rawTherapee/rtengine/iplocallab.cc
2020-02-04 08:22:26 +01:00

16005 lines
660 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
* 2016 Jacques Desmis <jdesmis@gmail.com>
* 2016 Ingo Weyrich <heckflosse@i-weyrich.de>
*/
#include <cmath>
#include <fftw3.h>
#include "improcfun.h"
#include "colortemp.h"
#include "curves.h"
#include "gauss.h"
#include "iccstore.h"
#include "imagefloat.h"
#include "labimage.h"
#include "color.h"
#include "rt_math.h"
#include "jaggedarray.h"
#include "rt_algo.h"
#include "settings.h"
#include "../rtgui/options.h"
#include "utils.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include "../rtgui/thresholdselector.h"
#include "imagesource.h"
#include "cplx_wavelet_dec.h"
#include "ciecam02.h"
#define BENCHMARK
#include "StopWatch.h"
#include "guidedfilter.h"
#define TS 64 // Tile size
#define offset1 25 // shift between tiles
#define fTS ((TS/2+1)) // second dimension of Fourier tiles
#define blkrad 1 // radius of block averaging
#define offset2 25 // shift between tiles
#define epsilonw 0.001f/(TS*TS) //tolerance
#define MAXSCOPE 1.25f
#define MINSCOPE 0.025f
#define mSP 5 //minimum size Spot
#define mDEN 64 //minimum size Spot Denoise
#define mSPsharp 39 //minimum size Spot Sharp due to buildblendmask
#define mSPwav 32 //minimum size Spot Wavelet
#define CLIPC(a) LIM(a, -42000.f, 42000.f) // limit a and b to 130 probably enough ?
#define CLIPL(x) LIM(x,0.f,40000.f) // limit L to about L=120 probably enough ?
#define CLIPLOC(x) LIM(x,0.f,32767.f)
#define CLIPLIG(x) LIM(x,-99.5f, 99.5f)
#define CLIPCHRO(x) LIM(x,0.f, 140.f)
#define CLIPRET(x) LIM(x,-99.5f, 99.5f)
#define CLIP1(x) LIM(x, 0.f, 1.f)
//define to prevent crash with old pp3 with integer range 100 instead of double range 1.
#define CLIP24(x) LIM(x, -2., 4.)
#define CLIP04(x) LIM(x, 0.f, 4.f)
#define CLIP42_35(x) LIM(x, 0.42, 3.5)
#define CLIP2_30(x) LIM(x, 0.2, 3.)
#define CLIPMAX(x) LIM(x,0.f,500000.f)
#define CLIPdE(x) LIM(x,0.3f,1.f)
#pragma GCC diagnostic warning "-Wall"
#pragma GCC diagnostic warning "-Wextra"
namespace
{
void calcGammaLut(double gamma, double ts, LUTf &gammaLut)
{
double pwr = 1.0 / gamma;
double gamm = gamma;
const double gamm2 = gamma;
rtengine::GammaValues g_a;
if (gamm2 < 1.0) {
std::swap(pwr, gamm);
}
// printf("OK calcgamm\n");
rtengine::Color::calcGamma(pwr, ts, 0, g_a); // call to calcGamma with selected gamma and slope
const double start = gamm2 < 1. ? g_a[2] : g_a[3];
const double add = g_a[4];
const double mul = 1.0 + g_a[4];
if (gamm2 < 1.) {
#pragma omp parallel for schedule(dynamic, 1024)
for (int i = 0; i < 65536; i++) {
const double x = rtengine::Color::igammareti(i / 65535.0, gamm, start, ts, mul, add);
gammaLut[i] = 0.5 * rtengine::CLIP(x * 65535.0); // CLIP avoid in some case extra values
}
} else {
#pragma omp parallel for schedule(dynamic, 1024)
for (int i = 0; i < 65536; i++) {
const double x = rtengine::Color::gammareti(i / 65535.0, gamm, start, ts, mul, add);
gammaLut[i] = 0.5 * rtengine::CLIP(x * 65535.0); // CLIP avoid in some case extra values
}
}
}
// localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lx, lp.yc, lp.ly, ach, lp.transgrad);
float calcLocalFactor(const float lox, const float loy, const float lcx, const float dx, const float lcy, const float dy, const float ach, const float gradient)
{
//elipse x2/a2 + y2/b2=1
//transition elipsoidal
float eps = 0.0001f;
float kelip = dx / dy;
float belip = sqrt((rtengine::SQR((lox - lcx) / kelip) + rtengine::SQR(loy - lcy))); //determine position ellipse ==> a and b
if (belip == 0.f) {
belip = eps;
}
//gradient allows differenciation between transition x and y
float rapy = fabs((loy - lcy) / belip);
float aelip = belip * kelip;
float degrad = aelip / dx;
float gradreal = gradient * rapy + 1.f;
float ap = rtengine::RT_PI_F / (1.f - ach);
float bp = rtengine::RT_PI_F - ap;
float retreal = pow(0.5f * (1.f + xcosf(degrad * ap + bp)), rtengine::SQR(gradreal));
return retreal; //trigo cos transition
}
float calcLocalFactorrect(const float lox, const float loy, const float lcx, const float dx, const float lcy, const float dy, const float ach, const float gradient)
{
float eps = 0.0001f;
float krap = fabs(dx / dy);
float kx = (lox - lcx);
float ky = (loy - lcy);
float ref = 0.f;
//gradient allows differenciation between transition x and y
if (fabs(kx / (ky + eps)) < krap) {
ref = sqrt(rtengine::SQR(dy) * (1.f + rtengine::SQR(kx / (ky + eps))));
} else {
ref = sqrt(rtengine::SQR(dx) * (1.f + rtengine::SQR(ky / (kx + eps))));
}
float rad = sqrt(rtengine::SQR(kx) + rtengine::SQR(ky));
if (rad == 0.f) {
rad = eps;
}
float rapy = fabs((loy - lcy) / rad);
float gradreal = gradient * rapy + 1.f;
float coef = rad / ref;
float ac = 1.f / (ach - 1.f);
float fact = ac * (coef - 1.f);
return pow(fact, rtengine::SQR(gradreal));
}
}
namespace rtengine
{
extern MyMutex *fftwMutex;
using namespace procparams;
struct local_params {
float yc, xc;
float ycbuf, xcbuf;
float lx, ly;
float lxL, lyT;
float dxx, dyy;
float iterat;
float balance;
float balanceh;
int colorde;
int cir;
float thr;
float stru;
int chro, cont, sens, sensh, senscb, sensbn, senstm, sensex, sensexclu, sensden, senslc, senssf, senshs;
float clarityml;
float contresid;
float blurcbdl;
bool deltaem;
float struco;
float strengrid;
float struexc;
float blendmacol;
float radmacol;
float chromacol;
float gammacol;
float slomacol;
float blendmalc;
float radmalc;
float chromalc;
float radmaexp;
float chromaexp;
float gammaexp;
float slomaexp;
float strmaexp;
float angmaexp;
float strexp;
float angexp;
float strSH;
float angSH;
float strcol;
float strcolab;
float strcolh;
float angcol;
float strvib;
float strvibab;
float strvibh;
float angvib;
float angwav;
float strwav;
float strengthw;
float radiusw;
float detailw;
float gradw;
float tloww;
float thigw;
float edgw;
float basew;
float anglog;
float strlog;
float softradiusexp;
float softradiuscol;
float softradiuscb;
float softradiusret;
float softradiustm;
float blendmaexp;
float radmaSH;
float blendmaSH;
float chromaSH;
float gammaSH;
float slomaSH;
float radmavib;
float blendmavib;
float chromavib;
float gammavib;
float slomavib;
float radmacb;
float blendmacb;
float chromacbm;
float gammacb;
float slomacb;
float radmatm;
float blendmatm;
float chromatm;
float gammatm;
float slomatm;
float radmabl;
float blendmabl;
float chromabl;
float gammabl;
float slomabl;
float struexp;
float blurexp;
float blurcol;
float blurcolmask;
float contcolmask;
float blurSH;
float ligh;
float lowA, lowB, highA, highB;
float lowBmerg, highBmerg, lowAmerg, highAmerg;
int shamo, shdamp, shiter, senssha, sensv;
float neig;
float strng;
float lap;
float lcamount;
double shrad;
double shblurr;
double rad;
double stren;
int it;
int guidb;
float strbl;
float epsb;
float trans;
float feath;
float transweak;
float transgrad;
int dehaze;
int depth;
bool inv;
bool invex;
bool invsh;
bool curvact;
bool invrad;
bool invret;
bool equret;
bool equtm;
bool invshar;
bool actsp;
bool ftwlc;
bool ftwreti;
float str;
int qualmet;
int qualcurvemet;
int gridmet;
int showmaskcolmet;
int showmaskcolmetinv;
int showmaskexpmet;
int showmaskexpmetinv;
int showmaskSHmet;
int showmaskSHmetinv;
int showmaskvibmet;
int showmasklcmet;
int showmasksharmet;
int showmaskcbmet;
int showmaskretimet;
int showmasksoftmet;
int showmasktmmet;
int showmaskblmet;
bool fftbl;
float laplacexp;
float balanexp;
float linear;
int expmet;
int softmet;
int blurmet;
int blmet;
int chromet;
int shmeth;
int medmet;
int locmet;
float noiself;
float noiself0;
float noiself2;
float noiseldetail;
int detailthr;
int noiselequal;
float noisechrodetail;
float bilat;
float noiselc;
float noisecf;
float noisecc;
float mulloc[6];
int mullocsh[5];
int detailsh;
float threshol;
float chromacb;
float strengt;
float gamm;
float esto;
float scalt;
float rewe;
float amo;
bool colorena;
bool blurena;
bool tonemapena;
bool retiena;
bool sharpena;
bool lcena;
bool sfena;
bool cbdlena;
bool denoiena;
bool expvib;
bool exposena;
bool hsena;
bool vibena;
bool logena;
bool cut_past;
float past;
float satur;
int blac;
int shcomp;
int shadex;
int hlcomp;
int hlcompthr;
double expcomp;
float expchroma;
int excmet;
int mergemet;
int mergecolMethod;
float opacol;
int war;
float adjch;
int shapmet;
int edgwmet;
int neiwmet;
bool enaColorMask;
bool fftColorMask;
bool enaColorMaskinv;
bool enaExpMask;
bool enaExpMaskinv;
bool enaSHMask;
bool enaSHMaskinv;
bool enavibMask;
bool enalcMask;
bool enasharMask;
bool enacbMask;
bool enaretiMask;
bool enaretiMasktmap;
bool enatmMask;
bool enablMask;
int highlihs;
int shadowhs;
int radiushs;
int hltonalhs;
int shtonalhs;
float radmareti;
float blendmareti;
float chromareti;
float gammareti;
float slomareti;
int scalereti;
float sourcegray;
float targetgray;
float blackev;
float whiteev;
float detail;
int sensilog;
bool Autogray;
bool autocompute;
float baselog;
bool wavgradl;
bool edgwena;
bool lip3;
int daubLen;
};
static void SobelCannyLuma(float **sobelL, float **luma, int bfw, int bfh, float radius, bool multiThread = false)
{
// base of the process to detect shape in complement of deltaE
// use for calculate Spot reference
// and for structure of the shape
// actually , as the program don't use these function, I just create a simple "Canny" near of Sobel. This can be completed after with teta, etc.
array2D<float> tmL(bfw, bfh);
//inspired from Chen Guanghua Zhang Xiaolong
//Sobel Horizontal
constexpr float GX[3][3] = {
{1.f, 0.f, -1.f},
{2.f, 0.f, -2.f},
{1.f, 0.f, -1.f}
};
//Sobel Vertical
constexpr float GY[3][3] = {
{1.f, 2.f, 1.f},
{0.f, 0.f, 0.f},
{-1.f, -2.f, -1.f}
};
if (radius > 0.f) {
radius = rtengine::max(radius / 2.f, 0.5f);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(luma, tmL, bfw, bfh, radius);
}
} else {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw ; x++) {
sobelL[y][x] = 0.f;
tmL[y][x] = luma[y][x];
}
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 16) if (multiThread)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw ; x++) {
float sumXL = 0.f;
float sumYL = 0.f;
float SUML;
if (y == 0 || y == bfh - 1) {
SUML = 0.f;
} else if (x == 0 || x == bfw - 1) {
SUML = 0.f;
} else {
for (int i = -1; i < 2; i += 2) {
for (int j = -1; j < 2; j += 1) {
sumXL += GX[j + 1][i + 1] * tmL[y + i][x + j];
}
}
for (int i = -1; i < 2; i += 1) {
for (int j = -1; j < 2; j += 2) {
sumYL += GY[j + 1][i + 1] * tmL[y + i][x + j];
}
}
//Edge strength
SUML = sqrt(SQR(sumXL) + SQR(sumYL));
//we can add if need teta = atan2 (sumYr, sumXr)
}
sobelL[y][x] = CLIPLOC(SUML);
}
}
}
static void calcLocalParams(int sp, int oW, int oH, const LocallabParams& locallab, struct local_params& lp, int llColorMask, int llColorMaskinv, int llExpMask, int llExpMaskinv, int llSHMask, int llSHMaskinv, int llvibMask, int lllcMask, int llsharMask, int llcbMask, int llretiMask, int llsoftMask, int lltmMask, int llblMask, const LocwavCurve & locwavCurveden, bool & locwavdenutili)
{
int w = oW;
int h = oH;
int circr = locallab.spots.at(sp).circrad;
float streng = ((float)locallab.spots.at(sp).stren);
float gam = ((float)locallab.spots.at(sp).gamma);
float est = ((float)locallab.spots.at(sp).estop);
float scal_tm = ((float)locallab.spots.at(sp).scaltm);
float rewe = ((float)locallab.spots.at(sp).rewei);
float amo = ((float)locallab.spots.at(sp).amount);
float strlight = ((float)locallab.spots.at(sp).streng);
float strucc = locallab.spots.at(sp).struc;
float laplac = ((float)locallab.spots.at(sp).laplace);
float thre = locallab.spots.at(sp).thresh;
if (thre > 8.f || thre < 0.f) {//to avoid artifacts if user does not clear cache with new settings. Can be suppressed after
thre = 2.f;
}
double local_x = locallab.spots.at(sp).locX / 2000.0;
double local_y = locallab.spots.at(sp).locY / 2000.0;
double local_xL = locallab.spots.at(sp).locXL / 2000.0;
double local_yT = locallab.spots.at(sp).locYT / 2000.0;
double local_center_x = locallab.spots.at(sp).centerX / 2000.0 + 0.5;
double local_center_y = locallab.spots.at(sp).centerY / 2000.0 + 0.5;
double local_center_xbuf = 0.0; // Provision
double local_center_ybuf = 0.0; // Provision
double local_dxy = locallab.spots.at(sp).iter / 8000.0; //for proxi = 2==> # 1 pixel
float iterati = (float) locallab.spots.at(sp).iter;
float balanc = (float) locallab.spots.at(sp).balan;
float balanch = (float) locallab.spots.at(sp).balanh;
int colorde = (int) locallab.spots.at(sp).colorde;
if (iterati > 4.f || iterati < 0.2f) {//to avoid artifacts if user does not clear cache with new settings Can be suppressed after
iterati = 2.f;
}
float neigh = float (locallab.spots.at(sp).neigh);
float chromaPastel = float (locallab.spots.at(sp).pastels) / 100.0f;
float chromaSatur = float (locallab.spots.at(sp).saturated) / 100.0f;
int local_sensiv = locallab.spots.at(sp).sensiv;
int local_sensiex = locallab.spots.at(sp).sensiex;
if (locallab.spots.at(sp).qualityMethod == "enh") {
lp.qualmet = 1;
} else if (locallab.spots.at(sp).qualityMethod == "enhden") {
lp.qualmet = 2;
}
if (locallab.spots.at(sp).qualitycurveMethod == "none") {
lp.qualcurvemet = 0;
} else if (locallab.spots.at(sp).qualitycurveMethod == "std") {
lp.qualcurvemet = 1;
}
if (locallab.spots.at(sp).gridMethod == "one") {
lp.gridmet = 0;
} else if (locallab.spots.at(sp).gridMethod == "two") {
lp.gridmet = 1;
}
if (locallab.spots.at(sp).expMethod == "std") {
lp.expmet = 0;
} else if (locallab.spots.at(sp).expMethod == "pde") {
lp.expmet = 1;
}
if (locallab.spots.at(sp).localcontMethod == "loc") {
lp.locmet = 0;
} else if (locallab.spots.at(sp).localcontMethod == "wav") {
lp.locmet = 1;
}
lp.laplacexp = locallab.spots.at(sp).laplacexp;
lp.balanexp = locallab.spots.at(sp).balanexp;
lp.linear = locallab.spots.at(sp).linear;
lp.fftColorMask = locallab.spots.at(sp).fftColorMask;
lp.showmaskcolmet = llColorMask;
lp.showmaskcolmetinv = llColorMaskinv;
lp.showmaskexpmet = llExpMask;
lp.showmaskexpmetinv = llExpMaskinv;
lp.showmaskSHmet = llSHMask;
lp.showmaskSHmetinv = llSHMaskinv;
lp.showmaskvibmet = llvibMask;
lp.showmasklcmet = lllcMask;
lp.showmasksharmet = llsharMask;
lp.showmaskcbmet = llcbMask;
lp.showmaskretimet = llretiMask;
lp.showmasksoftmet = llsoftMask;
lp.showmasktmmet = lltmMask;
lp.showmaskblmet = llblMask;
lp.enaColorMask = locallab.spots.at(sp).enaColorMask && llsoftMask == 0 && llColorMask == 0 && lllcMask == 0 && llsharMask == 0 && llExpMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;// Exposure mask is deactivated if Color & Light mask is visible
