rawTherapee/rtengine/green_equil_RT.cc
2020-01-21 00:16:27 +01:00

253 lines
9.3 KiB
C++

////////////////////////////////////////////////////////////////
//
// Green Equilibration via directional average
//
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
// optimized for speed 2017 Ingo Weyrich <heckflosse67@gmx.de>
//
//
// code dated: August 25, 2017
//
// green_equil_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
#include <cmath>
#include <cstdlib>
#include <ctime>
#include "rt_math.h"
#include "rawimagesource.h"
#include "opthelper.h"
namespace rtengine
{
void RawImageSource::green_equilibrate_global(array2D<float> &rawData)
{
// global correction
int ng1 = 0, ng2 = 0;
double avgg1 = 0., avgg2 = 0.;
#ifdef _OPENMP
#pragma omp parallel for reduction(+: ng1, ng2, avgg1, avgg2) schedule(dynamic,16)
#endif
for (int i = border; i < H - border; i++) {
double avgg = 0.;
for (int j = border + ((FC(i, border) & 1) ^ 1); j < W - border; j += 2) {
avgg += static_cast<double>(rawData[i][j]);
}
int ng = (W - 2 * border + (FC(i, border) & 1)) / 2;
if (i & 1) {
avgg2 += avgg;
ng2 += ng;
} else {
avgg1 += avgg;
ng1 += ng;
}
}
// Avoid division by zero
if(ng1 == 0 || avgg1 == 0.0) {
ng1 = 1;
avgg1 = 1.0;
}
if(ng2 == 0 || avgg2 == 0.0) {
ng2 = 1;
avgg2 = 1.0;
}
const float corrg1 = (avgg1 / ng1 + avgg2 / ng2) / 2.0 / (avgg1 / ng1);
const float corrg2 = (avgg1 / ng1 + avgg2 / ng2) / 2.0 / (avgg2 / ng2);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = border; i < H - border; i++) {
const float corrg = (i & 1) ? corrg2 : corrg1;
for (int j = border + ((FC(i, border) & 1) ^ 1); j < W - border; j += 2) {
rawData[i][j] *= corrg;
}
}
}
//void green_equilibrate()//for dcraw implementation
void RawImageSource::green_equilibrate(const GreenEqulibrateThreshold &thresh, array2D<float> &rawData)
{
// thresh = threshold for performing green equilibration; max percentage difference of G1 vs G2
// G1-G2 differences larger than this will be assumed to be Nyquist texture, and left untouched
int height = H, width = W;
// local variables
array2D<float> cfa(width / 2 + (width & 1), height);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; ++i) {
int j = (FC(i, 0) & 1) ^ 1;
#ifdef __SSE2__
for (; j < width - 7; j += 8) {
STVFU(cfa[i][j >> 1], LC2VFU(rawData[i][j]));
}
#endif
for (; j < width; j += 2) {
cfa[i][j >> 1] = rawData[i][j];
}
}
constexpr float eps = 1.f; //tolerance to avoid dividing by zero
// const float thresh6 = 6 * thresh;
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Fill G interpolated values with border interpolation and input values
//int vote1, vote2;
//int counter, vtest;
//The green equilibration algorithm starts here
//now smooth the cfa data
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
vfloat zd5v = F2V(0.5f);
vfloat onev = F2V(1.f);
// vfloat threshv = F2V(thresh);
// vfloat thresh6v = F2V(thresh6);
vfloat epsv = F2V(eps);
#endif
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int rr = 4; rr < height - 4; rr++) {
int cc = 5 - (FC(rr, 2) & 1);
#ifdef __SSE2__
for (; cc < width - 12; cc += 8) {
//neighbour checking code from Manuel Llorens Garcia
vfloat o1_1 = LVFU(cfa[rr - 1][(cc - 1) >> 1]);
vfloat o1_2 = LVFU(cfa[rr - 1][(cc + 1) >> 1]);
vfloat o1_3 = LVFU(cfa[rr + 1][(cc - 1) >> 1]);
vfloat o1_4 = LVFU(cfa[rr + 1][(cc + 1) >> 1]);
vfloat o2_1 = LVFU(cfa[rr - 2][cc >> 1]);
vfloat o2_2 = LVFU(cfa[rr + 2][cc >> 1]);
vfloat o2_3 = LVFU(cfa[rr][(cc >> 1) - 1]);
vfloat o2_4 = LVFU(cfa[rr][(cc >> 1) + 1]);
