetinextransmissionCurve::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
RetinexgaintransmissionCurve::RetinexgaintransmissionCurve() {}
void RetinexgaintransmissionCurve::Reset()
{
lutgaintransmission.reset();
}
void RetinexgaintransmissionCurve::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
lutgaintransmission.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutgaintransmission(501); // raise this value if the quality suffers from this number of samples
for (int i = 0; i < 501; i++) {
lutgaintransmission[i] = pCurve.getVal(double(i) / 500.);
}
}
void RetinexgaintransmissionCurve::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
void ToneCurve::Reset()
{
lutToneCurve.reset();
}
// Fill a LUT with X/Y, ranged 0xffff
void ToneCurve::Set(const Curve &pCurve, float gamma)
{
lutToneCurve(65536);
if (gamma <= 0.0 || gamma == 1.) {
for (int i = 0; i < 65536; i++) {
lutToneCurve[i] = (float)pCurve.getVal(float(i) / 65535.f) * 65535.f;
}
} else if(gamma == (float)Color::sRGBGammaCurve) {
// for sRGB gamma we can use luts, which is much faster
for (int i = 0; i < 65536; i++) {
float val = Color::gammatab_srgb[i] / 65535.f;
val = pCurve.getVal(val);
val = Color::igammatab_srgb[val * 65535.f];
lutToneCurve[i] = val;
}
} else {
const float start = expf(gamma * logf( -0.055 / ((1.0 / gamma - 1.0) * 1.055 )));
const float slope = 1.055 * powf (start, 1.0 / gamma - 1) - 0.055 / start;
const float mul = 1.055;
const float add = 0.055;
// apply gamma, that is 'pCurve' is defined with the given gamma and here we convert it to a curve in linear space
for (int i = 0; i < 65536; i++) {
float val = float(i) / 65535.f;
val = CurveFactory::gamma (val, gamma, start, slope, mul, add);
val = pCurve.getVal(val);
val = CurveFactory::igamma (val, gamma, start, slope, mul, add);
lutToneCurve[i] = val * 65535.f;
}
}
}
void OpacityCurve::Reset()
{
lutOpacityCurve.reset();
}
void OpacityCurve::Set(const Curve *pCurve)
{
if (pCurve->isIdentity()) {
lutOpacityCurve.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurve(501); // raise this value if the quality suffers from this number of samples
for (int i = 0; i < 501; i++) {
lutOpacityCurve[i] = pCurve->getVal(double(i) / 500.);
}
//lutOpacityCurve.dump("opacity");
}
void OpacityCurve::Set(const std::vector<double> &curvePoints, bool &opautili)
{
std::unique_ptr<FlatCurve> tcurve;
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
tcurve = std::unique_ptr<FlatCurve>(new FlatCurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2));
tcurve->setIdentityValue(0.);
}
if (tcurve) {
Set(tcurve.get());
opautili = true;
tcurve = nullptr;
}
}
WavCurve::WavCurve() : sum(0.f) {}
void WavCurve::Reset()
{
lutWavCurve.reset();
sum = 0.f;
}
void WavCurve::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
Reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutWavCurve(501); // raise this value if the quality suffers from this number of samples
sum = 0.f;
for (int i = 0; i < 501; i++) {
lutWavCurve[i] = pCurve.getVal(double(i) / 500.);
if(lutWavCurve[i] < 0.02f) {
lutWavCurve[i] = 0.02f; //avoid 0.f for wavelet : under 0.01f quasi no action for each value
}
sum += lutWavCurve[i];
}
//lutWavCurve.dump("wav");
}
void WavCurve::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveRG::WavOpacityCurveRG() {}
void WavOpacityCurveRG::Reset()
{
lutOpacityCurveRG.reset();
}
void WavOpacityCurveRG::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
Reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveRG(501); // raise this value if the quality suffers from this number of samples
for (int i = 0; i < 501; i++) {
lutOpacityCurveRG[i] = pCurve.getVal(double(i) / 500.);
}
}
void WavOpacityCurveRG::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveBY::WavOpacityCurveBY() {}