lp.enaColorMaskinv = locallab.spots.at(sp).enaColorMask && llColorMaskinv == 0 && llsoftMask == 0 && lllcMask == 0 && llsharMask == 0 && llExpMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;// Exposure mask is deactivated if Color & Light mask is visible
lp.enaExpMask = locallab.spots.at(sp).enaExpMask && llExpMask == 0 && llColorMask == 0 && llsoftMask == 0 && lllcMask == 0 && llsharMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;// Exposure mask is deactivated if Color & Light mask is visible
lp.enaExpMaskinv = locallab.spots.at(sp).enaExpMask && llExpMaskinv == 0 && llColorMask == 0 && llsoftMask == 0 && lllcMask == 0 && llsharMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;// Exposure mask is deactivated if Color & Light mask is visible
lp.enaSHMask = locallab.spots.at(sp).enaSHMask && llSHMask == 0 && llColorMask == 0 && llsoftMask == 0 && lllcMask == 0 && llsharMask == 0 && llExpMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;
lp.enaSHMaskinv = locallab.spots.at(sp).enaSHMask && llSHMaskinv == 0 && lllcMask == 0 && llsoftMask == 0 && llsharMask == 0 && llColorMask == 0 && llExpMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;
lp.enacbMask = locallab.spots.at(sp).enacbMask && llcbMask == 0 && lllcMask == 0 && llsoftMask == 0 && llsharMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;
lp.enaretiMask = locallab.spots.at(sp).enaretiMask && lllcMask == 0 && llsharMask == 0 && llsoftMask == 0 && llretiMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llcbMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;
lp.enatmMask = locallab.spots.at(sp).enatmMask && lltmMask == 0 && lllcMask == 0 && llsoftMask == 0 && llsharMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0 && llblMask == 0 && llvibMask == 0;
lp.enablMask = locallab.spots.at(sp).enablMask && llblMask == 0 && lllcMask == 0 && llsoftMask == 0 && llsharMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llvibMask == 0;
lp.enavibMask = locallab.spots.at(sp).enavibMask && llvibMask == 0 && lllcMask == 0 && llsoftMask == 0 && llsharMask == 0 && llColorMask == 0 && llExpMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llSHMask == 0;
lp.enalcMask = locallab.spots.at(sp).enalcMask && lllcMask == 0 && llcbMask == 0 && llsoftMask == 0 && llsharMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;
lp.enasharMask = lllcMask == 0 && llcbMask == 0 && llsharMask == 0 && llsoftMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llretiMask == 0 && lltmMask == 0 && llblMask == 0 && llvibMask == 0;
// printf("llColorMask=%i lllcMask=%i llExpMask=%i llSHMask=%i llcbMask=%i llretiMask=%i lltmMask=%i llblMask=%i llvibMask=%i\n", llColorMask, lllcMask, llExpMask, llSHMask, llcbMask, llretiMask, lltmMask, llblMask, llvibMask);
if (locallab.spots.at(sp).softMethod == "soft") {
lp.softmet = 0;
} else if (locallab.spots.at(sp).softMethod == "reti") {
lp.softmet = 1;
}
if (locallab.spots.at(sp).blMethod == "blur") {
lp.blmet = 0;
} else if (locallab.spots.at(sp).blMethod == "med") {
lp.blmet = 1;
} else if (locallab.spots.at(sp).blMethod == "guid") {
lp.blmet = 2;
}
if (locallab.spots.at(sp).chroMethod == "lum") {
lp.chromet = 0;
} else if (locallab.spots.at(sp).chroMethod == "chr") {
lp.chromet = 1;
} else if (locallab.spots.at(sp).chroMethod == "all") {
lp.chromet = 2;
}
if (locallab.spots.at(sp).shMethod == "std") {
lp.shmeth = 0;
} else if (locallab.spots.at(sp).shMethod == "tone") {
lp.shmeth = 1;
}
if (locallab.spots.at(sp).medMethod == "none") {
lp.medmet = -1;
} else if (locallab.spots.at(sp).medMethod == "33") {
lp.medmet = 0;
} else if (locallab.spots.at(sp).medMethod == "55") {
lp.medmet = 1;
} else if (locallab.spots.at(sp).medMethod == "77") {
lp.medmet = 2;
} else if (locallab.spots.at(sp).medMethod == "99") {
lp.medmet = 3;
}
if (locallab.spots.at(sp).blurMethod == "norm") {
lp.blurmet = 0;
} else if (locallab.spots.at(sp).blurMethod == "inv") {
lp.blurmet = 1;
}
if (locallab.spots.at(sp).spotMethod == "norm") {
lp.excmet = 0;
} else if (locallab.spots.at(sp).spotMethod == "exc") {
lp.excmet = 1;
}
if (locallab.spots.at(sp).merMethod == "mone") {
lp.mergemet = 0;
} else if (locallab.spots.at(sp).merMethod == "mtwo") {
lp.mergemet = 1;
} else if (locallab.spots.at(sp).merMethod == "mthr") {
lp.mergemet = 2;
} else if (locallab.spots.at(sp).merMethod == "mfou") {
lp.mergemet = 3;
} else if (locallab.spots.at(sp).merMethod == "mfiv") {
lp.mergemet = 4;
}
if (locallab.spots.at(sp).mergecolMethod == "one") {
lp.mergecolMethod = 0;
} else if (locallab.spots.at(sp).mergecolMethod == "two") {
lp.mergecolMethod = 1;
} else if (locallab.spots.at(sp).mergecolMethod == "thr") {
lp.mergecolMethod = 2;
} else if (locallab.spots.at(sp).mergecolMethod == "fou") {
lp.mergecolMethod = 3;
} else if (locallab.spots.at(sp).mergecolMethod == "fiv") {
lp.mergecolMethod = 4;
} else if (locallab.spots.at(sp).mergecolMethod == "six") {
lp.mergecolMethod = 5;
} else if (locallab.spots.at(sp).mergecolMethod == "sev") {
lp.mergecolMethod = 6;
} else if (locallab.spots.at(sp).mergecolMethod == "sev0") {
lp.mergecolMethod = 7;
} else if (locallab.spots.at(sp).mergecolMethod == "sev1") {
lp.mergecolMethod = 8;
} else if (locallab.spots.at(sp).mergecolMethod == "sev2") {
lp.mergecolMethod = 9;
} else if (locallab.spots.at(sp).mergecolMethod == "hei") {
lp.mergecolMethod = 10;
} else if (locallab.spots.at(sp).mergecolMethod == "nin") {
lp.mergecolMethod = 11;
} else if (locallab.spots.at(sp).mergecolMethod == "ten") {
lp.mergecolMethod = 12;
} else if (locallab.spots.at(sp).mergecolMethod == "ele") {
lp.mergecolMethod = 13;
} else if (locallab.spots.at(sp).mergecolMethod == "twe") {
lp.mergecolMethod = 14;
} else if (locallab.spots.at(sp).mergecolMethod == "thi") {
lp.mergecolMethod = 15;
} else if (locallab.spots.at(sp).mergecolMethod == "for") {
lp.mergecolMethod = 16;
} else if (locallab.spots.at(sp).mergecolMethod == "hue") {
lp.mergecolMethod = 17;
} else if (locallab.spots.at(sp).mergecolMethod == "sat") {
lp.mergecolMethod = 18;
} else if (locallab.spots.at(sp).mergecolMethod == "col") {
lp.mergecolMethod = 19;
} else if (locallab.spots.at(sp).mergecolMethod == "lum") {
lp.mergecolMethod = 20;
}
if (locallab.spots.at(sp).localedgMethod == "fir") {
lp.edgwmet = 0;
} else if (locallab.spots.at(sp).localedgMethod == "sec") {
lp.edgwmet = 1;
} else if (locallab.spots.at(sp).localedgMethod == "thr") {
lp.edgwmet = 2;
}
if (locallab.spots.at(sp).localneiMethod == "none") {
lp.neiwmet = -1;
lp.lip3 = false;
} else if (locallab.spots.at(sp).localneiMethod == "low") {
lp.neiwmet = 0;
lp.lip3 = true;
} else if (locallab.spots.at(sp).localneiMethod == "high") {
lp.lip3 = true;
lp.neiwmet = 1;
}
if (locallab.spots.at(sp).wavMethod == "D2") {
lp.daubLen = 4;
} else if (locallab.spots.at(sp).wavMethod == "D4") {
lp.daubLen = 6;
} else if (locallab.spots.at(sp).wavMethod == "D6") {
lp.daubLen = 8;
} else if (locallab.spots.at(sp).wavMethod == "D10") {
lp.daubLen = 12;
} else if (locallab.spots.at(sp).wavMethod == "D14") {
lp.daubLen = 16;
// } else if(locallab.spots.at(sp).wavMethod == "D20"){
// lp.daubLen = 22;
}
lp.edgwena = locallab.spots.at(sp).wavedg;
lp.opacol = 0.01f * locallab.spots.at(sp).opacol;
if (locallab.spots.at(sp).shape == "ELI") {
lp.shapmet = 0;
} else if (locallab.spots.at(sp).shape == "RECT") {
lp.shapmet = 1;
}
lp.denoiena = locallab.spots.at(sp).expdenoi;
bool wavcurveden = false;
float local_noiself = 0.f;
float local_noiself0 = 0.f;
float local_noiself2 = 0.f;
float local_noiselc = 0.f;
if (locwavCurveden && locwavdenutili) {
if (lp.denoiena) {
for (int i = 0; i < 500; i++) {
if (locwavCurveden[i] != 0.) {
wavcurveden = true;
}
}
}
}
if (wavcurveden) {
if (lp.denoiena) {
local_noiself0 = 150.f * locwavCurveden[0];
local_noiself = 150.f * locwavCurveden[166];
local_noiself2 = 150.f * locwavCurveden[323];
local_noiselc = 100.f * locwavCurveden[500];
}
}
// float local_noiself = (float)locallab.spots.at(sp).noiselumf;
// float local_noiself0 = (float)locallab.spots.at(sp).noiselumf0;
// float local_noiself2 = (float)locallab.spots.at(sp).noiselumf2;
// float local_noiselc = (float)locallab.spots.at(sp).noiselumc;
float local_noiseldetail = (float)locallab.spots.at(sp).noiselumdetail;
int local_noiselequal = locallab.spots.at(sp).noiselequal;
float local_noisechrodetail = (float)locallab.spots.at(sp).noisechrodetail;
int local_sensiden = locallab.spots.at(sp).sensiden;
float local_detailthr = (float)locallab.spots.at(sp).detailthr;
float local_noisecf = ((float)locallab.spots.at(sp).noisechrof) / 10.f;
float local_noisecc = ((float)locallab.spots.at(sp).noisechroc) / 10.f;
float multi[6];
for (int y = 0; y < 6; y++) {
multi[y] = ((float) locallab.spots.at(sp).mult[y]);
}
float multish[5];
for (int y = 0; y < 5; y++) {
multish[y] = ((float) locallab.spots.at(sp).multsh[y]);
}
float thresho = ((float)locallab.spots.at(sp).threshold);
float chromcbdl = (float)locallab.spots.at(sp).chromacbdl;
int local_chroma = locallab.spots.at(sp).chroma;
int local_sensi = locallab.spots.at(sp).sensi;
int local_sensibn = locallab.spots.at(sp).sensibn;
int local_sensitm = locallab.spots.at(sp).sensitm;
int local_sensiexclu = locallab.spots.at(sp).sensiexclu;
float structexclude = (float) locallab.spots.at(sp).structexclu;
int local_sensilc = locallab.spots.at(sp).sensilc;
// int local_struc = locallab.spots.at(sp).struc;
int local_warm = locallab.spots.at(sp).warm;
int local_sensih = locallab.spots.at(sp).sensih;
int local_dehaze = locallab.spots.at(sp).dehaz;
int local_depth = locallab.spots.at(sp).depth;
int local_sensicb = locallab.spots.at(sp).sensicb;
float local_clarityml = (float) locallab.spots.at(sp).clarityml;
float local_contresid = (float) locallab.spots.at(sp).contresid;
int local_blurcbdl = (float) locallab.spots.at(sp).blurcbdl;
int local_contrast = locallab.spots.at(sp).contrast;
float local_lightness = (float) locallab.spots.at(sp).lightness;
float labgridALowloc = locallab.spots.at(sp).labgridALow;
float labgridBLowloc = locallab.spots.at(sp).labgridBLow;
float labgridBHighloc = locallab.spots.at(sp).labgridBHigh;
float labgridAHighloc = locallab.spots.at(sp).labgridAHigh;
float strengthgrid = (float) locallab.spots.at(sp).strengthgrid;
float labgridBLowlocmerg = locallab.spots.at(sp).labgridBLowmerg;
float labgridBHighlocmerg = locallab.spots.at(sp).labgridBHighmerg;
float labgridALowlocmerg = locallab.spots.at(sp).labgridALowmerg;
float labgridAHighlocmerg = locallab.spots.at(sp).labgridAHighmerg;
float blendmasklc = ((float) locallab.spots.at(sp).blendmasklc) / 100.f ;
float radmasklc = ((float) locallab.spots.at(sp).radmasklc);
float chromasklc = ((float) locallab.spots.at(sp).chromasklc);
float structcolor = (float) locallab.spots.at(sp).structcol;
float blendmaskcolor = ((float) locallab.spots.at(sp).blendmaskcol) / 100.f ;
float radmaskcolor = ((float) locallab.spots.at(sp).radmaskcol);
float chromaskcolor = ((float) locallab.spots.at(sp).chromaskcol);
float gammaskcolor = ((float) locallab.spots.at(sp).gammaskcol);
float slomaskcolor = ((float) locallab.spots.at(sp).slomaskcol);
float blendmaskexpo = ((float) locallab.spots.at(sp).blendmaskexp) / 100.f ;
float radmaskexpo = ((float) locallab.spots.at(sp).radmaskexp);
float chromaskexpo = ((float) locallab.spots.at(sp).chromaskexp);
float gammaskexpo = ((float) locallab.spots.at(sp).gammaskexp);
float slomaskexpo = ((float) locallab.spots.at(sp).slomaskexp);
float strmaskexpo = ((float) locallab.spots.at(sp).strmaskexp);
float angmaskexpo = ((float) locallab.spots.at(sp).angmaskexp);
float strexpo = ((float) locallab.spots.at(sp).strexp);
float angexpo = ((float) locallab.spots.at(sp).angexp);
float strSH = ((float) locallab.spots.at(sp).strSH);
float angSH = ((float) locallab.spots.at(sp).angSH);
float strcol = ((float) locallab.spots.at(sp).strcol);
float strcolab = ((float) locallab.spots.at(sp).strcolab);
float strcolh = ((float) locallab.spots.at(sp).strcolh);
float angcol = ((float) locallab.spots.at(sp).angcol);
float strvib = ((float) locallab.spots.at(sp).strvib);
float strvibab = ((float) locallab.spots.at(sp).strvibab);
float strvibh = ((float) locallab.spots.at(sp).strvibh);
float angvib = ((float) locallab.spots.at(sp).angvib);
float strwav = ((float) locallab.spots.at(sp).strwav);
float angwav = ((float) locallab.spots.at(sp).angwav);
float strlog = ((float) locallab.spots.at(sp).strlog);
float anglog = ((float) locallab.spots.at(sp).anglog);
float softradiusexpo = ((float) locallab.spots.at(sp).softradiusexp);
float softradiuscolor = ((float) locallab.spots.at(sp).softradiuscol);
float softradiusreti = ((float) locallab.spots.at(sp).softradiusret);
float softradiustma = ((float) locallab.spots.at(sp).softradiustm);
float softradiuscbdl = ((float) locallab.spots.at(sp).softradiuscb);
float blendmaskSH = ((float) locallab.spots.at(sp).blendmaskSH) / 100.f ;
float radmaskSH = ((float) locallab.spots.at(sp).radmaskSH);
float chromaskSH = ((float) locallab.spots.at(sp).chromaskSH);
float gammaskSH = ((float) locallab.spots.at(sp).gammaskSH);
float slomaskSH = ((float) locallab.spots.at(sp).slomaskSH);
float blendmaskvib = ((float) locallab.spots.at(sp).blendmaskvib) / 100.f ;
float radmaskvib = ((float) locallab.spots.at(sp).radmaskvib);
float chromaskvib = ((float) locallab.spots.at(sp).chromaskvib);
float gammaskvib = ((float) locallab.spots.at(sp).gammaskvib);
float slomaskvib = ((float) locallab.spots.at(sp).slomaskvib);
float structexpo = (float) locallab.spots.at(sp).structexp;
float blurexpo = (float) locallab.spots.at(sp).blurexpde;
float blurcolor = (float) locallab.spots.at(sp).blurcolde;
float blurcolmask = (float) locallab.spots.at(sp).blurcol;
float contcolmask = (float) locallab.spots.at(sp).contcol;
float blurSH = (float) locallab.spots.at(sp).blurSHde;
float local_transit = locallab.spots.at(sp).transit;
float local_feather = locallab.spots.at(sp).feather;
float local_transitweak = (float)locallab.spots.at(sp).transitweak;
float local_transitgrad = (float)locallab.spots.at(sp).transitgrad;
float radius = (float) locallab.spots.at(sp).radius;
int itera = locallab.spots.at(sp).itera;
int guidbl = locallab.spots.at(sp).guidbl;
float epsbl = (float) locallab.spots.at(sp).epsbl;
double sharradius = ((double) locallab.spots.at(sp).sharradius);
sharradius = CLIP42_35(sharradius);
float lcamount = ((float) locallab.spots.at(sp).lcamount);
lcamount = CLIP1(lcamount); //to prevent crash with old pp3 integer
double sharblurr = ((double) locallab.spots.at(sp).sharblur);
sharblurr = CLIP2_30(sharblurr);//to prevent crash with old pp3 integer
int local_sensisha = locallab.spots.at(sp).sensisha;
int local_sharamount = locallab.spots.at(sp).sharamount;
