rawTherapee/rtengine/vng4_demosaic_RT.cc

411 lines
15 KiB
C++

////////////////////////////////////////////////////////////////
//
// VNG4 demosaic algorithm
//
// optimized for speed by Ingo Weyrich
//
//
// vng4_interpolate_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
#include "rtengine.h"
#include "rawimage.h"
#include "rawimagesource.h"
#include "../rtgui/multilangmgr.h"
//#define BENCHMARK
#include "StopWatch.h"
namespace {
using namespace rtengine;
inline void vng4interpolate_row_redblue (const RawImage *ri, const array2D<float> &rawData, float* ar, float* ab, const float * const pg, const float * const cg, const float * const ng, int i, int width)
{
if (ri->ISBLUE(i, 0) || ri->ISBLUE(i, 1)) {
std::swap(ar, ab);
}
// RGRGR or GRGRGR line
for (int j = 3; j < width - 3; ++j) {
if (!ri->ISGREEN(i, j)) {
// keep original value
ar[j] = rawData[i][j];
// cross interpolation of red/blue
float rb = (rawData[i - 1][j - 1] - pg[j - 1] + rawData[i + 1][j - 1] - ng[j - 1]);
rb += (rawData[i - 1][j + 1] - pg[j + 1] + rawData[i + 1][j + 1] - ng[j + 1]);
ab[j] = std::max(0.f, cg[j] + rb * 0.25f);
} else {
// linear R/B-G interpolation horizontally
ar[j] = std::max(0.f, cg[j] + (rawData[i][j - 1] - cg[j - 1] + rawData[i][j + 1] - cg[j + 1]) / 2);
// linear B/R-G interpolation vertically
ab[j] = std::max(0.f, cg[j] + (rawData[i - 1][j] - pg[j] + rawData[i + 1][j] - ng[j]) / 2);
}
}
}
}
namespace rtengine
{
#define fc(row,col) (prefilters >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)
void RawImageSource::vng4_demosaic (const array2D<float> &rawData, array2D<float> &red, array2D<float> &green, array2D<float> &blue)
{
// Test for RGB cfa
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
if (FC(i, j) == 3) {
// avoid crash
std::cout << "vng4_demosaic supports only RGB Colour filter arrays. Falling back to igv_interpolate" << std::endl;
igv_interpolate(W, H);
return;
}
}
}
BENCHFUN
const signed short int *cp, terms[] = {
-2, -2, +0, -1, 0, 0x01, -2, -2, +0, +0, 1, 0x01, -2, -1, -1, +0, 0, 0x01,
-2, -1, +0, -1, 0, 0x02, -2, -1, +0, +0, 0, 0x03, -2, -1, +0, +1, 1, 0x01,
-2, +0, +0, -1, 0, 0x06, -2, +0, +0, +0, 1, 0x02, -2, +0, +0, +1, 0, 0x03,
-2, +1, -1, +0, 0, 0x04, -2, +1, +0, -1, 1, 0x04, -2, +1, +0, +0, 0, 0x06,
-2, +1, +0, +1, 0, 0x02, -2, +2, +0, +0, 1, 0x04, -2, +2, +0, +1, 0, 0x04,
-1, -2, -1, +0, 0, 0x80, -1, -2, +0, -1, 0, 0x01, -1, -2, +1, -1, 0, 0x01,
-1, -2, +1, +0, 1, 0x01, -1, -1, -1, +1, 0, 0x88, -1, -1, +1, -2, 0, 0x40,
-1, -1, +1, -1, 0, 0x22, -1, -1, +1, +0, 0, 0x33, -1, -1, +1, +1, 1, 0x11,
-1, +0, -1, +2, 0, 0x08, -1, +0, +0, -1, 0, 0x44, -1, +0, +0, +1, 0, 0x11,
-1, +0, +1, -2, 1, 0x40, -1, +0, +1, -1, 0, 0x66, -1, +0, +1, +0, 1, 0x22,
-1, +0, +1, +1, 0, 0x33, -1, +0, +1, +2, 1, 0x10, -1, +1, +1, -1, 1, 0x44,
-1, +1, +1, +0, 0, 0x66, -1, +1, +1, +1, 0, 0x22, -1, +1, +1, +2, 0, 0x10,
-1, +2, +0, +1, 0, 0x04, -1, +2, +1, +0, 1, 0x04, -1, +2, +1, +1, 0, 0x04,
+0, -2, +0, +0, 1, 0x80, +0, -1, +0, +1, 1, 0x88, +0, -1, +1, -2, 0, 0x40,
+0, -1, +1, +0, 0, 0x11, +0, -1, +2, -2, 0, 0x40, +0, -1, +2, -1, 0, 0x20,
+0, -1, +2, +0, 0, 0x30, +0, -1, +2, +1, 1, 0x10, +0, +0, +0, +2, 1, 0x08,
+0, +0, +2, -2, 1, 0x40, +0, +0, +2, -1, 0, 0x60, +0, +0, +2, +0, 1, 0x20,
+0, +0, +2, +1, 0, 0x30, +0, +0, +2, +2, 1, 0x10, +0, +1, +1, +0, 0, 0x44,
+0, +1, +1, +2, 0, 0x10, +0, +1, +2, -1, 1, 0x40, +0, +1, +2, +0, 0, 0x60,
+0, +1, +2, +1, 0, 0x20, +0, +1, +2, +2, 0, 0x10, +1, -2, +1, +0, 0, 0x80,
+1, -1, +1, +1, 0, 0x88, +1, +0, +1, +2, 0, 0x08, +1, +0, +2, -1, 0, 0x40,