void WavOpacityCurveBY::Reset()
{
lutOpacityCurveBY.reset();
}
void WavOpacityCurveBY::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
lutOpacityCurveBY.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveBY(501); // raise this value if the quality suffers from this number of samples
for (int i = 0; i < 501; i++) {
lutOpacityCurveBY[i] = pCurve.getVal(double(i) / 500.);
}
}
void WavOpacityCurveBY::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveW::WavOpacityCurveW() {}
void WavOpacityCurveW::Reset()
{
lutOpacityCurveW.reset();
}
void WavOpacityCurveW::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
lutOpacityCurveW.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveW(501); // raise this value if the quality suffers from this number of samples
for (int i = 0; i < 501; i++) {
lutOpacityCurveW[i] = pCurve.getVal(double(i) / 500.);
}
}
void WavOpacityCurveW::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
WavOpacityCurveWL::WavOpacityCurveWL() {}
void WavOpacityCurveWL::Reset()
{
lutOpacityCurveWL.reset();
}
void WavOpacityCurveWL::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
lutOpacityCurveWL.reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutOpacityCurveWL(501); // raise this value if the quality suffers from this number of samples
for (int i = 0; i < 501; i++) {
lutOpacityCurveWL[i] = pCurve.getVal(double(i) / 500.);
}
}
void WavOpacityCurveWL::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
NoiseCurve::NoiseCurve() : sum(0.f) {}
void NoiseCurve::Reset()
{
lutNoiseCurve.reset();
sum = 0.f;
}
void NoiseCurve::Set(const Curve &pCurve)
{
if (pCurve.isIdentity()) {
Reset(); // raise this value if the quality suffers from this number of samples
return;
}
lutNoiseCurve(501); // raise this value if the quality suffers from this number of samples
sum = 0.f;
for (int i = 0; i < 501; i++) {
lutNoiseCurve[i] = pCurve.getVal(double(i) / 500.);
if(lutNoiseCurve[i] < 0.01f) {
lutNoiseCurve[i] = 0.01f; //avoid 0.f for wavelet : under 0.01f quasi no action for each value
}
sum += lutNoiseCurve[i]; //minima for Wavelet about 6.f or 7.f quasi no action
}
//lutNoisCurve.dump("Nois");
}
void NoiseCurve::Set(const std::vector<double> &curvePoints)
{
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
FlatCurve tcurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2);
tcurve.setIdentityValue(0.);
Set(tcurve);
} else {
Reset();
}
}
void ColorGradientCurve::Reset()
{
lut1.reset();
lut2.reset();
lut3.reset();
}
void ColorGradientCurve::SetXYZ(const Curve *pCurve, const double xyz_rgb[3][3], float satur, float lumin)
{
if (pCurve->isIdentity()) {
lut1.reset();
lut2.reset();
lut3.reset();
return;
}
if (!lut1) {
lut1(501);
lut2(501);
lut3(501);
}
float r, g, b, xx, yy, zz;
float lr1, lr2 = 0.f;
int upperBound = lut1.getUpperBound();
if (pCurve->isIdentity()) {
Color::hsv2rgb(0.5f, satur, lumin, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
for (int i = 0; i <= 500; ++i) {
// WARNING: set the identity value according to what is set in the GUI
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
}
return;
}
int nPoints = pCurve->getSize();
int ptNum = 0;
double nextX, nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
double prevY = nextY;
double dY = 0.;
low = nextX;
lr1 = (0.5f + low) / 2.f; //optimize use of gamut in low light..one can optimize more using directly low ?
//lr1=low;
for (int i = 0; i <= upperBound; ++i) {
double x = double(i) / double(upperBound);
if (x > nextX) {
++ptNum;
if (ptNum < nPoints) {
prevY = nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
dY = nextY - prevY;
high = nextX;
lr2 = (0.5f + high) / 2.f; //optimize use of gamut in high light..one can optimize more using directly high ?