int local_shardamping = locallab.spots.at(sp).shardamping;
int local_shariter = locallab.spots.at(sp).shariter;
bool inverse = locallab.spots.at(sp).invers;
bool curvacti = locallab.spots.at(sp).curvactiv;
bool acti = locallab.spots.at(sp).activlum;
bool cupas = false; // Provision
int local_sensisf = locallab.spots.at(sp).sensisf;
bool inverseex = locallab.spots.at(sp).inversex;
bool inversesh = locallab.spots.at(sp).inverssh;
bool equiltm = locallab.spots.at(sp).equiltm;
bool fftwlc = locallab.spots.at(sp).fftwlc;
bool fftwreti = locallab.spots.at(sp).fftwreti;
bool equilret = locallab.spots.at(sp).equilret;
bool inverserad = false; // Provision
bool inverseret = locallab.spots.at(sp).inversret;
bool inversesha = locallab.spots.at(sp).inverssha;
double strength = (double) locallab.spots.at(sp).strength;
float str = (float)locallab.spots.at(sp).str;
int scaleret = (float)locallab.spots.at(sp).scalereti;
int local_sensihs = locallab.spots.at(sp).sensihs;
int highhs = locallab.spots.at(sp).highlights;
int hltonahs = locallab.spots.at(sp).h_tonalwidth;
int shadhs = locallab.spots.at(sp).shadows;
int shtonals = locallab.spots.at(sp).s_tonalwidth;
int radhs = locallab.spots.at(sp).sh_radius;
float blendmaskcb = ((float) locallab.spots.at(sp).blendmaskcb) / 100.f ;
float radmaskcb = ((float) locallab.spots.at(sp).radmaskcb);
float chromaskcb = ((float) locallab.spots.at(sp).chromaskcb);
float gammaskcb = ((float) locallab.spots.at(sp).gammaskcb);
float slomaskcb = ((float) locallab.spots.at(sp).slomaskcb);
bool enaretiMasktm = locallab.spots.at(sp).enaretiMasktmap;
lp.enaretiMasktmap = enaretiMasktm;
float blendmasktm = ((float) locallab.spots.at(sp).blendmasktm) / 100.f ;
float radmasktm = ((float) locallab.spots.at(sp).radmasktm);
float chromasktm = ((float) locallab.spots.at(sp).chromasktm);
float gammasktm = ((float) locallab.spots.at(sp).gammasktm);
float slomasktm = ((float) locallab.spots.at(sp).slomasktm);
bool wavgradl = locallab.spots.at(sp).wavgradl;
float blendmaskbl = ((float) locallab.spots.at(sp).blendmaskbl) / 100.f ;
float radmaskbl = ((float) locallab.spots.at(sp).radmaskbl);
float chromaskbl = ((float) locallab.spots.at(sp).chromaskbl);
float gammaskbl = ((float) locallab.spots.at(sp).gammaskbl);
float slomaskbl = ((float) locallab.spots.at(sp).slomaskbl);
bool fftbl = locallab.spots.at(sp).fftwbl;
lp.sourcegray = (float) locallab.spots.at(sp).sourceGray;
lp.targetgray = (float) locallab.spots.at(sp).targetGray;
lp.blackev = (float) locallab.spots.at(sp).blackEv;
lp.whiteev = (float) locallab.spots.at(sp).whiteEv;
lp.detail = locallab.spots.at(sp).detail;
lp.sensilog = locallab.spots.at(sp).sensilog;
lp.Autogray = locallab.spots.at(sp).Autogray;
lp.autocompute = locallab.spots.at(sp).autocompute;
lp.baselog = (float) locallab.spots.at(sp).baselog;
lp.deltaem = locallab.spots.at(sp).deltae;
lp.scalereti = scaleret;
lp.cir = circr;
lp.actsp = acti;
lp.xc = w * local_center_x;
lp.yc = h * local_center_y;
lp.xcbuf = w * local_center_xbuf;
lp.ycbuf = h * local_center_ybuf;
lp.lx = w * local_x;
lp.ly = h * local_y;
lp.lxL = w * local_xL;
lp.lyT = h * local_yT;
lp.chro = local_chroma;
lp.struco = structcolor;
lp.strengrid = strengthgrid;
lp.blendmalc = blendmasklc;
lp.radmalc = radmasklc;
lp.chromalc = chromasklc;
lp.blendmacol = blendmaskcolor;
lp.radmacol = radmaskcolor;
lp.chromacol = chromaskcolor;
lp.gammacol = gammaskcolor;
lp.slomacol = slomaskcolor;
lp.radmaexp = radmaskexpo;
lp.chromaexp = chromaskexpo;
lp.gammaexp = gammaskexpo;
lp.slomaexp = slomaskexpo;
lp.strmaexp = strmaskexpo;
lp.angmaexp = angmaskexpo;
lp.strexp = strexpo;
lp.angexp = angexpo;
lp.strSH = strSH;
lp.angSH = angSH;
lp.strcol = strcol;
lp.strcolab = strcolab;
lp.strcolh = strcolh;
lp.angcol = angcol;
lp.strvib = strvib;
lp.strvibab = strvibab;
lp.strvibh = strvibh;
lp.angvib = angvib;
lp.strwav = strwav;
lp.angwav = angwav;
lp.strlog = strlog;
lp.anglog = anglog;
lp.softradiusexp = softradiusexpo;
lp.softradiuscol = softradiuscolor;
lp.softradiusret = softradiusreti;
lp.softradiuscb = softradiuscbdl;
lp.softradiustm = softradiustma;
lp.struexc = structexclude;
lp.blendmaexp = blendmaskexpo;
lp.blendmaSH = blendmaskSH;
lp.radmaSH = radmaskSH;
lp.chromaSH = chromaskSH;
lp.gammaSH = gammaskSH;
lp.slomaSH = slomaskSH;
lp.blendmavib = blendmaskvib;
lp.radmavib = radmaskvib;
lp.chromavib = chromaskvib;
lp.gammavib = gammaskvib;
lp.slomavib = slomaskvib;
lp.blendmacb = blendmaskcb;
lp.radmacb = radmaskcb;
lp.chromacbm = chromaskcb;
lp.gammacb = gammaskcb;
lp.slomacb = slomaskcb;
lp.blendmatm = blendmasktm;
lp.radmatm = radmasktm;
lp.chromatm = chromasktm;
lp.gammatm = gammasktm;
lp.slomatm = slomasktm;
lp.wavgradl = wavgradl;
lp.strengthw = ((float) locallab.spots.at(sp).strengthw);
lp.radiusw = ((float) locallab.spots.at(sp).radiusw);
lp.detailw = ((float) locallab.spots.at(sp).detailw);
lp.gradw = ((float) locallab.spots.at(sp).gradw);
lp.tloww = ((float) locallab.spots.at(sp).tloww);
lp.thigw = ((float) locallab.spots.at(sp).thigw);
lp.edgw = ((float) locallab.spots.at(sp).edgw);
lp.basew = ((float) locallab.spots.at(sp).basew);
lp.blendmabl = blendmaskbl;
lp.radmabl = radmaskbl;
lp.chromabl = chromaskbl;
lp.gammabl = gammaskbl;
lp.slomabl = slomaskbl;
lp.fftbl = fftbl;
lp.it = itera;
lp.guidb = guidbl;
lp.strbl = 0.01f * (float) locallab.spots.at(sp).strbl;
lp.epsb = epsbl;
lp.struexp = structexpo;
lp.blurexp = blurexpo;
lp.blurcol = blurcolor;
lp.blurcolmask = blurcolmask;
lp.contcolmask = 0.01f * contcolmask;
lp.blurSH = blurSH;
lp.sens = local_sensi;
lp.sensh = local_sensih;
lp.dehaze = local_dehaze;
lp.depth = local_depth;
lp.senscb = local_sensicb;
lp.clarityml = local_clarityml;
lp.contresid = local_contresid;
lp.blurcbdl = local_blurcbdl;
lp.cont = local_contrast;
lp.ligh = local_lightness;
lp.lowA = labgridALowloc;
lp.lowB = labgridBLowloc;
lp.highB = labgridBHighloc;
lp.highA = labgridAHighloc;
lp.lowBmerg = labgridBLowlocmerg;
lp.highBmerg = labgridBHighlocmerg;
lp.lowAmerg = labgridALowlocmerg;
lp.highAmerg = labgridAHighlocmerg;
lp.senssf = local_sensisf;
lp.strng = strlight;
lp.neig = neigh;
lp.lap = laplac;
if (lp.ligh >= -2.f && lp.ligh <= 2.f) {
lp.ligh /= 5.f;
}
lp.trans = local_transit;
lp.feath = local_feather;
lp.transweak = local_transitweak;
lp.transgrad = local_transitgrad;
lp.rad = radius;
lp.stren = strength;
lp.sensbn = local_sensibn;
lp.sensexclu = local_sensiexclu;
lp.senslc = local_sensilc;
lp.lcamount = lcamount;
lp.inv = inverse;
lp.invex = inverseex;
lp.invsh = inversesh;
lp.curvact = curvacti;
lp.invrad = inverserad;
lp.invret = inverseret;
lp.equret = equilret;
lp.equtm = equiltm;
lp.invshar = inversesha;
lp.str = str;
lp.shrad = sharradius;
lp.shblurr = sharblurr;
lp.senssha = local_sensisha;
lp.shamo = local_sharamount;
lp.shdamp = local_shardamping;
lp.shiter = local_shariter;
lp.iterat = iterati;
lp.balance = balanc;
lp.balanceh = balanch;
lp.colorde = colorde;
lp.dxx = w * local_dxy;
lp.dyy = h * local_dxy;
lp.thr = thre;
lp.stru = strucc;
lp.noiself = local_noiself;
lp.noiself0 = local_noiself0;
lp.noiself2 = local_noiself2;
lp.noiseldetail = local_noiseldetail;
lp.detailthr = local_detailthr;
lp.noiselequal = local_noiselequal;
lp.noisechrodetail = local_noisechrodetail;
lp.noiselc = local_noiselc;
lp.noisecf = local_noisecf;
lp.noisecc = local_noisecc;
lp.sensden = local_sensiden;
lp.bilat = locallab.spots.at(sp).bilateral;
lp.adjch = (float) locallab.spots.at(sp).adjblur;
lp.strengt = streng;
lp.gamm = gam;
lp.esto = est;
lp.scalt = scal_tm;
lp.rewe = rewe;
lp.senstm = local_sensitm;
lp.amo = amo;
for (int y = 0; y < 6; y++) {
lp.mulloc[y] = CLIP04(multi[y]);//to prevent crash with old pp3 integer
}
for (int y = 0; y < 5; y++) {
lp.mullocsh[y] = multish[y];
}
lp.logena = locallab.spots.at(sp).explog;
lp.detailsh = locallab.spots.at(sp).detailSH;
lp.threshol = thresho;
lp.chromacb = chromcbdl;
lp.expvib = locallab.spots.at(sp).expvibrance;
lp.colorena = locallab.spots.at(sp).expcolor && llExpMask == 0 && llsoftMask == 0 && llSHMask == 0 && llcbMask == 0 && lllcMask == 0 && llsharMask == 0 && llretiMask == 0 && lltmMask == 0 && llvibMask == 0; // Color & Light tool is deactivated if Exposure mask is visible or SHMask
lp.blurena = locallab.spots.at(sp).expblur && llExpMask == 0 && llsoftMask == 0 && llSHMask == 0 && llcbMask == 0 && lllcMask == 0 && llsharMask == 0 && llretiMask == 0 && llColorMask == 0 && lltmMask == 0 && llvibMask == 0;
lp.tonemapena = locallab.spots.at(sp).exptonemap && llExpMask == 0 && llsoftMask == 0 && llSHMask == 0 && llcbMask == 0 && lllcMask == 0 && llsharMask == 0 && llretiMask == 0 && llColorMask == 0 && llvibMask == 0;
lp.retiena = locallab.spots.at(sp).expreti && llExpMask == 0 && llsoftMask == 0 && llSHMask == 0 && llcbMask == 0 && lllcMask == 0 && llsharMask == 0 && llColorMask == 0 && lltmMask == 0 && llvibMask == 0 && llSHMask == 0;
lp.lcena = locallab.spots.at(sp).expcontrast && llExpMask == 0 && llsoftMask == 0 && llSHMask == 0 && llcbMask == 0 && llsharMask == 0 && llColorMask == 0 && lltmMask == 0 && llvibMask == 0 && llSHMask == 0;
lp.cbdlena = locallab.spots.at(sp).expcbdl && llExpMask == 0 && llsoftMask == 0 && llSHMask == 0 && llretiMask == 0 && lllcMask == 0 && llsharMask == 0 && lllcMask == 0 && llColorMask == 0 && lltmMask == 0 && llvibMask == 0;
lp.exposena = locallab.spots.at(sp).expexpose && llColorMask == 0 && llsoftMask == 0 && llSHMask == 0 && lllcMask == 0 && llsharMask == 0 && llcbMask == 0 && llretiMask == 0 && lltmMask == 0 && llvibMask == 0; // Exposure tool is deactivated if Color & Light mask SHmask is visible
lp.hsena = locallab.spots.at(sp).expshadhigh && llColorMask == 0 && llsoftMask == 0 && llExpMask == 0 && llcbMask == 0 && lllcMask == 0 && llsharMask == 0 && llretiMask == 0 && lltmMask == 0 && llvibMask == 0;// Shadow Highlight tool is deactivated if Color & Light mask or SHmask is visible
lp.vibena = locallab.spots.at(sp).expvibrance && llColorMask == 0 && llsoftMask == 0 && llExpMask == 0 && llcbMask == 0 && lllcMask == 0 && llsharMask == 0 && llretiMask == 0 && llcbMask == 0 && lltmMask == 0 && llSHMask == 0;// vibrance tool is deactivated if Color & Light mask or SHmask is visible
lp.sharpena = locallab.spots.at(sp).expsharp && llColorMask == 0 && llsoftMask == 0 && llExpMask == 0 && llcbMask == 0 && lllcMask == 0 && llretiMask == 0 && llcbMask == 0 && lltmMask == 0 && llSHMask == 0 && llvibMask == 0;
lp.sfena = locallab.spots.at(sp).expsoft && llColorMask == 0 && llExpMask == 0 && llcbMask == 0 && lllcMask == 0 && llretiMask == 0 && llcbMask == 0 && lltmMask == 0 && llSHMask == 0 && llvibMask == 0;
lp.sensv = local_sensiv;
lp.past = chromaPastel;
lp.satur = chromaSatur;
lp.cut_past = cupas;
lp.blac = locallab.spots.at(sp).black;
lp.shcomp = locallab.spots.at(sp).shcompr;
lp.shadex = locallab.spots.at(sp).shadex;
lp.hlcomp = locallab.spots.at(sp).hlcompr;
lp.hlcompthr = locallab.spots.at(sp).hlcomprthresh;
lp.expcomp = locallab.spots.at(sp).expcomp;
lp.expcomp = CLIP24(lp.expcomp); //to prevent crash with Old pp3 with integer
lp.expchroma = locallab.spots.at(sp).expchroma / 100.;
lp.sensex = local_sensiex;
lp.war = local_warm;
lp.highlihs = highhs;
lp.shadowhs = shadhs;
lp.radiushs = radhs;
lp.hltonalhs = hltonahs;
lp.shtonalhs = shtonals;
lp.senshs = local_sensihs;
lp.ftwlc = fftwlc;
lp.ftwreti = fftwreti;
}
static void calcTransitionrect(const float lox, const float loy, const float ach, const local_params& lp, int &zone, float &localFactor)
{
zone = 0;
if (lox >= lp.xc && lox < lp.xc + lp.lx && loy >= lp.yc && loy < lp.yc + lp.ly) {
if (lox < (lp.xc + lp.lx * ach) && loy < (lp.yc + lp.ly * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lx, lp.yc, lp.ly, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
} else if (lox >= lp.xc && lox < lp.xc + lp.lx && loy < lp.yc && loy > lp.yc - lp.lyT) {
if (lox < (lp.xc + lp.lx * ach) && loy > (lp.yc - lp.lyT * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lx, lp.yc, lp.lyT, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy <= lp.yc && loy > lp.yc - lp.lyT) {
if (lox > (lp.xc - lp.lxL * ach) && loy > (lp.yc - lp.lyT * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lxL, lp.yc, lp.lyT, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy > lp.yc && loy < lp.yc + lp.ly) {
if (lox > (lp.xc - lp.lxL * ach) && loy < (lp.yc + lp.ly * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lxL, lp.yc, lp.ly, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
}
}
static void calcTransition(const float lox, const float loy, const float ach, const local_params& lp, int &zone, float &localFactor)
{
// returns the zone (0 = outside selection, 1 = transition zone between outside and inside selection, 2 = inside selection)
// and a factor to calculate the transition in case zone == 1
zone = 0;
if (lox >= lp.xc && lox < (lp.xc + lp.lx) && loy >= lp.yc && loy < lp.yc + lp.ly) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lx)) + SQR((loy - lp.yc) / (ach * lp.ly));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lx)) + SQR((loy - lp.yc) / (lp.ly))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lx, lp.yc, lp.ly, ach, lp.transgrad), lp.transweak);
}
}
} else if (lox >= lp.xc && lox < lp.xc + lp.lx && loy < lp.yc && loy > lp.yc - lp.lyT) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lx)) + SQR((loy - lp.yc) / (ach * lp.lyT));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lx)) + SQR((loy - lp.yc) / (lp.lyT))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lx, lp.yc, lp.lyT, ach, lp.transgrad), lp.transweak);
}
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy <= lp.yc && loy > lp.yc - lp.lyT) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lxL)) + SQR((loy - lp.yc) / (ach * lp.lyT));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lxL)) + SQR((loy - lp.yc) / (lp.lyT))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lxL, lp.yc, lp.lyT, ach, lp.transgrad), lp.transweak);
}
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy > lp.yc && loy < lp.yc + lp.ly) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lxL)) + SQR((loy - lp.yc) / (ach * lp.ly));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lxL)) + SQR((loy - lp.yc) / (lp.ly))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lxL, lp.yc, lp.ly, ach, lp.transgrad), lp.transweak);
}
}
}
}
// Copyright 2018 Alberto Griggio <alberto.griggio@gmail.com>
//J.Desmis 12 2019 - I will try to port a raw process in local adjustements
// I choose this one because, it is "new"
// Perhaps - probably no result, but perhaps ??