+1, +0, +2, +1, 0, 0x10
},
chood[] = { -1, -1, -1, 0, -1, +1, 0, +1, +1, +1, +1, 0, +1, -1, 0, -1 };
double progress = 0.0;
const bool plistenerActive = plistener;
if (plistenerActive) {
plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), M("TP_RAW_VNG4")));
plistener->setProgress (progress);
}
const unsigned prefilters = ri->prefilters;
const int width = W, height = H;
constexpr unsigned int colors = 4;
float (*image)[4] = (float (*)[4]) calloc (static_cast<size_t>(height) * width, sizeof * image);
int lcode[16][16][32];
float mul[16][16][8];
float csum[16][16][3];
// first linear interpolation
for (int row = 0; row < 16; row++)
for (int col = 0; col < 16; col++) {
int * ip = lcode[row][col];
int mulcount = 0;
float sum[4] = {};
for (int y = -1; y <= 1; y++)
for (int x = -1; x <= 1; x++) {
int shift = (y == 0) + (x == 0);
if (shift == 2) {
continue;
}
int color = fc(row + y, col + x);
*ip++ = (width * y + x) * 4 + color;
mul[row][col][mulcount] = (1 << shift);
*ip++ = color;
sum[color] += (1 << shift);
mulcount++;
}
int colcount = 0;
for (unsigned int c = 0; c < colors; c++)
if (c != fc(row, col)) {
*ip++ = c;
csum[row][col][colcount] = 1.f / sum[c];
colcount ++;
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int firstRow = -1;
int lastRow = -1;
#ifdef _OPENMP
// note, static scheduling is important in this implementation
#pragma omp for schedule(static)
#endif
for (int ii = 0; ii < H; ii++) {
if (firstRow == -1) {
firstRow = ii;
}
lastRow = ii;
for (int jj = 0; jj < W; jj++) {
image[ii * W + jj][fc(ii, jj)] = rawData[ii][jj];
}
if (ii - 1 > firstRow) {
int row = ii - 1;
for (int col = 1; col < width - 1; col++) {
float * pix = image[row * width + col];
int * ip = lcode[row & 15][col & 15];
float sum[4] = {};
for (int i = 0; i < 8; i++, ip += 2) {
sum[ip[1]] += pix[ip[0]] * mul[row & 15][col & 15][i];
}
for (unsigned int i = 0; i < colors - 1; i++, ip++) {
pix[ip[0]] = sum[ip[0]] * csum[row & 15][col & 15][i];
}
}
}
}
// now all rows are processed except the first and last row of each chunk
// let's process them now but skip row 0 and row H - 1
if (firstRow > 0 && firstRow < H - 1) {
const int row = firstRow;
for (int col = 1; col < width - 1; col++) {
float * pix = image[row * width + col];
int * ip = lcode[row & 15][col & 15];
float sum[4] = {};
for (int i = 0; i < 8; i++, ip += 2) {
sum[ip[1]] += pix[ip[0]] * mul[row & 15][col & 15][i];
}
for (unsigned int i = 0; i < colors - 1; i++, ip++) {
pix[ip[0]] = sum[ip[0]] * csum[row & 15][col & 15][i];
}
}
}
if (lastRow > 0 && lastRow < H - 1) {
const int row = lastRow;
for (int col = 1; col < width - 1; col++) {
float * pix = image[row * width + col];
int * ip = lcode[row & 15][col & 15];
float sum[4] = {};
for (int i = 0; i < 8; i++, ip += 2) {
sum[ip[1]] += pix[ip[0]] * mul[row & 15][col & 15][i];
}
for (unsigned int i = 0; i < colors - 1; i++, ip++) {
pix[ip[0]] = sum[ip[0]] * csum[row & 15][col & 15][i];
}
}
}
}
constexpr int prow = 7, pcol = 1;
int32_t *code[8][2];
int32_t * ip = (int32_t *) calloc ((prow + 1) * (pcol + 1), 1280);
for (int row = 0; row <= prow; row++) /* Precalculate for VNG */
for (int col = 0; col <= pcol; col++) {
code[row][col] = ip;
cp = terms;
for (int t = 0; t < 64; t++) {
int y1 = *cp++;
int x1 = *cp++;
int y2 = *cp++;
int x2 = *cp++;
int weight = *cp++;
int grads = *cp++;
unsigned int color = fc(row + y1, col + x1);
if (fc(row + y2, col + x2) != color) {
continue;
}
int diag = (fc(row, col + 1) == color && fc(row + 1, col) == color) ? 2 : 1;