//lr2=high;
}
}
if (!ptNum) {
Color::hsv2rgb(float(prevY), satur, lr1, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
} else if (ptNum >= nPoints) {
Color::hsv2rgb(float(nextY), satur, lr2, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
} else {
double currY = pCurve->getVal(x) - prevY;
if (dY > 0.000001 || dY < -0.000001) {
float r1, g1, b1, r2, g2, b2;
Color::hsv2rgb(float(prevY), satur, lr1, r1, g1, b1);
Color::hsv2rgb(float(nextY), satur, lr2, r2, g2, b2);
LUTf dum;
float X1, X2, Y1, Y2, Z1, Z2, L1, a_1, b_1, c1, h1;
Color::rgbxyz(r2, g2, b2, X2, Y2, Z2, xyz_rgb);
Color::rgbxyz(r1, g1, b1, X1, Y1, Z1, xyz_rgb);
//I use XYZ to mix color 1 and 2 rather than rgb (gamut) and rather than Lab artifacts
X1 = X1 + (X2 - X1) * currY / dY;
if(X1 < 0.f) {
X1 = 0.f; //negative value not good
}
Y1 = Y1 + (Y2 - Y1) * currY / dY;
if(Y1 < 0.f) {
Y1 = 0.f;
}
Z1 = Z1 + (Z2 - Z1) * currY / dY;
if(Z1 < 0.f) {
Z1 = 0.f;
}
Color::XYZ2Lab(X1, Y1, Z1, L1, a_1, b_1);//prepare to gamut control
Color::Lab2Lch(a_1, b_1, c1, h1);
float Lr = L1 / 327.68f;
float RR, GG, BB;
#ifndef NDEBUG
bool neg = false;
bool more_rgb = false;
//gamut control : Lab values are in gamut
Color::gamutLchonly(h1, Lr, c1, RR, GG, BB, xyz_rgb, false, 0.15f, 0.96f, neg, more_rgb);
#else
Color::gamutLchonly(h1, Lr, c1, RR, GG, BB, xyz_rgb, false, 0.15f, 0.96f);
#endif
L1 = Lr * 327.68f;
float La, Lb, X, Y, Z;
// converting back to rgb
Color::Lch2Lab(c1, h1, La, Lb);
Color::Lab2XYZ(L1, La, Lb, X, Y, Z);
lut1[i] = X;
lut2[i] = Y;
lut3[i] = Z;
} else {
Color::hsv2rgb(float(nextY), satur, lumin, r, g, b);
Color::rgbxyz(r, g, b, xx, yy, zz, xyz_rgb);
lut1[i] = xx;
lut2[i] = yy;
lut3[i] = zz;
}
}
}
/*
#ifndef NDEBUG
lutRed.dump("red");
lutGreen.dump("green");
lutBlue.dump("blue");
#endif
*/
}
void ColorGradientCurve::SetXYZ(const std::vector<double> &curvePoints, const double xyz_rgb[3][3], float satur, float lumin)
{
std::unique_ptr<FlatCurve> tcurve;
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
tcurve = std::unique_ptr<FlatCurve>(new FlatCurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2));
}
if (tcurve) {
SetXYZ(tcurve.get(), xyz_rgb, satur, lumin);
}
}
void ColorGradientCurve::SetRGB(const Curve *pCurve)
{
if (pCurve->isIdentity()) {
lut1.reset();
lut2.reset();
lut3.reset();
return;
}
if (!lut1) {
lut1(501);
lut2(501);
lut3(501);
}
float r, g, b;
int upperBound = lut1.getUpperBound();
int nPoints = pCurve->getSize();
int ptNum = 0;
double nextX, nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
double prevY = nextY;
double dY = 0.;
Color::eInterpolationDirection dir = Color::ID_DOWN;
for (int i = 0; i <= upperBound; ++i) {
double x = double(i) / double(upperBound);
if (x > nextX) {
++ptNum;
if (ptNum < nPoints) {
prevY = nextY;
pCurve->getControlPoint(ptNum, nextX, nextY);
dY = nextY - prevY;
dir = Color::getHueInterpolationDirection(prevY, nextY, Color::IP_SHORTEST);
}
}
if (!ptNum) {
Color::hsv2rgb(float(prevY), 1.f, 1.f, r, g, b);
lut1[i] = r;
lut2[i] = g;
lut3[i] = b;
} else if (ptNum >= nPoints) {
Color::hsv2rgb(float(nextY), 1.f, 1.f, r, g, b);
lut1[i] = r;
lut2[i] = g;
lut3[i] = b;
} else {
double currY = pCurve->getVal(x) - prevY;