float find_gray(float source_gray, float target_gray)
{
// find a base such that log2lin(base, source_gray) = target_gray
// log2lin is (base^source_gray - 1) / (base - 1), so we solve
//
// (base^source_gray - 1) / (base - 1) = target_gray, that is
//
// base^source_gray - 1 - base * target_gray + target_gray = 0
//
// use a bisection method (maybe later change to Netwon)
if (source_gray <= 0.f) {
return 0.f;
}
const auto f =
[ = ](float x) -> float {
return std::pow(x, source_gray) - 1 - target_gray * x + target_gray;
};
// first find the interval we are interested in
float lo = 1.f;
while (f(lo) <= 0.f) {
lo *= 2.f;
}
float hi = lo * 2.f;
while (f(hi) >= 0.f) {
hi *= 2.f;
}
if (std::isinf(hi)) {
return 0.f;
}
// now search for a zero
for (int iter = 0; iter < 100; ++iter) {
float mid = lo + (hi - lo) / 2.f;
float v = f(mid);
if (std::abs(v) < 1e-4f || (hi - lo) / lo <= 1e-4f) {
return mid;
}
if (v > 0.f) {
lo = mid;
} else {
hi = mid;
}
}
return 0.f; // not found
}
// basic log encoding taken from ACESutil.Lin_to_Log2, from
// https://github.com/ampas/aces-dev
// (as seen on pixls.us)
void ImProcFunctions::log_encode(Imagefloat *rgb, struct local_params & lp, float scale, bool multiThread, int bfw, int bfh)
{
/* J.Desmis 12 2019
small adaptations to local adjustements
replace log2 by log(lp.baselog) allows diferentiation between low and high lights
*/
BENCHFUN
const float gray = lp.sourcegray / 100.f;
const float shadows_range = lp.blackev;
const float dynamic_range = lp.whiteev - lp.blackev;
const float noise = pow_F(2.f, -16.f);
const float log2 = xlogf(lp.baselog);
const float b = lp.targetgray > 1 && lp.targetgray < 100 && dynamic_range > 0 ? find_gray(std::abs(lp.blackev) / dynamic_range, lp.targetgray / 100.f) : 0.f;
const float linbase = max(b, 0.f);
TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile);
const auto apply =
[ = ](float x, bool scale = true) -> float {
if (scale)
{
x /= 65535.f;
}
x = max(x, noise);
x = max(x / gray, noise);
x = max((xlogf(x) / log2 - shadows_range) / dynamic_range, noise);
assert(x == x);
if (linbase > 0.f)
{
x = xlog2lin(x, linbase);
}
if (scale)
{
return x * 65535.f;
} else
{
return x;
}
};
printf("sc=%f\n", scale);
const auto norm =
[&](float r, float g, float b) -> float {
return Color::rgbLuminance(r, g, b, ws);
// other possible alternatives (so far, luminance seems to work
// fine though). See also
// https://discuss.pixls.us/t/finding-a-norm-to-preserve-ratios-across-non-linear-operations
//
// MAX
//return max(r, g, b);
//
// Euclidean
//return std::sqrt(SQR(r) + SQR(g) + SQR(b));
// weighted yellow power norm from https://youtu.be/Z0DS7cnAYPk
// float rr = 1.22f * r / 65535.f;
// float gg = 1.20f * g / 65535.f;
// float bb = 0.58f * b / 65535.f;
// float rr4 = SQR(rr) * SQR(rr);
// float gg4 = SQR(gg) * SQR(gg);
// float bb4 = SQR(bb) * SQR(bb);
// float den = (rr4 + gg4 + bb4);
// if (den > 0.f) {
// return 0.8374319f * ((rr4 * rr + gg4 * gg + bb4 * bb) / den) * 65535.f;
// } else {
// return 0.f;
// }
};
// const int detail2 = float(max(lp.detail, 0)) / scale + 0.5f;
const float detail = lp.detail;
const int W = rgb->getWidth(), H = rgb->getHeight();
if (detail == 0.f) {//no local contrast
#ifdef _OPENMP
# pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
float r = rgb->r(y, x);
float g = rgb->g(y, x);
float b = rgb->b(y, x);
float m = norm(r, g, b);
if (m > noise) {
float mm = apply(m);
float f = mm / m;
r *= f;
b *= f;
g *= f;
}
assert(r == r);
assert(g == g);
assert(b == b);
rgb->r(y, x) = r;
rgb->g(y, x) = g;
rgb->b(y, x) = b;
}
}
} else {//local contrast
array2D<float> Y(W, H);
{
constexpr float base_posterization = 20.f;
array2D<float> Y2(W, H);
#ifdef _OPENMP
# pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
Y2[y][x] = norm(rgb->r(y, x), rgb->g(y, x), rgb->b(y, x)) / 65535.f;
float l = xlogf(std::max(Y2[y][x], 1e-9f));
float ll = round(l * base_posterization) / base_posterization;
Y[y][x] = xexpf(ll);
assert(std::isfinite(Y[y][x]));
}
}
const float radius = max(max(bfw, W), max(bfh, H)) / 30.f;
const float epsilon = 0.005f;
rtengine::guidedFilter(Y2, Y, Y, radius, epsilon, multiThread);
}
const float blend = detail;
#ifdef _OPENMP
# pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
float &r = rgb->r(y, x);
float &g = rgb->g(y, x);
float &b = rgb->b(y, x);
float t = Y[y][x];
float t2;
if (t > noise && (t2 = norm(r, g, b)) > noise) {
float c = apply(t, false);
float f = c / t;
// float t2 = norm(r, g, b);
float f2 = apply(t2) / t2;
f = intp(blend, f, f2);
assert(std::isfinite(f));
r *= f;
g *= f;
b *= f;
assert(std::isfinite(r));
assert(std::isfinite(g));
assert(std::isfinite(b));
}
}
}
}
}
void ImProcFunctions::getAutoLogloc(int sp, ImageSource *imgsrc, float *sourceg, float *blackev, float *whiteev, bool *Autogr, int fw, int fh, float xsta, float xend, float ysta, float yend, int SCALE)
{
BENCHFUN
//adpatation to local adjustements Jacques Desmis 12 2019
PreviewProps pp(0, 0, fw, fh, SCALE);
Imagefloat img(int(fw / SCALE + 0.5), int(fh / SCALE + 0.5));
ProcParams neutral;
// neutral.exposure.enabled = true;
imgsrc->getImage(imgsrc->getWB(), TR_NONE, &img, pp, params->toneCurve, neutral.raw);
imgsrc->convertColorSpace(&img, params->icm, imgsrc->getWB());
float vmin = RT_INFINITY;
float vmax = -RT_INFINITY;
bool always = true;
const float ec = always ? std::pow(2.f, params->toneCurve.expcomp) : 1.f;
constexpr float noise = 1e-5;
int h = fh / SCALE;
int w = fw / SCALE;
// printf("h=%d w=%d\n", h, w);
// printf("xsta=%f xend=%f ysta=%f yend=%f\n", xsta, xend, ysta, yend);
int hsta = ysta * h;
int hend = yend * h;
int wsta = xsta * w;
int wend = xend * w;
//printf("h=%d w=%d hsta=%d hend=%d wsta=%d wend=%d\n", h, w, hsta, hend, wsta, wend);
float mean = 0.f;
int nc = 0;
for (int y = hsta; y < hend; ++y) {
for (int x = wsta; x < wend; ++x) {
float r = img.r(y, x), g = img.g(y, x), b = img.b(y, x);
float m = max(0.f, r, g, b) / 65535.f * ec;
float rgam = Color::gamma_srgb(r / 65535.f);
float ggam = Color::gamma_srgb(g / 65535.f);
float bgam = Color::gamma_srgb(b / 65535.f);
float lum = 0.2126f * rgam + 0.7152f * ggam + 0.0722f * bgam;
mean += lum;
nc++;
if (m > noise) {
float l = min(r, g, b) / 65535.f * ec;
vmin = min(vmin, l > noise ? l : m);
vmax = max(vmax, m);
}
}
}
mean = mean / nc;
float yb = 18.f;
if (mean < 0.15f) {
yb = 3.0f;
} else if (mean < 0.3f) {
yb = 5.0f;
} else if (mean < 0.4f) {
yb = 10.0f;
} else if (mean < 0.45f) {
yb = 15.0f;
} else if (mean < 0.5f) {
yb = 18.0f;
} else if (mean < 0.55f) {
yb = 23.0f;
} else if (mean < 0.6f) {
yb = 30.0f;
} else {
yb = 45.f;
}
//approximation sourcegray yb source = 0.4 * yb
if (vmax > vmin) {
const float log2 = xlogf(2.f);
float dynamic_range = -xlogf(vmin / vmax) / log2;
if (settings->verbose) {
std::cout << "AutoLog: min = " << vmin << ", max = " << vmax
<< ", DR = " << dynamic_range << std::endl;
}
if (Autogr[sp]) {
double tot = 0.f;
int n = 0;
float gmax = std::min(vmax / 2.f, 0.25f);
float gmin = std::max(vmin * std::pow(2.f, std::max((dynamic_range - 1.f) / 2.f, 1.f)), 0.05f);
if (settings->verbose) {
std::cout << " gray boundaries: " << gmin << ", " << gmax << std::endl;
}
for (int y = ysta; y < yend; ++y) {
for (int x = wsta; x < wend; ++x) {
float l = img.g(y, x) / 65535.f;
if (l >= gmin && l <= gmax) {
tot += l;
++n;
}
}
}
if (n > 0) {
sourceg[sp] = tot / n * 100.f;
if (settings->verbose) {
std::cout << " computed gray point from " << n << " samples: " << sourceg[sp] << std::endl;
}
} else if (settings->verbose) {
sourceg[sp] = 0.4f * yb;
std::cout << " no samples found in range, resorting to Yb gray point value " << sourceg[sp] << std::endl;
}
}
float gray = float(sourceg[sp]) / 100.f;
whiteev[sp] = xlogf(vmax / gray) / log2;
blackev[sp] = whiteev[sp] - dynamic_range;
}
}
void tone_eq(array2D<float> &R, array2D<float> &G, array2D<float> &B, const struct local_params & lp, const Glib::ustring &workingProfile, double scale, bool multithread)
// adapted from the tone equalizer of darktable
/*
Copyright 2019 Alberto Griggio <alberto.griggio@gmail.com>
Small adaptation to Local Adjustement 10 2019 Jacques Desmis <jdesmis@gmail.com>
This file is part of darktable,
copyright (c) 2018 Aurelien Pierre.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
{
BENCHFUN
const int W = R.width();
const int H = R.height();
array2D<float> Y(W, H);
const auto log2 =
[](float x) -> float {
static const float l2 = xlogf(2);
return xlogf(x) / l2;
};
const auto exp2 =
[](float x) -> float {
return pow_F(2.f, x);
};
// Build the luma channels: band-pass filters with gaussian windows of
// std 2 EV, spaced by 2 EV
const float centers[12] = {
-18.0f, -16.0f, -14.0f, -12.0f, -10.0f, -8.0f, -6.0f,
-4.0f, -2.0f, 0.0f, 2.0f, 4.0f
};
const auto conv = [&](int v, float lo, float hi) -> float {
const float f = v < 0 ? lo : hi;
return exp2(float(v) / 100.f * f);
};
const float factors[12] = {
conv(lp.mullocsh[0], 2.f, 3.f), // -18 EV
conv(lp.mullocsh[0], 2.f, 3.f), // -16 EV
conv(lp.mullocsh[0], 2.f, 3.f), // -14 EV
conv(lp.mullocsh[0], 2.f, 3.f), // -12 EV
conv(lp.mullocsh[0], 2.f, 3.f), // -10 EV
conv(lp.mullocsh[0], 2.f, 3.f), // -8 EV
conv(lp.mullocsh[1], 2.f, 3.f), // -6 EV
conv(lp.mullocsh[2], 2.5f, 2.5f), // -4 EV
conv(lp.mullocsh[3], 3.f, 2.f), // -2 EV
conv(lp.mullocsh[4], 3.f, 2.f), // 0 EV
conv(lp.mullocsh[4], 3.f, 2.f), // 2 EV
conv(lp.mullocsh[4], 3.f, 2.f) // 4 EV
};
TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(workingProfile);
#ifdef _OPENMP
# pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
Y[y][x] = Color::rgbLuminance(R[y][x], G[y][x], B[y][x], ws);
}
}
int detail = LIM(lp.detailsh + 5, 0, 5);
int radius = float(detail) / scale + 0.5f;
float epsilon2 = 0.01f + 0.002f * max(detail - 3, 0);
if (radius > 0) {
rtengine::guidedFilterLog(10.f, Y, radius, epsilon2, multithread);
}
if (lp.detailsh > 0) {
array2D<float> Y2(W, H);
constexpr float base_epsilon = 0.02f;
constexpr float base_posterization = 5.f;
#ifdef _OPENMP
# pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
float l = LIM(log2(std::max(Y[y][x], 1e-9f)), centers[0], centers[11]);
float ll = round(l * base_posterization) / base_posterization;
Y2[y][x] = Y[y][x];
Y[y][x] = exp2(ll);
}
}
radius = 350.f / scale;
epsilon2 = base_epsilon / float(6 - std::min(lp.detailsh, 5));
rtengine::guidedFilter(Y2, Y, Y, radius, epsilon2, multithread);
}
const auto gauss =
[](float b, float x) -> float {
return xexpf((-SQR(x - b) / 4.0f));
};
// For every pixel luminance, the sum of the gaussian masks
float w_sum = 0.f;
for (int i = 0; i < 12; ++i) {
w_sum += gauss(centers[i], 0.f);
}
const auto process_pixel =
[&](float y) -> float {
// convert to log space
const float luma = max(log2(max(y, 0.f)), -18.0f);
// build the correction as the sum of the contribution of each
// luminance channel to current pixel
float correction = 0.0f;
for (int c = 0; c < 12; ++c)
{
correction += gauss(centers[c], luma) * factors[c];
}
correction /= w_sum;
return correction;
};
LUTf lut(65536);
for (int i = 0; i < 65536; ++i) {
float y = float(i) / 65535.f;
float c = process_pixel(y);
lut[i] = c;
}
#ifdef __SSE2__
vfloat vfactors[12];
vfloat vcenters[12];
for (int i = 0; i < 12; ++i) {
vfactors[i] = F2V(factors[i]);
vcenters[i] = F2V(centers[i]);
}
const auto vgauss =
[](vfloat b, vfloat x) -> vfloat {
static const vfloat fourv = F2V(4.f);
return xexpf((-SQR(x - b) / fourv));
};
vfloat zerov = F2V(0.f);
vfloat vw_sum = F2V(w_sum);
const vfloat noisev = F2V(-18.f);
const vfloat xlog2v = F2V(xlogf(2.f));
const auto vprocess_pixel =
[&](vfloat y) -> vfloat {
const vfloat luma = vmaxf(xlogf(vmaxf(y, zerov)) / xlog2v, noisev);
vfloat correction = zerov;
for (int c = 0; c < 12; ++c)
{