vfloat d1 = (o1_1 + o1_2 + o1_3 + o1_4);
vfloat d2 = (o2_1 + o2_2 + o2_3 + o2_4);
vfloat c1 = (vabsf(o1_1 - o1_2) + vabsf(o1_1 - o1_3) + vabsf(o1_1 - o1_4) + vabsf(o1_2 - o1_3) + vabsf(o1_3 - o1_4) + vabsf(o1_2 - o1_4));
vfloat c2 = (vabsf(o2_1 - o2_2) + vabsf(o2_1 - o2_3) + vabsf(o2_1 - o2_4) + vabsf(o2_2 - o2_3) + vabsf(o2_3 - o2_4) + vabsf(o2_2 - o2_4));
vfloat tfv;
for (int k = 0; k < 4; ++k) {
tfv[k] = thresh(rr, cc + 2 * k);
}
vfloat tf6v = F2V(6.f) * tfv;
vmask mask1 = vmaskf_lt(c1 + c2, tf6v * vabsf(d1 - d2));
if (_mm_movemask_ps((vfloat)mask1)) { // if for any of the 4 pixels the condition is true, do the maths for all 4 pixels and mask the unused out at the end
//pixel interpolation
vfloat gin = LVFU(cfa[rr][cc >> 1]);
vfloat gmp2p2 = gin - LVFU(cfa[rr + 2][(cc >> 1) + 1]);
vfloat gmm2m2 = gin - LVFU(cfa[rr - 2][(cc >> 1) - 1]);
vfloat gmm2p2 = gin - LVFU(cfa[rr - 2][(cc >> 1) + 1]);
vfloat gmp2m2 = gin - LVFU(cfa[rr + 2][(cc >> 1) - 1]);
vfloat gse = o1_4 + zd5v * gmp2p2;
vfloat gnw = o1_1 + zd5v * gmm2m2;
vfloat gne = o1_2 + zd5v * gmm2p2;
vfloat gsw = o1_3 + zd5v * gmp2m2;
vfloat wtse = onev / (epsv + SQRV(gmp2p2) + SQRV(LVFU(cfa[rr + 3][(cc + 3) >> 1]) - o1_4));
vfloat wtnw = onev / (epsv + SQRV(gmm2m2) + SQRV(LVFU(cfa[rr - 3][(cc - 3) >> 1]) - o1_1));
vfloat wtne = onev / (epsv + SQRV(gmm2p2) + SQRV(LVFU(cfa[rr - 3][(cc + 3) >> 1]) - o1_2));
vfloat wtsw = onev / (epsv + SQRV(gmp2m2) + SQRV(LVFU(cfa[rr + 3][(cc - 3) >> 1]) - o1_3));
vfloat ginterp = (gse * wtse + gnw * wtnw + gne * wtne + gsw * wtsw) / (wtse + wtnw + wtne + wtsw);
vfloat val = vself(vmaskf_lt(ginterp - gin, tfv * (ginterp + gin)), zd5v * (ginterp + gin), gin);
val = vself(mask1, val, gin);
STC2VFU(rawData[rr][cc], val);
}
}
#endif
for (; cc < width - 6; cc += 2) {
//neighbour checking code from Manuel Llorens Garcia
float o1_1 = cfa[rr - 1][(cc - 1) >> 1];
float o1_2 = cfa[rr - 1][(cc + 1) >> 1];
float o1_3 = cfa[rr + 1][(cc - 1) >> 1];
float o1_4 = cfa[rr + 1][(cc + 1) >> 1];
float o2_1 = cfa[rr - 2][cc >> 1];
float o2_2 = cfa[rr + 2][cc >> 1];
float o2_3 = cfa[rr][(cc - 2) >> 1];
float o2_4 = cfa[rr][(cc + 2) >> 1];
float d1 = (o1_1 + o1_2) + (o1_3 + o1_4);
float d2 = (o2_1 + o2_2) + (o2_3 + o2_4);
float c1 = (fabs(o1_1 - o1_2) + fabs(o1_1 - o1_3) + fabs(o1_1 - o1_4) + fabs(o1_2 - o1_3) + fabs(o1_3 - o1_4) + fabs(o1_2 - o1_4));
float c2 = (fabs(o2_1 - o2_2) + fabs(o2_1 - o2_3) + fabs(o2_1 - o2_4) + fabs(o2_2 - o2_3) + fabs(o2_3 - o2_4) + fabs(o2_2 - o2_4));
float tf = thresh(rr, cc);
if (c1 + c2 < 6 * tf * std::fabs(d1 - d2)) {
//pixel interpolation
float gin = cfa[rr][cc >> 1];
float gmp2p2 = gin - cfa[rr + 2][(cc + 2) >> 1];
float gmm2m2 = gin - cfa[rr - 2][(cc - 2) >> 1];
float gmm2p2 = gin - cfa[rr - 2][(cc + 2) >> 1];
float gmp2m2 = gin - cfa[rr + 2][(cc - 2) >> 1];
float gse = o1_4 + 0.5f * gmp2p2;
float gnw = o1_1 + 0.5f * gmm2m2;
float gne = o1_2 + 0.5f * gmm2p2;
float gsw = o1_3 + 0.5f * gmp2m2;
float wtse = 1.f / (eps + SQR(gmp2p2) + SQR(cfa[rr + 3][(cc + 3) >> 1] - o1_4));
float wtnw = 1.f / (eps + SQR(gmm2m2) + SQR(cfa[rr - 3][(cc - 3) >> 1] - o1_1));
float wtne = 1.f / (eps + SQR(gmm2p2) + SQR(cfa[rr - 3][(cc + 3) >> 1] - o1_2));
float wtsw = 1.f / (eps + SQR(gmp2m2) + SQR(cfa[rr + 3][(cc - 3) >> 1] - o1_3));
float ginterp = (gse * wtse + gnw * wtnw + gne * wtne + gsw * wtsw) / (wtse + wtnw + wtne + wtsw);
if (ginterp - gin < tf * (ginterp + gin)) {
rawData[rr][cc] = 0.5f * (ginterp + gin);
}
}
}
}
}
}
}