if (dY > 0.0000001 || dY < -0.0000001) {
#if 1
float ro, go, bo;
double h2 = Color::interpolateHueHSV(prevY, nextY, currY / dY, dir);
Color::hsv2rgb(h2, 1.f, 1.f, ro, go, bo);
#else
float r1, g1, b1, r2, g2, b2, ro, go, bo;
Color::hsv2rgb(float(prevY), 1., 1., r1, g1, b1);
Color::hsv2rgb(float(nextY), 1., 1., r2, g2, b2);
Color::interpolateRGBColor(currY / dY, r1, g1, b1, r2, g2, b2, Color::CHANNEL_LIGHTNESS | Color::CHANNEL_CHROMATICITY | Color::CHANNEL_HUE, xyz_rgb, rgb_xyz, ro, go, bo);
#endif
lut1[i] = ro;
lut2[i] = go;
lut3[i] = bo;
} else {
Color::hsv2rgb(float(nextY), 1.f, 1.f, r, g, b);
lut1[i] = r;
lut2[i] = g;
lut3[i] = b;
}
}
}
/*
#ifndef NDEBUG
lut1.dump("red");
lut2.dump("green");
lut3.dump("blue");
#endif
*/
}
void ColorGradientCurve::SetRGB(const std::vector<double> &curvePoints)
{
std::unique_ptr<FlatCurve> tcurve;
if (!curvePoints.empty() && curvePoints[0] > FCT_Linear && curvePoints[0] < FCT_Unchanged) {
tcurve = std::unique_ptr<FlatCurve>(new FlatCurve(curvePoints, false, CURVES_MIN_POLY_POINTS / 2));
}
if (tcurve) {
SetRGB(tcurve.get());
}
}
void ColorGradientCurve::getVal(float index, float &r, float &g, float &b) const
{
r = lut1[index * 500.f];
g = lut2[index * 500.f];
b = lut3[index * 500.f];
}
// this is a generic cubic spline implementation, to clean up we could probably use something already existing elsewhere
void PerceptualToneCurve::cubic_spline(const float x[], const float y[], const int len, const float out_x[], float out_y[], const int out_len)
{
int i, j;
float **A = (float **)malloc(2 * len * sizeof(*A));
float *As = (float *)calloc(1, 2 * len * 2 * len * sizeof(*As));
float *b = (float *)calloc(1, 2 * len * sizeof(*b));
float *c = (float *)calloc(1, 2 * len * sizeof(*c));
float *d = (float *)calloc(1, 2 * len * sizeof(*d));
for (i = 0; i < 2 * len; i++) {
A[i] = &As[2 * len * i];
}
for (i = len - 1; i > 0; i--) {
b[i] = (y[i] - y[i - 1]) / (x[i] - x[i - 1]);
d[i - 1] = x[i] - x[i - 1];
}
for (i = 1; i < len - 1; i++) {
A[i][i] = 2 * (d[i - 1] + d[i]);
if (i > 1) {
A[i][i - 1] = d[i - 1];
A[i - 1][i] = d[i - 1];
}
A[i][len - 1] = 6 * (b[i + 1] - b[i]);
}
for(i = 1; i < len - 2; i++) {
float v = A[i + 1][i] / A[i][i];
for(j = 1; j <= len - 1; j++) {
A[i + 1][j] -= v * A[i][j];
}
}
for(i = len - 2; i > 0; i--) {
float acc = 0;
for(j = i; j <= len - 2; j++) {
acc += A[i][j] * c[j];
}
c[i] = (A[i][len - 1] - acc) / A[i][i];
}
for (i = 0; i < out_len; i++) {
float x_out = out_x[i];
float y_out = 0;
for (j = 0; j < len - 1; j++) {
if (x[j] <= x_out && x_out <= x[j + 1]) {
float v = x_out - x[j];
y_out = y[j] +
((y[j + 1] - y[j]) / d[j] - (2 * d[j] * c[j] + c[j + 1] * d[j]) / 6) * v +
(c[j] * 0.5) * v * v +
((c[j + 1] - c[j]) / (6 * d[j])) * v * v * v;
}
}
out_y[i] = y_out;
}
free(A);
free(As);
free(b);
free(c);
free(d);
}
// generic function for finding minimum of f(x) in the a-b range using the interval halving method
float PerceptualToneCurve::find_minimum_interval_halving(float (*func)(float x, void *arg), void *arg, float a, float b, float tol, int nmax)
{
float L = b - a;
float x = (a + b) * 0.5;
for (int i = 0; i < nmax; i++) {
float f_x = func(x, arg);
if ((b - a) * 0.5 < tol) {