correction += vgauss(vcenters[c], luma) * vfactors[c];
}
correction /= vw_sum;
return correction;
};
vfloat v1 = F2V(1.f);
vfloat v65535 = F2V(65535.f);
#endif // __SSE2__
#ifdef _OPENMP
# pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
int x = 0;
#ifdef __SSE2__
for (; x < W - 3; x += 4) {
vfloat cY = LVFU(Y[y][x]);
vmask m = vmaskf_gt(cY, v1);
vfloat corr;
if (_mm_movemask_ps((vfloat)m)) {
corr = vprocess_pixel(cY);
} else {
corr = lut[cY * v65535];
}
STVF(R[y][x], LVF(R[y][x]) * corr);
STVF(G[y][x], LVF(G[y][x]) * corr);
STVF(B[y][x], LVF(B[y][x]) * corr);
}
#endif // __SSE2__
for (; x < W; ++x) {
float cY = Y[y][x];
float corr = cY > 1.f ? process_pixel(cY) : lut[cY * 65535.f];
R[y][x] *= corr;
G[y][x] *= corr;
B[y][x] *= corr;
}
}
}
void ImProcFunctions::ciecamloc_02float(int sp, LabImage* lab)
{
//be carefull quasi duplicate with branch cat02wb
BENCHFUN
int width = lab->W, height = lab->H;
float Yw;
Yw = 1.0f;
double Xw, Zw;
float f = 0.f, nc = 0.f, la, c = 0.f, xw, yw, zw, f2 = 1.f, c2 = 1.f, nc2 = 1.f, yb2;
float fl, n, nbb, ncb, aw; //d
float xwd, ywd, zwd, xws, yws, zws;
// int alg = 0;
double Xwout, Zwout;
double Xwsc, Zwsc;
int tempo;
if (params->locallab.spots.at(sp).warm > 0) {
tempo = 5000 - 30 * params->locallab.spots.at(sp).warm;
} else {
tempo = 5000 - 49 * params->locallab.spots.at(sp).warm;
}
ColorTemp::temp2mulxyz(params->wb.temperature, params->wb.method, Xw, Zw); //compute white Xw Yw Zw : white current WB
ColorTemp::temp2mulxyz(tempo, "Custom", Xwout, Zwout);
ColorTemp::temp2mulxyz(5000, "Custom", Xwsc, Zwsc);
//viewing condition for surrsrc
f = 1.00f;
c = 0.69f;
nc = 1.00f;
//viewing condition for surround
f2 = 1.0f, c2 = 0.69f, nc2 = 1.0f;
//with which algorithm
// alg = 0;
xwd = 100.f * Xwout;
zwd = 100.f * Zwout;
ywd = 100.f;
xws = 100.f * Xwsc;
zws = 100.f * Zwsc;
yws = 100.f;
yb2 = 18;
//La and la2 = ambiant luminosity scene and viewing
la = 400.f;
const float la2 = 400.f;
const float pilot = 2.f;
const float pilotout = 2.f;
//algoritm's params
// const float rstprotection = 100. ;//- params->colorappearance.rstprotection;
LUTu hist16J;
LUTu hist16Q;
float yb = 18.f;
float d, dj;
// const int gamu = 0; //(params->colorappearance.gamut) ? 1 : 0;
xw = 100.0f * Xw;
yw = 100.0f * Yw;
zw = 100.0f * Zw;
float xw1 = xws, yw1 = yws, zw1 = zws, xw2 = xwd, yw2 = ywd, zw2 = zwd;
float cz, wh, pfl;
Ciecam02::initcam1float(yb, pilot, f, la, xw, yw, zw, n, d, nbb, ncb, cz, aw, wh, pfl, fl, c);
// const float chr = 0.f;
const float pow1 = pow_F(1.64f - pow_F(0.29f, n), 0.73f);
float nj, nbbj, ncbj, czj, awj, flj;
Ciecam02::initcam2float(yb2, pilotout, f2, la2, xw2, yw2, zw2, nj, dj, nbbj, ncbj, czj, awj, flj);
#ifdef __SSE2__
const float reccmcz = 1.f / (c2 * czj);
#endif
const float pow1n = pow_F(1.64f - pow_F(0.29f, nj), 0.73f);
// const float QproFactor = (0.4f / c) * (aw + 4.0f) ;
const bool LabPassOne = true;
#ifdef __SSE2__
int bufferLength = ((width + 3) / 4) * 4; // bufferLength has to be a multiple of 4
#endif
#ifndef _DEBUG
#pragma omp parallel
#endif
{
#ifdef __SSE2__
// one line buffer per channel and thread
float Jbuffer[bufferLength] ALIGNED16;
float Cbuffer[bufferLength] ALIGNED16;
float hbuffer[bufferLength] ALIGNED16;
float Qbuffer[bufferLength] ALIGNED16;
float Mbuffer[bufferLength] ALIGNED16;
float sbuffer[bufferLength] ALIGNED16;
#endif
#ifndef _DEBUG
#pragma omp for schedule(dynamic, 16)
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
// vectorized conversion from Lab to jchqms
int k;
vfloat x, y, z;
vfloat J, C, h, Q, M, s;
vfloat c655d35 = F2V(655.35f);
for (k = 0; k < width - 3; k += 4) {
Color::Lab2XYZ(LVFU(lab->L[i][k]), LVFU(lab->a[i][k]), LVFU(lab->b[i][k]), x, y, z);
x = x / c655d35;
y = y / c655d35;
z = z / c655d35;
Ciecam02::xyz2jchqms_ciecam02float(J, C, h,
Q, M, s, F2V(aw), F2V(fl), F2V(wh),
x, y, z,
F2V(xw1), F2V(yw1), F2V(zw1),
F2V(c), F2V(nc), F2V(pow1), F2V(nbb), F2V(ncb), F2V(pfl), F2V(cz), F2V(d));
STVF(Jbuffer[k], J);
STVF(Cbuffer[k], C);
STVF(hbuffer[k], h);
STVF(Qbuffer[k], Q);
STVF(Mbuffer[k], M);
STVF(sbuffer[k], s);
}
for (; k < width; k++) {
float L = lab->L[i][k];
float a = lab->a[i][k];
float b = lab->b[i][k];
float x, y, z;
//convert Lab => XYZ
Color::Lab2XYZ(L, a, b, x, y, z);
x = x / 655.35f;
y = y / 655.35f;
z = z / 655.35f;
float J, C, h, Q, M, s;
Ciecam02::xyz2jchqms_ciecam02float(J, C, h,
Q, M, s, aw, fl, wh,
x, y, z,
xw1, yw1, zw1,
c, nc, pow1, nbb, ncb, pfl, cz, d);
Jbuffer[k] = J;
Cbuffer[k] = C;
hbuffer[k] = h;
Qbuffer[k] = Q;
Mbuffer[k] = M;
sbuffer[k] = s;
}
#endif // __SSE2__
for (int j = 0; j < width; j++) {
float J, C, h, Q, M, s;
#ifdef __SSE2__
// use precomputed values from above
J = Jbuffer[j];
C = Cbuffer[j];
h = hbuffer[j];
Q = Qbuffer[j];
M = Mbuffer[j];
s = sbuffer[j];
#else
float x, y, z;
float L = lab->L[i][j];
float a = lab->a[i][j];
float b = lab->b[i][j];
float x1, y1, z1;
//convert Lab => XYZ
Color::Lab2XYZ(L, a, b, x1, y1, z1);
x = (float)x1 / 655.35f;
y = (float)y1 / 655.35f;
z = (float)z1 / 655.35f;
//process source==> normal
Ciecam02::xyz2jchqms_ciecam02float(J, C, h,
Q, M, s, aw, fl, wh,
x, y, z,
xw1, yw1, zw1,
c, nc, pow1, nbb, ncb, pfl, cz, d);
#endif
float Jpro, Cpro, hpro, Qpro, Mpro, spro;
Jpro = J;
Cpro = C;
hpro = h;
Qpro = Q;
Mpro = M;
spro = s;
/*
*/
//retrieve values C,J...s
C = Cpro;
J = Jpro;
Q = Qpro;
M = Mpro;
h = hpro;
s = spro;
if (LabPassOne) {
#ifdef __SSE2__
// write to line buffers
Jbuffer[j] = J;
Cbuffer[j] = C;
hbuffer[j] = h;
#else
float xx, yy, zz;
//process normal==> viewing
Ciecam02::jch2xyz_ciecam02float(xx, yy, zz,
J, C, h,
xw2, yw2, zw2,
c2, nc2, pow1n, nbbj, ncbj, flj, czj, dj, awj);
float x, y, z;
x = xx * 655.35f;
y = yy * 655.35f;
z = zz * 655.35f;
float Ll, aa, bb;
//convert xyz=>lab
Color::XYZ2Lab(x, y, z, Ll, aa, bb);
lab->L[i][j] = Ll;
lab->a[i][j] = aa;
lab->b[i][j] = bb;
#endif
}
// }
}
#ifdef __SSE2__
// process line buffers
float *xbuffer = Qbuffer;
float *ybuffer = Mbuffer;
float *zbuffer = sbuffer;
for (k = 0; k < bufferLength; k += 4) {
Ciecam02::jch2xyz_ciecam02float(x, y, z,
LVF(Jbuffer[k]), LVF(Cbuffer[k]), LVF(hbuffer[k]),
F2V(xw2), F2V(yw2), F2V(zw2),
F2V(nc2), F2V(pow1n), F2V(nbbj), F2V(ncbj), F2V(flj), F2V(dj), F2V(awj), F2V(reccmcz));
STVF(xbuffer[k], x * c655d35);
STVF(ybuffer[k], y * c655d35);
STVF(zbuffer[k], z * c655d35);
}
// XYZ2Lab uses a lookup table. The function behind that lut is a cube root.
// SSE can't beat the speed of that lut, so it doesn't make sense to use SSE
for (int j = 0; j < width; j++) {
float Ll, aa, bb;
//convert xyz=>lab
Color::XYZ2Lab(xbuffer[j], ybuffer[j], zbuffer[j], Ll, aa, bb);
lab->L[i][j] = Ll;
lab->a[i][j] = aa;
lab->b[i][j] = bb;
}
#endif
}
}
}
void ImProcFunctions::softproc(const LabImage* bufcolorig, const LabImage* bufcolfin, float rad, int bfh, int bfw, double epsilmax, double epsilmin, float thres, int sk, bool multiThread, int flag)
{
if (flag == 0) {
if (rad > 0.f) {
array2D<float> ble(bfw, bfh);
array2D<float> guid(bfw, bfh);
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float X, Y, Z;
float L = bufcolorig->L[ir][jr];
float a = bufcolorig->a[ir][jr];
float b = bufcolorig->b[ir][jr];
Color::Lab2XYZ(L, a, b, X, Y, Z);
guid[ir][jr] = Y / 32768.f;
float La = bufcolfin->L[ir][jr];
float aa = bufcolfin->a[ir][jr];
float ba = bufcolfin->b[ir][jr];
Color::Lab2XYZ(La, aa, ba, X, Y, Z);
tmpImage->r(ir, jr) = X;
tmpImage->g(ir, jr) = Y;
tmpImage->b(ir, jr) = Z;
ble[ir][jr] = Y / 32768.f;
}
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * 0.1 * rad + bepsil;
float blur = 10.f / sk * (thres + 0.8f * rad);
rtengine::guidedFilter(guid, ble, ble, blur, epsil, multiThread, 4);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float X = tmpImage->r(ir, jr);
float Y = 32768.f * ble[ir][jr];
float Z = tmpImage->b(ir, jr);
float L, a, b;
Color::XYZ2Lab(X, Y, Z, L, a, b);
bufcolfin->L[ir][jr] = L;
}
delete tmpImage;
}
} else if (flag == 1) {
if (rad > 0.f) {
array2D<float> ble(bfw, bfh);
array2D<float> blechro(bfw, bfh);
array2D<float> hue(bfw, bfh);
array2D<float> guid(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
// hue[ir][jr] = xatan2f(bufcolfin->b[ir][jr], bufcolfin->a[ir][jr]);
// float chromah = sqrt(SQR(bufcolfin->b[ir][jr]) + SQR(bufcolfin->a[ir][jr]));
ble[ir][jr] = (bufcolfin->L[ir][jr]) / 32768.f;
// blechro[ir][jr] = chromah / 32768.f;
guid[ir][jr] = bufcolorig->L[ir][jr] / 32768.f;
}
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * 0.1 * rad + bepsil;
if (rad != 0.f) {
float blur = rad;
blur = blur < 0.f ? -1.f / blur : 1.f + blur;
// int r1 = max(int(4 / sk * blur + 0.5), 1);
int r2 = max(int(25 / sk * blur + 0.5), 1);
if (rad < 0.f) {
epsil = 0.0001;
}
rtengine::guidedFilter(guid, ble, ble, r2, epsil, multiThread);
// rtengine::guidedFilter(guid, blechro, blechro, r1, 0.5 * epsil, multiThread);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
// float2 sincosval = xsincosf(hue[ir][jr]);
bufcolfin->L[ir][jr] = 32768.f * ble[ir][jr];
// bufcolfin->a[ir][jr] = 32768.f * sincosval.y * blechro[ir][jr];
// bufcolfin->b[ir][jr] = 32768.f * sincosval.x * blechro[ir][jr];
}
}
}
}
void ImProcFunctions::softprocess(const LabImage* bufcolorig, array2D<float> &buflight, float rad, int bfh, int bfw, double epsilmax, double epsilmin, float thres, int sk, bool multiThread)
{
float minlig = buflight[0][0];
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minlig) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
minlig = rtengine::min(buflight[ir][jr], minlig);
}
}
array2D<float> guidsoft(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = LIM01((buflight[ir][jr] - minlig) / (100.f - minlig));
guidsoft[ir][jr] = bufcolorig->L[ir][jr] / 32768.f;
}
}
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * rad + bepsil;
float blur = 1.f / sk * (thres + 0.8f * rad);
guidedFilter(guidsoft, buflight, buflight, blur, epsil, multiThread, 4);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = (100.f - minlig) * buflight[ir][jr] + minlig;
}
}
}
void ImProcFunctions::exlabLocal(local_params& lp, int bfh, int bfw, LabImage* bufexporig, LabImage* lab, LUTf & hltonecurve, LUTf & shtonecurve, LUTf & tonecurve, float mean)
{
BENCHFUN
//exposure local
constexpr float maxran = 65536.f;
float exp_scale = pow(2.0, lp.expcomp);
float comp = (max(0.0, lp.expcomp) + 1.0) * lp.hlcomp / 100.0;
float shoulder = ((maxran / max(1.0f, exp_scale)) * (lp.hlcompthr / 200.0)) + 0.1;
float hlrange = maxran - shoulder;
float linear = lp.linear;
float kl = 1.5f;
float addcomp = 0.f;
if (lp.linear > 0.f) {
if (lp.expcomp == 0.f) {
lp.expcomp = 0.01f;
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
float L = bufexporig->L[ir][jr];
if (L < mean && lp.expmet == 1 && lp.linear > 0.f && lp.laplacexp > 0.1f && !lp.invex) {
float Llin = LIM01(L / 32768.f);
addcomp = linear * (-kl * Llin + kl);//maximum about 1.5 IL
exp_scale = pow(2.0, (lp.expcomp + addcomp));
shoulder = ((maxran / max(1.0f, exp_scale)) * (lp.hlcompthr / 200.0)) + 0.1;
comp = (max(0.0, (lp.expcomp + addcomp)) + 1.0) * lp.hlcomp / 100.0;
hlrange = maxran - shoulder;
}
// CurveFactory::Curvelocalhl(comp, lp.hlcomp, lp.hlcompthr, hltonecurve);//to change with comp(ir,jr) if need
//highlight
const float hlfactor = (2 * L < MAXVALF ? hltonecurve[2 * L] : CurveFactory::hlcurve(exp_scale, comp, hlrange, 2 * L));
L *= hlfactor * pow(2.0, addcomp);//approximation but pretty good with Laplacian and L < mean, hl aren't call
//shadow tone curve
const float shfactor = shtonecurve[2 * L];
//tonecurve
L *= shfactor;
lab->L[ir][jr] = 0.5f * tonecurve[2 * L];
}
}
}
void ImProcFunctions::addGaNoise(LabImage *lab, LabImage *dst, const float mean, const float variance, const int sk)
{
// BENCHFUN
//Box-Muller method.