if (abs(y1 - y2) == diag && abs(x1 - x2) == diag) {
continue;
}
*ip++ = (y1 * width + x1) * 4 + color;
*ip++ = (y2 * width + x2) * 4 + color;
#ifdef __SSE2__
// at least on machines with SSE2 feature this cast is save
*reinterpret_cast<float*>(ip++) = 1 << weight;
#else
*ip++ = 1 << weight;
#endif
for (int g = 0; g < 8; g++)
if (grads & (1 << g)) {
*ip++ = g;
}
*ip++ = -1;
}
*ip++ = INT_MAX;
cp = chood;
for (int g = 0; g < 8; g++) {
int y = *cp++;
int x = *cp++;
*ip++ = (y * width + x) * 4;
unsigned int color = fc(row, col);
if (fc(row + y, col + x) != color && fc(row + y * 2, col + x * 2) == color) {
*ip++ = (y * width + x) * 8 + color;
} else {
*ip++ = 0;
}
}
}
if(plistenerActive) {
progress = 0.2;
plistener->setProgress (progress);
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
constexpr int progressStep = 64;
const double progressInc = (1.0 - progress) / ((height - 2) / progressStep);
int firstRow = -1;
int lastRow = -1;
#ifdef _OPENMP
// note, static scheduling is important in this implementation
#pragma omp for schedule(static)
#endif
for (int row = 2; row < height - 2; row++) { /* Do VNG interpolation */
if (firstRow == -1) {
firstRow = row;
}
lastRow = row;
for (int col = 2; col < width - 2; col++) {
float * pix = image[row * width + col];
int color = fc(row, col);
int32_t * ip = code[row & prow][col & pcol];
float gval[8] = {};
while (ip[0] != INT_MAX) { /* Calculate gradients */
#ifdef __SSE2__
// at least on machines with SSE2 feature this cast is save and saves a lot of int => float conversions
const float diff = std::fabs(pix[ip[0]] - pix[ip[1]]) * reinterpret_cast<float*>(ip)[2];
#else
const float diff = std::fabs(pix[ip[0]] - pix[ip[1]]) * ip[2];
#endif
gval[ip[3]] += diff;
ip += 5;
if (UNLIKELY(ip[-1] != -1)) {
gval[ip[-1]] += diff;
ip++;
}
}
ip++;
const float thold = rtengine::min(gval[0], gval[1], gval[2], gval[3], gval[4], gval[5], gval[6], gval[7])
+ rtengine::max(gval[0], gval[1], gval[2], gval[3], gval[4], gval[5], gval[6], gval[7]) * 0.5f;
float sum0 = 0.f;
float sum1 = 0.f;
const float greenval = pix[color];
int num = 0;
if(color & 1) {
color ^= 2;
for (int g = 0; g < 8; g++, ip += 2) { /* Average the neighbors */
if (gval[g] <= thold) {
if(ip[1]) {
sum0 += greenval + pix[ip[1]];
}
sum1 += pix[ip[0] + color];
num++;
}
}
sum0 *= 0.5f;
} else {
for (int g = 0; g < 8; g++, ip += 2) { /* Average the neighbors */
if (gval[g] <= thold) {
if(ip[1]) {
sum0 += greenval + pix[ip[1]];
}
sum1 += pix[ip[0] + 1] + pix[ip[0] + 3];
num++;
}
}
}
green[row][col] = std::max(0.f, greenval + (sum1 - sum0) / (2 * num));
}
if (row - 1 > firstRow) {
vng4interpolate_row_redblue(ri, rawData, red[row - 1], blue[row - 1], green[row - 2], green[row - 1], green[row], row - 1, W);
}
if(plistenerActive) {
if((row % progressStep) == 0)
#ifdef _OPENMP
#pragma omp critical (updateprogress)
#endif
{
progress += progressInc;
plistener->setProgress (progress);
}
}
}
if (firstRow > 2 && firstRow < H - 3) {
vng4interpolate_row_redblue(ri, rawData, red[firstRow], blue[firstRow], green[firstRow - 1], green[firstRow], green[firstRow + 1], firstRow, W);
}
if (lastRow > 2 && lastRow < H - 3) {
vng4interpolate_row_redblue(ri, rawData, red[lastRow], blue[lastRow], green[lastRow - 1], green[lastRow], green[lastRow + 1], lastRow, W);
}
#ifdef _OPENMP
#pragma omp single
#endif
{
// let the first thread, which is out of work, do the border interpolation
border_interpolate(W, H, 3, rawData, red, green, blue);
}
}
free (code[0][0]);
free (image);
if(plistenerActive) {
plistener->setProgress (1.0);
}
}
}