return x;
}
float x1 = a + L / 4;
float f_x1 = func(x1, arg);
if (f_x1 < f_x) {
b = x;
x = x1;
} else {
float x2 = b - L / 4;
float f_x2 = func(x2, arg);
if (f_x2 < f_x) {
a = x;
x = x2;
} else {
a = x1;
b = x2;
}
}
L = b - a;
}
return x;
}
struct find_tc_slope_fun_arg {
const ToneCurve * tc;
};
float PerceptualToneCurve::find_tc_slope_fun(float k, void *arg)
{
struct find_tc_slope_fun_arg *a = (struct find_tc_slope_fun_arg *)arg;
float areasum = 0;
const int steps = 10;
for (int i = 0; i < steps; i++) {
float x = 0.1 + ((float)i / (steps - 1)) * 0.5; // testing (sRGB) range [0.1 - 0.6], ie ignore highligths and dark shadows
float y = CurveFactory::gamma2(a->tc->lutToneCurve[CurveFactory::igamma2(x) * 65535] / 65535.0);
float y1 = k * x;
if (y1 > 1) {
y1 = 1;
}
areasum += (y - y1) * (y - y1); // square is a rough approx of (twice) the area, but it's fine for our purposes
}
return areasum;
}
float PerceptualToneCurve::get_curve_val(float x, float range[2], float lut[], size_t lut_size)
{
float xm = (x - range[0]) / (range[1] - range[0]) * (lut_size - 1);
if (xm <= 0) {
return lut[0];
}
int idx = (int)xm;
if (idx >= static_cast<int>(lut_size) - 1) {
return lut[lut_size - 1];
}
float d = xm - (float)idx; // [0 .. 1]
return (1.0 - d) * lut[idx] + d * lut[idx + 1];
}
// calculate a single value that represents the contrast of the tone curve
float PerceptualToneCurve::calculateToneCurveContrastValue() const
{
// find linear y = k*x the best approximates the curve, which is the linear scaling/exposure component that does not contribute any contrast
// Note: the analysis is made on the gamma encoded curve, as the LUT is linear we make backwards gamma to
struct find_tc_slope_fun_arg arg = { this };
float k = find_minimum_interval_halving(find_tc_slope_fun, &arg, 0.1, 5.0, 0.01, 20); // normally found in 8 iterations
//fprintf(stderr, "average slope: %f\n", k);
float maxslope = 0;
{
// look at midtone slope
const float xd = 0.07;
const float tx0[] = { 0.30, 0.35, 0.40, 0.45 }; // we only look in the midtone range
for (size_t i = 0; i < sizeof(tx0) / sizeof(tx0[0]); i++) {
float x0 = tx0[i] - xd;
float y0 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x0) * 65535.f] / 65535.f) - k * x0;
float x1 = tx0[i] + xd;
float y1 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x1) * 65535.f] / 65535.f) - k * x1;
float slope = 1.0 + (y1 - y0) / (x1 - x0);
if (slope > maxslope) {
maxslope = slope;
}
}
// look at slope at (light) shadows and (dark) highlights
float e_maxslope = 0;
{
const float tx[] = { 0.20, 0.25, 0.50, 0.55 }; // we only look in the midtone range
for (size_t i = 0; i < sizeof(tx) / sizeof(tx[0]); i++) {
float x0 = tx[i] - xd;
float y0 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x0) * 65535.f] / 65535.f) - k * x0;
float x1 = tx[i] + xd;
float y1 = CurveFactory::gamma2(lutToneCurve[CurveFactory::igamma2(x1) * 65535.f] / 65535.f) - k * x1;
float slope = 1.0 + (y1 - y0) / (x1 - x0);
if (slope > e_maxslope) {
e_maxslope = slope;
}
}
}
//fprintf(stderr, "%.3f %.3f\n", maxslope, e_maxslope);
// midtone slope is more important for contrast, but weigh in some slope from brights and darks too.