// add luma noise to image
srand(1);
const float variaFactor = SQR(variance) / sk;
constexpr float randFactor1 = 1.f / RAND_MAX;
constexpr float randFactor2 = (2.f * rtengine::RT_PI_F) / RAND_MAX;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float z0, z1;
bool generate = false;
#ifdef _OPENMP
#pragma omp for schedule(static) // static scheduling is important to avoid artefacts
#endif
for (int y = 0; y < lab->H; y++) {
for (int x = 0; x < lab->W; x++) {
generate = !generate;
float kvar = 1.f;
if (lab->L[y][x] < 12000.f) {
constexpr float ah = -0.5f / 12000.f;
constexpr float bh = 1.5f;
kvar = ah * lab->L[y][x] + bh; //increase effect for low lights < 12000.f
} else if (lab->L[y][x] > 20000.f) {
constexpr float ah = -0.5f / 12768.f;
constexpr float bh = 1.f - 20000.f * ah;
kvar = ah * lab->L[y][x] + bh; //decrease effect for high lights > 20000.f
kvar = kvar < 0.5f ? 0.5f : kvar;
}
float varia = SQR(kvar) * variaFactor;
if (!generate) {
dst->L[y][x] = LIM(lab->L[y][x] + mean + varia * z1, 0.f, 32768.f);
continue;
}
int u1 = 0;
int u2;
while (u1 == 0) {
u1 = rand();
u2 = rand();
}
float u1f = u1 * randFactor1;
float u2f = u2 * randFactor2;
float2 sincosval = xsincosf(2.f * rtengine::RT_PI_F * u2f);
float factor = sqrtf(-2.f * xlogf(u1f));
z0 = factor * sincosval.y;
z1 = factor * sincosval.x;
dst->L[y][x] = LIM(lab->L[y][x] + mean + varia * z0, 0.f, 32768.f);
}
}
}
}
static void balancedeltaE(float kL, float &kab)
{
float mincurs = 0.3f;//minimum slider balan_
float maxcurs = 1.7f;//maximum slider balan_
float maxkab = 1.35;//0.5 * (3 - 0.3)
float minkab = 0.65;//0.5 * (3 - 1.7)
float abal = (maxkab - minkab) / (mincurs - maxcurs);
float bbal = maxkab - mincurs * abal;
kab = abal * kL + bbal;
}
static void balancedeltaEH(float kH, float &kch)
{
float mincurs = 0.3f;//minimum slider balan_
float maxcurs = 1.7f;//maximum slider balan_
float maxkab = 1.35;//0.5 * (3 - 0.3)
float minkab = 0.65;//0.5 * (3 - 1.7)
float abal = (maxkab - minkab) / (mincurs - maxcurs);
float bbal = maxkab - mincurs * abal;
kch = abal * kH + bbal;
}
static void calcreducdE(float dE, float maxdE, float mindE, float maxdElim, float mindElim, float iterat, float limscope, int scope, float &reducdE)
{
if (dE > maxdE) {
reducdE = 0.f;
} else if (dE > mindE && dE <= maxdE) {
const float ar = 1.f / (mindE - maxdE);
const float br = - ar * maxdE;
reducdE = pow(ar * dE + br, iterat);
} else {
reducdE = 1.f;
}
if (scope > limscope) {//80 arbitrary value, if we change we must change limscope
if (dE > maxdElim) {
reducdE = 0.f;
} else if (dE > mindElim && dE <= maxdElim) {
const float arlim = 1.f / (mindElim - maxdElim);
const float brlim = - arlim * maxdElim;
const float reducdElim = pow(arlim * dE + brlim, iterat);
const float aalim = (1.f - reducdElim) / 20.f;
const float bblim = 1.f - 100.f * aalim;
reducdE = aalim * scope + bblim;
} else {
reducdE = 1.f;
}
}
}
void ImProcFunctions::DeNoise_Local(int call, struct local_params& lp, LabImage*originalmask, int levred, float hueref, float lumaref, float chromaref, LabImage* original, LabImage* transformed, LabImage &tmp1, int cx, int cy, int sk)
{
//warning, but I hope used it next
// local denoise and impulse
//simple algo , perhaps we can improve as the others, but noise is here and not good for hue detection
// BENCHFUN
const float ach = (float)lp.trans / 100.f;
const float factnoise1 = 1.f + (lp.noisecf) / 500.f;
const float factnoise2 = 1.f + (lp.noisecc) / 500.f;
const float factnoise = factnoise1 * factnoise2;
const int GW = transformed->W;
const int GH = transformed->H;
if (lp.colorde == 0) {
lp.colorde = -1;//to avoid black
}
float darklim = 5000.f;
float aadark = -1.f;
float bbdark = darklim;
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
const bool usemaskbl = (lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 4);
const bool usemaskall = (usemaskbl);
const bool blshow = ((lp.showmaskblmet == 1 || lp.showmaskblmet == 2));
const bool previewbl = ((lp.showmaskblmet == 4));
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
std::unique_ptr<LabImage> origblurmask;
const float radius = 3.f / sk;
if (usemaskall) {
origblurmask.reset(new LabImage(GW, GH));
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(originalmask->L, origblurmask->L, GW, GH, radius);
gaussianBlur(originalmask->a, origblurmask->a, GW, GH, radius);
gaussianBlur(originalmask->b, origblurmask->b, GW, GH, radius);
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
const int begx = int (lp.xc - lp.lxL);
const int begy = int (lp.yc - lp.lyT);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const LabImage *maskptr = usemaskall ? origblurmask.get() : origblur.get();
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.sensden * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensden * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
for (int x = 0, lox = cx + x; x < transformed->W; x++, lox++) {
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float dEL = sqrt(0.9f * SQR(refa - maskptr->a[y][x] / 327.6f) + 0.9f * SQR(refb - maskptr->b[y][x] / 327.8f) + 1.2f * SQR(lumaref - maskptr->L[y][x] / 327.8f));
float dEa = sqrt(1.2f * SQR(refa - maskptr->a[y][x] / 327.6f) + 1.f * SQR(refb - maskptr->b[y][x] / 327.8f) + 0.8f * SQR(lumaref - maskptr->L[y][x] / 327.8f));
float dEb = sqrt(1.f * SQR(refa - maskptr->a[y][x] / 327.6f) + 1.2f * SQR(refb - maskptr->b[y][x] / 327.8f) + 0.8f * SQR(lumaref - maskptr->L[y][x] / 327.8f));
float reducdEL = 1.f;
float reducdEa = 1.f;
float reducdEb = 1.f;
if (levred == 7) {
calcreducdE(dEL, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensden, reducdEL);
calcreducdE(dEa, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensden, reducdEa);
calcreducdE(dEb, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensden, reducdEb);
reducdEL = SQR(reducdEL);
reducdEa = SQR(reducdEa);
reducdEb = SQR(reducdEb);
}
if (zone > 0) {
float difL, difa, difb;
if (call == 2 /*|| call == 1 || call == 3 */) { //simpleprocess
difL = tmp1.L[loy - begy][lox - begx] - original->L[y][x];
difa = tmp1.a[loy - begy][lox - begx] - original->a[y][x];
difb = tmp1.b[loy - begy][lox - begx] - original->b[y][x];
} else { //dcrop
difL = tmp1.L[y][x] - original->L[y][x];
difa = tmp1.a[y][x] - original->a[y][x];
difb = tmp1.b[y][x] - original->b[y][x];
}
difL *= localFactor * reducdEL;
difa *= localFactor * reducdEa;
difb *= localFactor * reducdEb;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
transformed->a[y][x] = CLIPC((original->a[y][x] + difa) * factnoise);
transformed->b[y][x] = CLIPC((original->b[y][x] + difb) * factnoise) ;
float amplabL = 2.f * lp.colorde;
if (blshow) {
transformed->L[y][x] = CLIP(12000.f + amplabL * difL);// * 10.f empirical to can visualize modifications
transformed->a[y][x] = CLIPC(amplabL * difa);// * 10.f empirical to can visualize modifications
transformed->b[y][x] = CLIPC(amplabL * difb);// * 10.f empirical to can visualize modifications
} else if (previewbl) {
float difbdisp = (reducdEL + reducdEa + reducdEb) * 10000.f * lp.colorde;
if (transformed->L[y][x] < darklim) { //enhance dark luminance as user can see!
float dark = transformed->L[y][x];
transformed->L[y][x] = dark * aadark + bbdark;
}
if (lp.colorde <= 0) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = difbdisp;
} else {
transformed->a[y][x] = -difbdisp;
transformed->b[y][x] = 0.f;
}
}
}
}
}
}
}
void ImProcFunctions::InverseReti_Local(const struct local_params & lp, const float hueref, const float chromaref, const float lumaref, LabImage * original, LabImage * transformed, const LabImage * const tmp1, int cx, int cy, int chro, int sk)
{
// BENCHFUN
//inverse local retinex
float ach = (float)lp.trans / 100.f;
int GW = transformed->W;
int GH = transformed->H;
float refa = chromaref * cos(hueref);
float refb = chromaref * sin(hueref);
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.sensh * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensh * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone;
float localFactor;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
float rL = origblur->L[y][x] / 327.68f;
float reducdE = 0.f;
float dE = sqrt(kab * SQR(refa - origblur->a[y][x] / 327.68f) + kab * SQR(refb - origblur->b[y][x] / 327.68f) + kL * SQR(lumaref - rL));
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensh, reducdE);
switch (zone) {
case 0: { // outside selection and outside transition zone => full effect, no transition
if (chro == 0) {
float difL = tmp1->L[y][x] - original->L[y][x];
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
}
if (chro == 1) {
float difa = tmp1->a[y][x] - original->a[y][x];
float difb = tmp1->b[y][x] - original->b[y][x];
transformed->a[y][x] = CLIPC(original->a[y][x] + difa * reducdE);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb * reducdE);
}
break;
}
case 1: { // inside transition zone
float factorx = 1.f - localFactor;
if (chro == 0) {
float difL = tmp1->L[y][x] - original->L[y][x];
difL *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
}
if (chro == 1) {
float difa = tmp1->a[y][x] - original->a[y][x];
float difb = tmp1->b[y][x] - original->b[y][x];
difa *= factorx;
difb *= factorx;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa * reducdE);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb * reducdE);
}
break;
}
case 2: { // inside selection => no effect, keep original values
if (chro == 0) {
transformed->L[y][x] = original->L[y][x];
}
if (chro == 1) {
transformed->a[y][x] = original->a[y][x];
transformed->b[y][x] = original->b[y][x];
}
}
}
}
}
}
}
void ImProcFunctions::InverseBlurNoise_Local(LabImage * originalmask, float **bufchro, const struct local_params & lp, const float hueref, const float chromaref, const float lumaref, LabImage * original, LabImage * transformed, const LabImage * const tmp1, int cx, int cy, int sk)
{
// BENCHFUN
//inverse local blur and noise
float ach = (float)lp.trans / 100.f;
int GW = transformed->W;
int GH = transformed->H;
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
const bool blshow = (lp.showmaskblmet == 1 || lp.showmaskblmet == 2);
const bool previewbl = (lp.showmaskblmet == 4);
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaEH(kH, kch);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
std::unique_ptr<LabImage> origblurmask;
const bool usemaskbl = (lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 4);
const bool usemaskall = usemaskbl;
float radius = 3.f / sk;
if (usemaskall) {
origblurmask.reset(new LabImage(GW, GH));
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(originalmask->L, origblurmask->L, GW, GH, radius);
gaussianBlur(originalmask->a, origblurmask->a, GW, GH, radius);
gaussianBlur(originalmask->b, origblurmask->b, GW, GH, radius);
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const LabImage *maskptr = usemaskall ? origblurmask.get() : origblur.get();
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.sensbn * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensbn * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone;
float localFactor;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
const float clc = (previewbl) ? settings->previewselection * 100.f : bufchro[y][x];
float abdelta2 = SQR(refa - maskptr->a[y][x]) + SQR(refb - maskptr->b[y][x]);
float chrodelta2 = SQR(sqrt(SQR(maskptr->a[y][x]) + SQR(maskptr->b[y][x])) - (chromaref * 327.68f));
float huedelta2 = abdelta2 - chrodelta2;
float dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - maskptr->L[y][x]));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensbn, reducdE);
const float realstrchdE = reducdE * clc;
switch (zone) {
case 0: { // outside selection and outside transition zone => full effect, no transition
float difL = tmp1->L[y][x] - original->L[y][x];
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
float difa = tmp1->a[y][x] - original->a[y][x];
float difb = tmp1->b[y][x] - original->b[y][x];
float flia = 1.f, flib = 1.f;
flia = flib = ((100.f + realstrchdE) / 100.f);
const float chra = tmp1->a[y][x];
const float chrb = tmp1->b[y][x];
if (!lp.actsp) {
difa = chra * flia - original->a[y][x];
difb = chrb * flib - original->b[y][x];
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
if (blshow) {
transformed->L[y][x] = CLIP(12000.f + difL);
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
} else if (previewbl) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = (difb);
}
break;
}
case 1: { // inside transition zone
float difL = tmp1->L[y][x] - original->L[y][x];
float difa = tmp1->a[y][x] - original->a[y][x];
float difb = tmp1->b[y][x] - original->b[y][x];
float flia = 1.f, flib = 1.f;
flia = flib = ((100.f + realstrchdE) / 100.f);
const float chra = tmp1->a[y][x];
const float chrb = tmp1->b[y][x];
float factorx = 1.f - localFactor;
difL *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
if (!lp.actsp) {
difa = chra * flia - original->a[y][x];
difb = chrb * flib - original->b[y][x];
difa *= factorx;
difb *= factorx;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
if (blshow) {
transformed->L[y][x] = CLIP(12000.f + difL);
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
} else if (previewbl) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = (difb);
}
break;
}
case 2: { // inside selection => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
if (!lp.actsp) {
transformed->a[y][x] = original->a[y][x];
transformed->b[y][x] = original->b[y][x];
}
}
}
}
}
}
}
static void calclight(float lum, float koef, float &lumnew, const LUTf &lightCurveloc)
{
lumnew = koef != -100.f ? CLIPLOC(lightCurveloc[lum]) : 0.f;
}
static void mean_fab(int xstart, int ystart, int bfw, int bfh, LabImage* bufexporig, const LabImage* original, float &fab, float &meanfab, float chrom)
{
const int nbfab = bfw * bfh;
meanfab = 0.f;
fab = 50.f;
if (nbfab > 0) {
double sumab = 0.0;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:sumab)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufexporig->a[y][x] = original->a[y + ystart][x + xstart];
bufexporig->b[y][x] = original->b[y + ystart][x + xstart];
sumab += fabs(bufexporig->a[y][x]);
sumab += fabs(bufexporig->b[y][x]);
}
}
meanfab = sumab / (2.f * nbfab);