maxslope = maxslope * 0.7 + e_maxslope * 0.3;
}
return maxslope;
}
void PerceptualToneCurve::BatchApply(const size_t start, const size_t end, float *rc, float *gc, float *bc, const PerceptualToneCurveState &state) const
{
const AdobeToneCurve& adobeTC = static_cast<const AdobeToneCurve&>((const ToneCurve&) * this);
for (size_t i = start; i < end; ++i) {
const bool oog_r = OOG(rc[i]);
const bool oog_g = OOG(gc[i]);
const bool oog_b = OOG(bc[i]);
if (oog_r && oog_g && oog_b) {
continue;
}
float r = CLIP(rc[i]);
float g = CLIP(gc[i]);
float b = CLIP(bc[i]);
if (!state.isProphoto) {
// convert to prophoto space to make sure the same result is had regardless of working color space
float newr = state.Working2Prophoto[0][0] * r + state.Working2Prophoto[0][1] * g + state.Working2Prophoto[0][2] * b;
float newg = state.Working2Prophoto[1][0] * r + state.Working2Prophoto[1][1] * g + state.Working2Prophoto[1][2] * b;
float newb = state.Working2Prophoto[2][0] * r + state.Working2Prophoto[2][1] * g + state.Working2Prophoto[2][2] * b;
r = newr;
g = newg;
b = newb;
}
float ar = r;
float ag = g;
float ab = b;
adobeTC.Apply(ar, ag, ab);
if (ar >= 65535.f && ag >= 65535.f && ab >= 65535.f) {
// clip fast path, will also avoid strange colours of clipped highlights
//rc[i] = gc[i] = bc[i] = 65535.f;
if (!oog_r) rc[i] = 65535.f;
if (!oog_g) gc[i] = 65535.f;
if (!oog_b) bc[i] = 65535.f;
continue;
}
if (ar <= 0.f && ag <= 0.f && ab <= 0.f) {
//rc[i] = gc[i] = bc[i] = 0;
if (!oog_r) rc[i] = 0.f;
if (!oog_g) gc[i] = 0.f;
if (!oog_b) bc[i] = 0.f;
continue;
}
// ProPhoto constants for luminance, that is xyz_prophoto[1][]
constexpr float Yr = 0.2880402f;
constexpr float Yg = 0.7118741f;
constexpr float Yb = 0.0000857f;
// we use the Adobe (RGB-HSV hue-stabilized) curve to decide luminance, which generally leads to a less contrasty result
// compared to a pure luminance curve. We do this to be more compatible with the most popular curves.
const float oldLuminance = r * Yr + g * Yg + b * Yb;
const float newLuminance = ar * Yr + ag * Yg + ab * Yb;
const float Lcoef = newLuminance / oldLuminance;
r = LIM<float>(r * Lcoef, 0.f, 65535.f);
g = LIM<float>(g * Lcoef, 0.f, 65535.f);
b = LIM<float>(b * Lcoef, 0.f, 65535.f);
// move to JCh so we can modulate chroma based on the global contrast-related chroma scaling factor
float x, y, z;
Color::Prophotoxyz(r, g, b, x, y, z);
float J, C, h;
Ciecam02::xyz2jch_ciecam02float( J, C, h,
aw, fl,
x * 0.0015259022f, y * 0.0015259022f, z * 0.0015259022f,
xw, yw, zw,
c, nc, pow1, nbb, ncb, cz, d);
if (!isfinite(J) || !isfinite(C) || !isfinite(h)) {
// this can happen for dark noise colours or colours outside human gamut. Then we just return the curve's result.
if (!state.isProphoto) {
float newr = state.Prophoto2Working[0][0] * r + state.Prophoto2Working[0][1] * g + state.Prophoto2Working[0][2] * b;
float newg = state.Prophoto2Working[1][0] * r + state.Prophoto2Working[1][1] * g + state.Prophoto2Working[1][2] * b;
float newb = state.Prophoto2Working[2][0] * r + state.Prophoto2Working[2][1] * g + state.Prophoto2Working[2][2] * b;
r = newr;
g = newg;
b = newb;
}
if (!oog_r) rc[i] = r;
if (!oog_g) gc[i] = g;
if (!oog_b) bc[i] = b;
continue;
}
float cmul = state.cmul_contrast; // chroma scaling factor
// depending on color, the chroma scaling factor can be fine-tuned below
{
// decrease chroma scaling slightly of extremely saturated colors
float saturated_scale_factor = 0.95f;
constexpr float lolim = 35.f; // lower limit, below this chroma all colors will keep original chroma scaling factor
constexpr float hilim = 60.f; // high limit, above this chroma the chroma scaling factor is multiplied with the saturated scale factor value above
if (C < lolim) {
// chroma is low enough, don't scale
saturated_scale_factor = 1.f;