double som = 0.0;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:som)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
som += SQR(fabs(bufexporig->a[y][x]) - meanfab) + SQR(fabs(bufexporig->b[y][x]) - meanfab);
}
}
const float multsigma = (chrom >= 0.f ? 0.035f : 0.018f) * chrom + 1.f;
const float stddv = sqrt(som / nbfab);
fab = meanfab + multsigma * stddv;
if (fab <= 0.f) {
fab = 50.f;
}
}
}
float pow3(float x)
{
return x * x * x;
}
struct grad_params {
bool angle_is_zero, transpose, bright_top;
float ta, yc, xc;
float ys, ys_inv;
float scale, botmul, topmul;
float top_edge_0;
int h;
};
void calclocalGradientParams(const struct local_params& lp, struct grad_params& gp, float ystart, float xstart, int bfw, int bfh, int indic)
{
int w = bfw;
int h = bfh;
float stops = 0.f;
float angs = 0.f;
if (indic == 0) {
stops = -lp.strmaexp;
angs = lp.angmaexp;
} else if (indic == 1) {
stops = lp.strexp;
angs = lp.angexp;
} else if (indic == 2) {
stops = lp.strSH;
angs = lp.angSH;
} else if (indic == 3) {
stops = lp.strcol;
angs = lp.angcol;
} else if (indic == 4) {
float redu = 1.f;
if (lp.strcolab > 0.f) {
redu = 0.6f;
} else {
redu = 0.15f;
}
stops = redu * lp.strcolab;
angs = lp.angcol;
} else if (indic == 5) {
stops = lp.strcolab;
angs = lp.angcol;
} else if (indic == 6) {
stops = lp.strcolh;
angs = lp.angcol;
} else if (indic == 7) {
stops = lp.strvib;
angs = lp.angvib;
} else if (indic == 8) {
float redu = 1.f;
if (lp.strvibab > 0.f) {
redu = 0.7f;
} else {
redu = 0.5f;
}
stops = redu * lp.strvibab;
angs = lp.angvib;
} else if (indic == 9) {
stops = lp.strvibh;
angs = lp.angvib;
} else if (indic == 10) {
stops = fabs(lp.strwav);
angs = lp.angwav;
} else if (indic == 11) {
stops = lp.strlog;
angs = lp.anglog;
}
double gradient_stops = stops;
double gradient_center_x = LIM01((lp.xc - xstart) / bfw);
double gradient_center_y = LIM01((lp.yc - ystart) / bfh);
double gradient_angle = angs / 180.0 * rtengine::RT_PI;
double varfeath = 0.01 * lp.feath;
//printf("xstart=%f ysta=%f lpxc=%f lpyc=%f stop=%f bb=%f cc=%f ang=%f ff=%d gg=%d\n", xstart, ystart, lp.xc, lp.yc, gradient_stops, gradient_center_x, gradient_center_y, gradient_angle, w, h);
// make 0.0 <= gradient_angle < 2 * rtengine::RT_PI
gradient_angle = fmod(gradient_angle, 2 * rtengine::RT_PI);
if (gradient_angle < 0.0) {
gradient_angle += 2.0 * rtengine::RT_PI;
}
gp.bright_top = false;
gp.transpose = false;
gp.angle_is_zero = false;
gp.h = h;
double cosgrad = cos(gradient_angle);
if (fabs(cosgrad) < 0.707) {
// we transpose to avoid division by zero at 90 degrees
// (actually we could transpose only for 90 degrees, but this way we avoid
// division with extremely small numbers
gp.transpose = true;
gradient_angle += 0.5 * rtengine::RT_PI;
double gxc = gradient_center_x;
gradient_center_x = 1.0 - gradient_center_y;
gradient_center_y = gxc;
}
gradient_angle = fmod(gradient_angle, 2 * rtengine::RT_PI);
if (gradient_angle > 0.5 * rtengine::RT_PI && gradient_angle < rtengine::RT_PI) {
gradient_angle += rtengine::RT_PI;
gp.bright_top = true;
} else if (gradient_angle >= rtengine::RT_PI && gradient_angle < 1.5 * rtengine::RT_PI) {
gradient_angle -= rtengine::RT_PI;
gp.bright_top = true;
}
if (fabs(gradient_angle) < 0.001 || fabs(gradient_angle - 2 * rtengine::RT_PI) < 0.001) {
gradient_angle = 0;
gp.angle_is_zero = true;
}
if (gp.transpose) {
gp.bright_top = !gp.bright_top;
std::swap(w, h);
}
gp.scale = 1.0 / pow(2, gradient_stops);
if (gp.bright_top) {
gp.topmul = 1.0;
gp.botmul = gp.scale;
} else {
gp.topmul = gp.scale;
gp.botmul = 1.0;
}
gp.ta = tan(gradient_angle);
gp.xc = w * gradient_center_x;
gp.yc = h * gradient_center_y;
gp.ys = sqrt((float)h * h + (float)w * w) * (varfeath / cos(gradient_angle));
gp.ys_inv = 1.0 / gp.ys;
gp.top_edge_0 = gp.yc - gp.ys / 2.0;
if (gp.ys < 1.0 / h) {
gp.ys_inv = 0;
gp.ys = 0;
}
}
void ImProcFunctions::blendstruc(int bfw, int bfh, LabImage* bufcolorig, float radius, float stru, array2D<float> & blend2, int sk, bool multiThread)
{
SobelCannyLuma(blend2, bufcolorig->L, bfw, bfh, radius, multiThread);
float rm = 20.f / sk;
if (rm > 0) {
float **mb = blend2;
gaussianBlur(mb, mb, bfw, bfh, rm);
}
array2D<float> ble(bfw, bfh);
array2D<float> guid(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
float X, Y, Z;
float L = bufcolorig->L[ir][jr];
float a = bufcolorig->a[ir][jr];
float b = bufcolorig->b[ir][jr];
Color::Lab2XYZ(L, a, b, X, Y, Z);
guid[ir][jr] = Y / 32768.f;
blend2[ir][jr] /= 32768.f;
}
}
const float blur = 25 / sk * (10.f + 1.2f * stru);
rtengine::guidedFilter(guid, blend2, ble, blur, 0.001, multiThread);
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
blend2[ir][jr] = 32768.f * ble[ir][jr];
}
}
// Median_Denoise(ble, blend2, bfw, bfh, Median::TYPE_3X3_STRONG, 1, multiThread);
}
static void blendmask(const local_params& lp, int xstart, int ystart, int cx, int cy, int bfw, int bfh, LabImage* bufexporig, LabImage* original, LabImage* bufmaskor, LabImage* originalmas, float bl, int inv)
{
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
const int loy = y + ystart + cy;
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (inv == 0) {
if (zone > 0) {
bufexporig->L[y][x] += (bl * bufmaskor->L[y][x]);
bufexporig->a[y][x] *= (1.f + bl * bufmaskor->a[y][x]);
bufexporig->b[y][x] *= (1.f + bl * bufmaskor->b[y][x]);
bufexporig->L[y][x] = CLIP(bufexporig->L[y][x]);
bufexporig->a[y][x] = CLIPC(bufexporig->a[y][x]);
bufexporig->b[y][x] = CLIPC(bufexporig->b[y][x]);
originalmas->L[y][x] = CLIP(bufexporig->L[y][x] - bufmaskor->L[y][x]);
originalmas->a[y][x] = CLIPC(bufexporig->a[y][x] * (1.f - bufmaskor->a[y][x]));
originalmas->b[y][x] = CLIPC(bufexporig->b[y][x] * (1.f - bufmaskor->b[y][x]));
original->L[y + ystart][x + xstart] += (bl * localFactor * bufmaskor->L[y][x]);
original->a[y + ystart][x + xstart] *= (1.f + bl * localFactor * bufmaskor->a[y][x]);
original->b[y + ystart][x + xstart] *= (1.f + bl * localFactor * bufmaskor->b[y][x]);
original->L[y + ystart][x + xstart] = CLIP(original->L[y + ystart][x + xstart]);
original->a[y + ystart][x + xstart] = CLIPC(original->a[y + ystart][x + xstart]);
original->b[y + ystart][x + xstart] = CLIPC(original->b[y + ystart][x + xstart]);
}
} else if (inv == 1) {
localFactor = 1.f - localFactor;
if (zone < 2) {
bufexporig->L[y][x] += (bl * bufmaskor->L[y][x]);
bufexporig->a[y][x] *= (1.f + bl * bufmaskor->a[y][x]);
bufexporig->b[y][x] *= (1.f + bl * bufmaskor->b[y][x]);
bufexporig->L[y][x] = CLIP(bufexporig->L[y][x]);
bufexporig->a[y][x] = CLIPC(bufexporig->a[y][x]);
bufexporig->b[y][x] = CLIPC(bufexporig->b[y][x]);
originalmas->L[y][x] = CLIP(bufexporig->L[y][x] - bufmaskor->L[y][x]);
originalmas->a[y][x] = CLIPC(bufexporig->a[y][x] * (1.f - bufmaskor->a[y][x]));
originalmas->b[y][x] = CLIPC(bufexporig->b[y][x] * (1.f - bufmaskor->b[y][x]));
switch (zone) {
case 0: {
original->L[y + ystart][x + xstart] += (bl * bufmaskor->L[y][x]);
original->a[y + ystart][x + xstart] *= (1.f + bl * bufmaskor->a[y][x]);
original->b[y + ystart][x + xstart] *= (1.f + bl * bufmaskor->b[y][x]);
original->L[y + ystart][x + xstart] = CLIP(original->L[y + ystart][x + xstart]);
original->a[y + ystart][x + xstart] = CLIPC(original->a[y + ystart][x + xstart]);
original->b[y + ystart][x + xstart] = CLIPC(original->b[y + ystart][x + xstart]);
break;
}
case 1: {
original->L[y + ystart][x + xstart] += (bl * localFactor * bufmaskor->L[y][x]);
original->a[y + ystart][x + xstart] *= (1.f + bl * localFactor * bufmaskor->a[y][x]);
original->b[y + ystart][x + xstart] *= (1.f + bl * localFactor * bufmaskor->b[y][x]);
original->L[y + ystart][x + xstart] = CLIP(original->L[y + ystart][x + xstart]);
original->a[y + ystart][x + xstart] = CLIPC(original->a[y + ystart][x + xstart]);
original->b[y + ystart][x + xstart] = CLIPC(original->b[y + ystart][x + xstart]);
}
}
}
}
}
}
}
void ImProcFunctions::deltaEforMask(float **rdE, int bfw, int bfh, LabImage* bufcolorig, const float hueref, const float chromaref, const float lumaref,
float maxdE, float mindE, float maxdElim, float mindElim, float iterat, float limscope, int scope, float balance, float balanceh)
{
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
const float refL = lumaref;
float kL = balance;
float kab = 1.f;
float kH = balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
float reducdE = 1.f;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
float abdelta2 = SQR(refa - bufcolorig->a[y][x] / 327.68f) + SQR(refb - bufcolorig->b[y][x] / 327.68f);
float chrodelta2 = SQR(sqrt(SQR(bufcolorig->a[y][x] / 327.68f) + SQR(bufcolorig->b[y][x] / 327.68f)) - (chromaref));
float huedelta2 = abdelta2 - chrodelta2;
float tempdE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - bufcolorig->L[y][x] / 327.68f));
if (tempdE > maxdE) {
reducdE = 0.f;
} else if (tempdE > mindE && tempdE <= maxdE) {
const float ar = 1.f / (mindE - maxdE);
const float br = - ar * maxdE;
reducdE = pow(ar * tempdE + br, iterat);
} else {
reducdE = 1.f;
}
if (scope > limscope) {
if (tempdE > maxdElim) {
reducdE = 0.f;
} else if (tempdE > mindElim && tempdE <= maxdElim) {
const float arlim = 1.f / (mindElim - maxdElim);
const float brlim = - arlim * maxdElim;
const float reducdElim = pow(arlim * tempdE + brlim, iterat);
const float aalim = (1.f - reducdElim) / 20.f;
const float bblim = 1.f - 100.f * aalim;
reducdE = aalim * scope + bblim;
} else {
reducdE = 1.f;
}
}
// if(scope == 100) reducdE = 1.f;
rdE[y][x] = reducdE ;
}
}
}
static void deltaEforLaplace(float *dE, const local_params& lp, int bfw, int bfh, LabImage* bufexporig, const float hueref, const float chromaref, const float lumaref)
{
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
const float refL = lumaref;
float maxdE = 5.f + MAXSCOPE * lp.lap;
float *dEforLaplace = new float [bfw * bfh];
float maxC = sqrt((SQR(refa - bufexporig->a[0][0] / 327.68f) + SQR(refb - bufexporig->b[0][0] / 327.68f)) + SQR(refL - bufexporig->L[0][0] / 327.68f));
// float sumde = 0.f;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxC) // reduction(+:sumde)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
dEforLaplace[y * bfw + x] = sqrt((SQR(refa - bufexporig->a[y][x] / 327.68f) + SQR(refb - bufexporig->b[y][x] / 327.68f)) + SQR(refL - bufexporig->L[y][x] / 327.68f));
maxC = rtengine::max(maxC, dEforLaplace[y * bfw + x]);
// sumde += dEforLaplace[y * bfw + x];
}
}
// float mxde = sumde /(bfh * bfw);
// maxC = 0.5f * (mxde + maxC);
if (maxdE > maxC) {
maxdE = maxC - 1.f;
}
float ade = 1.f / (maxdE - maxC);
float bde = -ade * maxC;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
float reducdEforLap = 1.f;
if (dEforLaplace[y * bfw + x] < maxdE) {
reducdEforLap = 1.f;
} else {
reducdEforLap = ade * dEforLaplace[y * bfw + x] + bde;
}
dE[y * bfw + x] = reducdEforLap;
}
}
delete [] dEforLaplace;
}
static void showmask(int lumask, const local_params& lp, int xstart, int ystart, int cx, int cy, int bfw, int bfh, LabImage* bufexporig, LabImage* transformed, LabImage* bufmaskorigSH, int inv)
{
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
const int loy = y + ystart + cy;
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (inv == 0) {
if (zone > 0) {//normal
transformed->L[y + ystart][x + xstart] = (lumask * 400.f) + CLIPLOC(bufmaskorigSH->L[y][x]);
transformed->a[y + ystart][x + xstart] = bufexporig->a[y][x] * bufmaskorigSH->a[y][x];
transformed->b[y + ystart][x + xstart] = bufexporig->b[y][x] * bufmaskorigSH->b[y][x];
}
} else if (inv == 1) { //inverse
if (zone == 0) {
transformed->L[y + ystart][x + xstart] = (lumask * 400.f) + CLIPLOC(bufmaskorigSH->L[y][x]);
transformed->a[y + ystart][x + xstart] = bufexporig->a[y][x] * bufmaskorigSH->a[y][x];
transformed->b[y + ystart][x + xstart] = bufexporig->b[y][x] * bufmaskorigSH->b[y][x];
}
}
}
}
}
void ImProcFunctions::discrete_laplacian_threshold(float * data_out, const float * data_in, size_t nx, size_t ny, float t)
{
BENCHFUN
size_t i, j;
float *ptr_out;
float diff = 0.f;
/* pointers to the current and neighbour values */
const float *ptr_in, *ptr_in_xm1, *ptr_in_xp1, *ptr_in_ym1, *ptr_in_yp1;
if (NULL == data_in || NULL == data_out) {
fprintf(stderr, "a pointer is NULL and should not be so\n");
abort();
}
/* pointers to the data and neighbour values */
/*
* y-1
* x-1 ptr x+1
* y+1
* <---------------------nx------->
*/
ptr_in = data_in;
ptr_in_xm1 = data_in - 1;
ptr_in_xp1 = data_in + 1;
ptr_in_ym1 = data_in - nx;
ptr_in_yp1 = data_in + nx;
ptr_out = data_out;
for (j = 0; j < ny; j++) {
for (i = 0; i < nx; i++) {
*ptr_out = 0.f;
/* row differences */
if (0 < i) {
diff = *ptr_in - *ptr_in_xm1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
if (nx - 1 > i) {
diff = *ptr_in - *ptr_in_xp1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
/* column differences */
if (0 < j) {
diff = *ptr_in - *ptr_in_ym1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
if (ny - 1 > j) {
diff = *ptr_in - *ptr_in_yp1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
ptr_in++;
ptr_in_xm1++;
ptr_in_xp1++;
ptr_in_ym1++;
ptr_in_yp1++;
ptr_out++;
}
}
}
double *ImProcFunctions::cos_table(size_t size)
{
double *table = NULL;
double pi_size;
size_t i;
/* allocate the cosinus table */
if (NULL == (table = (double *) malloc(sizeof(double) * size))) {
fprintf(stderr, "allocation error\n");
abort();
}
/*
* fill the cosinus table,
* table[i] = cos(i Pi / n) for i in [0..n[
*/
pi_size = rtengine::RT_PI / size;
for (i = 0; i < size; i++) {
table[i] = cos(pi_size * i);
}
return table;
}
void ImProcFunctions::rex_poisson_dct(float * data, size_t nx, size_t ny, double m)
{
/*
* Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*
* @file retinex_pde_lib.c discrete Poisson equation
* @brief laplacian, DFT and Poisson routines
*
* @author Nicolas Limare <nicolas.limare@cmla.ens-cachan.fr>
* some adaptations for Rawtherapee
*/
BENCHFUN
double *cosx = NULL, *cosy = NULL;
size_t i;
double m2;
/*
* get the cosinus tables
* cosx[i] = cos(i Pi / nx) for i in [0..nx[
* cosy[i] = cos(i Pi / ny) for i in [0..ny[
*/
cosx = cos_table(nx);
cosy = cos_table(ny);
/*
* we will now multiply data[i, j] by
* m / (4 - 2 * cosx[i] - 2 * cosy[j]))
* and set data[0, 0] to 0
*/
m2 = m / 2.;
/*
* handle the first value, data[0, 0] = 0
* after that, by construction, we always have
* cosx[] + cosy[] != 2.