} else if (C < hilim) {
// S-curve transition between low and high limit
float cx = (C - lolim) / (hilim - lolim); // x = [0..1], 0 at lolim, 1 at hilim
if (cx < 0.5f) {
cx = 2.f * SQR(cx);
} else {
cx = 1.f - 2.f * SQR(1.f - cx);
}
saturated_scale_factor = (1.f - cx) + saturated_scale_factor * cx;
} else {
// do nothing, high saturation color, keep scale factor
}
cmul *= saturated_scale_factor;
}
{
// increase chroma scaling slightly of shadows
float nL = Color::gamma2curve[newLuminance]; // apply gamma so we make comparison and transition with a more perceptual lightness scale
float dark_scale_factor = 1.20f;
//float dark_scale_factor = 1.0 + state.debug.p2 / 100.0f;
constexpr float lolim = 0.15f;
constexpr float hilim = 0.50f;
if (nL < lolim) {
// do nothing, keep scale factor
} else if (nL < hilim) {
// S-curve transition
float cx = (nL - lolim) / (hilim - lolim); // x = [0..1], 0 at lolim, 1 at hilim
if (cx < 0.5f) {
cx = 2.f * SQR(cx);
} else {
cx = 1.f - 2.f * SQR(1 - cx);
}
dark_scale_factor = dark_scale_factor * (1.0f - cx) + cx;
} else {
dark_scale_factor = 1.f;
}
cmul *= dark_scale_factor;
}
{
// to avoid strange CIECAM02 chroma errors on close-to-shadow-clipping colors we reduce chroma scaling towards 1.0 for black colors
float dark_scale_factor = 1.f / cmul;
constexpr float lolim = 4.f;
constexpr float hilim = 7.f;
if (J < lolim) {
// do nothing, keep scale factor
} else if (J < hilim) {
// S-curve transition
float cx = (J - lolim) / (hilim - lolim);
if (cx < 0.5f) {
cx = 2.f * SQR(cx);
} else {
cx = 1.f - 2.f * SQR(1 - cx);
}
dark_scale_factor = dark_scale_factor * (1.f - cx) + cx;
} else {
dark_scale_factor = 1.f;
}
cmul *= dark_scale_factor;
}
C *= cmul;
Ciecam02::jch2xyz_ciecam02float( x, y, z,
J, C, h,
xw, yw, zw,
c, nc, pow1, nbb, ncb, fl, cz, d, aw );
if (!isfinite(x) || !isfinite(y) || !isfinite(z)) {
// can happen for colours on the rim of being outside gamut, that worked without chroma scaling but not with. Then we return only the curve's result.
if (!state.isProphoto) {
float newr = state.Prophoto2Working[0][0] * r + state.Prophoto2Working[0][1] * g + state.Prophoto2Working[0][2] * b;
float newg = state.Prophoto2Working[1][0] * r + state.Prophoto2Working[1][1] * g + state.Prophoto2Working[1][2] * b;
float newb = state.Prophoto2Working[2][0] * r + state.Prophoto2Working[2][1] * g + state.Prophoto2Working[2][2] * b;
r = newr;
g = newg;
b = newb;
}
if (!oog_r) rc[i] = r;
if (!oog_g) gc[i] = g;
if (!oog_b) bc[i] = b;
continue;
}
Color::xyz2Prophoto(x, y, z, r, g, b);
r *= 655.35f;
g *= 655.35f;
b *= 655.35f;
r = LIM<float>(r, 0.f, 65535.f);
g = LIM<float>(g, 0.f, 65535.f);
b = LIM<float>(b, 0.f, 65535.f);
{
// limit saturation increase in rgb space to avoid severe clipping and flattening in extreme highlights
// we use the RGB-HSV hue-stable "Adobe" curve as reference. For S-curve contrast it increases
// saturation greatly, but desaturates extreme highlights and thus provide a smooth transition to
// the white point. However the desaturation effect is quite strong so we make a weighting
const float as = Color::rgb2s(ar, ag, ab);
const float s = Color::rgb2s(r, g, b);
const float sat_scale = as <= 0.f ? 1.f : s / as; // saturation scale compared to Adobe curve
float keep = 0.2f;
constexpr float lolim = 1.00f; // only mix in the Adobe curve if we have increased saturation compared to it
constexpr float hilim = 1.20f;
if (sat_scale < lolim) {
// saturation is low enough, don't desaturate
keep = 1.f;
} else if (sat_scale < hilim) {
// S-curve transition
float cx = (sat_scale - lolim) / (hilim - lolim); // x = [0..1], 0 at lolim, 1 at hilim
if (cx < 0.5f) {
cx = 2.f * SQR(cx);
} else {
cx = 1.f - 2.f * SQR(1 - cx);
}
keep = (1.f - cx) + keep * cx;
} else {
// do nothing, very high increase, keep minimum amount
}
if (keep < 1.f) {
// mix in some of the Adobe curve result
r = intp(keep, r, ar);
g = intp(keep, g, ag);
b = intp(keep, b, ab);
}
}
if (!state.isProphoto) {
float newr = state.Prophoto2Working[0][0] * r + state.Prophoto2Working[0][1] * g + state.Prophoto2Working[0][2] * b;
float newg = state.Prophoto2Working[1][0] * r + state.Prophoto2Working[1][1] * g + state.Prophoto2Working[1][2] * b;
float newb = state.Prophoto2Working[2][0] * r + state.Prophoto2Working[2][1] * g + state.Prophoto2Working[2][2] * b;
r = newr;
g = newg;
b = newb;
}
if (!oog_r) rc[i] = r;
if (!oog_g) gc[i] = g;
if (!oog_b) bc[i] = b;
}
}
float PerceptualToneCurve::cf_range[2];
float PerceptualToneCurve::cf[1000];
float PerceptualToneCurve::f, PerceptualToneCurve::c, PerceptualToneCurve::nc, PerceptualToneCurve::yb, PerceptualToneCurve::la, PerceptualToneCurve::xw, PerceptualToneCurve::yw, PerceptualToneCurve::zw;
float PerceptualToneCurve::n, PerceptualToneCurve::d, PerceptualToneCurve::nbb, PerceptualToneCurve::ncb, PerceptualToneCurve::cz, PerceptualToneCurve::aw, PerceptualToneCurve::wh, PerceptualToneCurve::pfl, PerceptualToneCurve::fl, PerceptualToneCurve::pow1;
void PerceptualToneCurve::init()
{
// init ciecam02 state, used for chroma scalings
xw = 96.42f;
yw = 100.0f;
zw = 82.49f;
yb = 20;
la = 20;
f = 1.00f;
c = 0.69f;
nc = 1.00f;
Ciecam02::initcam1float(yb, 1.f, f, la, xw, yw, zw, n, d, nbb, ncb,
cz, aw, wh, pfl, fl, c);
pow1 = pow_F( 1.64f - pow_F( 0.29f, n ), 0.73f );
{
// init contrast-value-to-chroma-scaling conversion curve
// contrast value in the left column, chroma scaling in the right. Handles for a spline.
// Put the columns in a file (without commas) and you can plot the spline with gnuplot: "plot 'curve.txt' smooth csplines"
// A spline can easily get overshoot issues so if you fine-tune the values here make sure that the resulting spline is smooth afterwards, by
// plotting it for example.
const float p[] = {
0.60, 0.70, // lowest contrast
0.70, 0.80,
0.90, 0.94,
0.99, 1.00,
1.00, 1.00, // 1.0 (linear curve) to 1.0, no scaling
1.07, 1.00,
1.08, 1.00,
1.11, 1.02,
1.20, 1.08,
1.30, 1.12,
1.80, 1.20,
2.00, 1.22 // highest contrast
};
const size_t in_len = sizeof(p) / sizeof(p[0]) / 2;
float in_x[in_len];
float in_y[in_len];
for (size_t i = 0; i < in_len; i++) {
in_x[i] = p[2 * i + 0];
in_y[i] = p[2 * i + 1];
}
const size_t out_len = sizeof(cf) / sizeof(cf[0]);
float out_x[out_len];
for (size_t i = 0; i < out_len; i++) {
out_x[i] = in_x[0] + (in_x[in_len - 1] - in_x[0]) * (float)i / (out_len - 1);
}
cubic_spline(in_x, in_y, in_len, out_x, cf, out_len);
cf_range[0] = in_x[0];
cf_range[1] = in_x[in_len - 1];
}
}
void PerceptualToneCurve::initApplyState(PerceptualToneCurveState & state, Glib::ustring workingSpace) const
{
// Get the curve's contrast value, and convert to a chroma scaling
const float contrast_value = calculateToneCurveContrastValue();
state.cmul_contrast = get_curve_val(contrast_value, cf_range, cf, sizeof(cf) / sizeof(cf[0]));
//fprintf(stderr, "contrast value: %f => chroma scaling %f\n", contrast_value, state.cmul_contrast);
// Create state for converting to/from prophoto (if necessary)
if (workingSpace == "ProPhoto") {
state.isProphoto = true;
} else {
state.isProphoto = false;
TMatrix Work = ICCStore::getInstance()->workingSpaceMatrix(workingSpace);
memset(state.Working2Prophoto, 0, sizeof(state.Working2Prophoto));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
state.Working2Prophoto[i][j] += prophoto_xyz[i][k] * Work[k][j];
}
Work = ICCStore::getInstance()->workingSpaceInverseMatrix (workingSpace);
memset(state.Prophoto2Working, 0, sizeof(state.Prophoto2Working));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++) {
state.Prophoto2Working[i][j] += Work[i][k] * xyz_prophoto[k][j];
}
}
}
}