*/
data[0] = 0.;
/*
* continue with all the array:
* i % nx is the position on the x axis (column number)
* i / nx is the position on the y axis (row number)
*/
for (i = 1; i < nx * ny; i++) {
data[i] *= m2 / (2. - cosx[i % nx] - cosy[i / nx]);
}
free(cosx);
free(cosy);
}
void ImProcFunctions::mean_dt(const float * data, size_t size, double * mean_p, double * dt_p)
{
double mean, dt;
const float *ptr_data;
size_t i;
mean = 0.;
dt = 0.;
ptr_data = data;
for (i = 0; i < size; i++) {
mean += *ptr_data;
dt += (*ptr_data) * (*ptr_data);
ptr_data++;
}
mean /= (double) size;
dt /= (double) size;
dt -= (mean * mean);
dt = sqrt(dt);
*mean_p = mean;
*dt_p = dt;
}
void ImProcFunctions::normalize_mean_dt(float * data, float * ref, size_t size, float mod, float sigm)
{
/*
* Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*
* @file retinex_pde_lib.c discrete Poisson equation
* @brief laplacian, DFT and Poisson routines
*
* @author Nicolas Limare <nicolas.limare@cmla.ens-cachan.fr>
* adapted for Rawtherapee - jacques Desmis july 2019
*/
double mean_ref, mean_data, dt_ref, dt_data;
double a, b;
size_t i;
float *ptr_data;
float *ptr_dataold;
if (NULL == data || NULL == ref) {
fprintf(stderr, "a pointer is NULL and should not be so\n");
abort();
}
/* compute mean and variance of the two arrays */
mean_dt(ref, size, &mean_ref, &dt_ref);
mean_dt(data, size, &mean_data, &dt_data);
/* compute the normalization coefficients */
a = dt_ref / dt_data;
b = mean_ref - a * mean_data;
/* normalize the array */
ptr_data = data;
ptr_dataold = ref;//data;
for (i = 0; i < size; i++) {
*ptr_data = mod * (a * *ptr_data + sigm * b) + (1.f - mod) * *ptr_dataold;//normalize mean and stdv and balance PDE
ptr_data++;
}
}
void ImProcFunctions::retinex_pde(float * datain, float * dataout, int bfw, int bfh, float thresh, float multy, float * dE, int show, int dEenable, int normalize)
{
/*
* Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*
* @file retinex_pde_lib.c discrete Poisson equation
* @brief laplacian, DFT and Poisson routines
*
* @author Nicolas Limare <nicolas.limare@cmla.ens-cachan.fr>
* adapted for Rawtherapee by Jacques Desmis 6-2019 <jdesmis@gmail.com>
*/
BENCHFUN
#ifdef _OPENMP
if (multiThread) {
fftwf_init_threads();
fftwf_plan_with_nthreads(omp_get_max_threads());
}
#endif
fftwf_plan dct_fw, dct_fw04, dct_bw;
float *data_fft, *data_fft04, *data_tmp, *data, *data_tmp04;
float *datashow = nullptr;
if (show != 0) {
if (NULL == (datashow = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
}
if (NULL == (data_tmp = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (NULL == (data_tmp04 = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
//first call to laplacian with plein strength
ImProcFunctions::discrete_laplacian_threshold(data_tmp, datain, bfw, bfh, thresh);
if (NULL == (data_fft = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (show == 1) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
datashow[y * bfw + x] = data_tmp[y * bfw + x];
}
}
}
//second call to laplacian with 40% strength ==> reduce effect if we are far from ref (deltaE)
ImProcFunctions::discrete_laplacian_threshold(data_tmp04, datain, bfw, bfh, 0.4f * thresh);
if (NULL == (data_fft04 = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (NULL == (data = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
//execute first
dct_fw = fftwf_plan_r2r_2d(bfh, bfw, data_tmp, data_fft, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_fw);
//execute second
if (dEenable == 1) {
dct_fw04 = fftwf_plan_r2r_2d(bfh, bfw, data_tmp04, data_fft04, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_fw04);
}
if (dEenable == 1) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh ; y++) {//mix two fftw Laplacian : plein if dE near ref
for (int x = 0; x < bfw; x++) {
float prov = pow(dE[y * bfw + x], 4.5f);
data_fft[y * bfw + x] = prov * data_fft[y * bfw + x] + (1.f - prov) * data_fft04[y * bfw + x];
}
}
}
if (show == 2) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
datashow[y * bfw + x] = data_fft[y * bfw + x];
}
}
}
fftwf_free(data_fft04);
fftwf_free(data_tmp);
fftwf_free(data_tmp04);
if (dEenable == 1) {
fftwf_destroy_plan(dct_fw04);
}
/* solve the Poisson PDE in Fourier space */
/* 1. / (float) (bfw * bfh)) is the DCT normalisation term, see libfftw */
ImProcFunctions::rex_poisson_dct(data_fft, bfw, bfh, 1. / (double)(bfw * bfh));
if (show == 3) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
datashow[y * bfw + x] = data_fft[y * bfw + x];
}
}
}
dct_bw = fftwf_plan_r2r_2d(bfh, bfw, data_fft, data, FFTW_REDFT01, FFTW_REDFT01, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_bw);
fftwf_destroy_plan(dct_fw);
fftwf_destroy_plan(dct_bw);
fftwf_free(data_fft);
fftwf_cleanup();
if (multiThread) {
fftwf_cleanup_threads();
}
if (show != 4 && normalize == 1) {
normalize_mean_dt(data, datain, bfw * bfh, 1.f, 1.f);
}
if (show == 0 || show == 4) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
dataout[y * bfw + x] = CLIPLOC(multy * data[y * bfw + x]);
}
}
} else if (show == 1 || show == 2 || show == 3) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
dataout[y * bfw + x] = CLIPLOC(multy * datashow[y * bfw + x]);
}
}
fftwf_free(datashow);
}
fftwf_free(data);
}
void ImProcFunctions::maskcalccol(int call, bool invmask, bool pde, int bfw, int bfh, int xstart, int ystart, int sk, int cx, int cy, LabImage* bufcolorig, LabImage* bufmaskblurcol, LabImage* originalmaskcol, LabImage* original, LabImage* reserved, int inv, struct local_params & lp,
float strumask, bool astool,
const LocCCmaskCurve & locccmasCurve, bool & lcmasutili,
const LocLLmaskCurve & locllmasCurve, bool & llmasutili,
const LocHHmaskCurve & lochhmasCurve, bool &lhmasutili, const LocHHmaskCurve & lochhhmasCurve, bool &lhhmasutili,
bool multiThread, bool enaMask, bool showmaske, bool deltaE, bool modmask, bool zero, bool modif, float chrom, float rad, float lap, float gamma, float slope, float blendm, int shado, float amountcd, float anchorcd,
LUTf & lmasklocalcurve, bool & localmaskutili,
const LocwavCurve & loclmasCurvecolwav, bool & lmasutilicolwav, int level_bl, int level_hl, int level_br, int level_hr,
int shortcu, bool delt, const float hueref, const float chromaref, const float lumaref,
float maxdE, float mindE, float maxdElim, float mindElim, float iterat, float limscope, int scope
)
{
array2D<float> ble(bfw, bfh);
array2D<float> blechro(bfw, bfh);
array2D<float> hue(bfw, bfh);
array2D<float> guid(bfw, bfh);
std::unique_ptr<LabImage> bufreserv(new LabImage(bfw, bfh));
float meanfab, fab;
mean_fab(xstart, ystart, bfw, bfh, bufcolorig, original, fab, meanfab, chrom);
float chromult = 1.f - 0.01f * chrom;
float kinv = 1.f;
float kneg = 1.f;
if (invmask) {
kinv = 0.f;
kneg = -1.f;
}
if (deltaE || modmask || enaMask || showmaske) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufmaskblurcol->L[y][x] = original->L[y + ystart][x + xstart];
bufmaskblurcol->a[y][x] = original->a[y + ystart][x + xstart];
bufmaskblurcol->b[y][x] = original->b[y + ystart][x + xstart];
bufreserv->L[y][x] = reserved->L[y + ystart][x + xstart];
bufreserv->a[y][x] = reserved->a[y + ystart][x + xstart];
bufreserv->b[y][x] = reserved->b[y + ystart][x + xstart];
}
}
JaggedArray<float> blendstru(bfw, bfh);
if (lp.blurcolmask >= 0.25f && strumask == 0.f) {
strumask = 0.1f; // to enable a small mask make FFT good ...why ??
}
if (strumask > 0.f) {
float delstrumask = 4.1f - strumask;//4.1 = 2 * max slider strumask + 0.1
buildBlendMask(bufcolorig->L, blendstru, bfw, bfh, delstrumask);
float radblur = 0.02f * fabs(0.1f * rad);//empirical value
float rm = radblur / sk;
if (rm > 0) {
float **mb = blendstru;
gaussianBlur(mb, mb, bfw, bfh, rm);
}
}
JaggedArray<float> blendblur(bfw, bfh);
JaggedArray<float> blur(bfw, bfh);
if (lp.contcolmask > 0.f) {
float contra = lp.contcolmask;
buildBlendMask(bufcolorig->L, blendblur, bfw, bfh, contra);
float radblur = 0.25f + 0.002f * fabs(rad);//empirical value
float rm = radblur / sk;
if (lp.fftColorMask) {
if (rm < 0.3f) {
rm = 0.3f;
}
}
if (rm > 0) {
float **mb = blendblur;
gaussianBlur(mb, mb, bfw, bfh, rm);
}
if (lp.blurcolmask >= 0.25f) {
if (!lp.fftColorMask) { // || (lp.fftColorMask && call != 2)) {
printf("call=%i\n", call);
gaussianBlur(bufcolorig->L, blur, bfw, bfh, lp.blurcolmask / sk);
} else {
ImProcFunctions::fftw_convol_blur2(bufcolorig->L, blur, bfw, bfh, lp.blurcolmask / sk, 0, 0);
}
for (int i = 0; i < bfh; i++) {
for (int j = 0; j < bfw; j++) {
blur[i][j] = intp(blendblur[i][j], bufcolorig->L[i][j], std::max(blur[i][j], 0.0f));
}
}
}
}
bool HHmaskcurve = false;
if (lochhhmasCurve && lhhmasutili) {
for (int i = 0; i < 500; i++) {
if (lochhhmasCurve[i] != 0.5) {
HHmaskcurve = true;
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
float atan2Buffer[bfw] ALIGNED64;
// float atan2BufferH[bfw] ALIGNED64;
#endif
#ifdef _OPENMP
#pragma omp for schedule(dynamic, 16)
#endif
for (int ir = 0; ir < bfh; ir++) {
#ifdef __SSE2__
if (lochhmasCurve && lhmasutili) {
int i = 0;
for (; i < bfw - 3; i += 4) {
STVF(atan2Buffer[i], xatan2f(LVFU(bufcolorig->b[ir][i]), LVFU(bufcolorig->a[ir][i])));
}
for (; i < bfw; i++) {
atan2Buffer[i] = xatan2f(bufcolorig->b[ir][i], bufcolorig->a[ir][i]);
}
}
#endif
for (int jr = 0; jr < bfw; jr++) {
float kmaskL = 0.f;
float kmaskC = 0.f;
float kmaskHL = 0.f;
float kmaskH = 0.f;
float kmasstru = 0.f;
float kmasblur = 0.f;
// float kmaskHH = 0.f;
// float huemah;
// float newhr = 0.f;
// float2 sincosval;
if (strumask > 0.f && !astool) {
kmasstru = bufcolorig->L[ir][jr] * blendstru[ir][jr];
}
if (lp.contcolmask > 0.f) {
if (lp.blurcolmask >= 0.25f) {
float prov = intp(blendstru[ir][jr], bufcolorig->L[ir][jr], max(blur[ir][jr], 0.0f));
kmasblur = bufcolorig->L[ir][jr] - prov ;
}
}
if (locllmasCurve && llmasutili) {
kmaskL = 32768.f * LIM01(kinv - kneg * locllmasCurve[(500.f / 32768.f) * bufcolorig->L[ir][jr]]);
}
if (!deltaE && locccmasCurve && lcmasutili) {
kmaskC = LIM01(kinv - kneg * locccmasCurve[500.f * (0.0001f + sqrt(SQR(bufcolorig->a[ir][jr]) + SQR(bufcolorig->b[ir][jr])) / fab)]);
}
if (lochhmasCurve && lhmasutili) {
#ifdef __SSE2__
const float huema = atan2Buffer[jr];
#else
const float huema = xatan2f(bufcolorig->b[ir][jr], bufcolorig->a[ir][jr]);
#endif
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
const float valHH = LIM01(kinv - kneg * lochhmasCurve[500.f * h]);
if (!deltaE) {
kmaskH = valHH;
}
kmaskHL = 32768.f * valHH;
}
/*
//keep here in case of...but !!
if (lochhhmasCurve && HHmaskcurve) {
#ifdef __SSE2__
huemah = atan2BufferH[jr];
#else
huemah = xatan2f(bufcolorig->b[ir][jr], bufcolorig->a[ir][jr]);
#endif
float hh = Color::huelab_to_huehsv2(huemah);
hh += 1.f / 6.f;
if (hh > 1.f) {
hh -= 1.f;
}
const float val_HH = float (LIM01(((0.5f - lochhhmasCurve[500.f * hh]))));
kmaskHH = 2.f * val_HH;
const float hhro = kmaskHH;
if (hhro != 0) {
newhr = huemah + hhro;
if (newhr > rtengine::RT_PI_F) {
newhr -= 2 * rtengine::RT_PI_F;
} else if (newhr < -rtengine::RT_PI_F) {
newhr += 2 * rtengine::RT_PI_F;
}
}
sincosval = xsincosf(newhr);
}
*/
bufmaskblurcol->L[ir][jr] = CLIPLOC(kmaskL + kmaskHL + kmasstru + kmasblur);
// if(HHmaskcurve) {
// bufmaskblurcol->a[ir][jr] = CLIPC((kmaskC + chromult * kmaskH) * sincosval.y);
// bufmaskblurcol->b[ir][jr] = CLIPC((kmaskC + chromult * kmaskH) * sincosval.x);
// } else {
bufmaskblurcol->a[ir][jr] = CLIPC((kmaskC + chromult * kmaskH));
bufmaskblurcol->b[ir][jr] = CLIPC((kmaskC + chromult * kmaskH));
// }
if (shortcu == 1) { //short circuit all L curve
bufmaskblurcol->L[ir][jr] = 32768.f - bufcolorig->L[ir][jr];
}
ble[ir][jr] = bufmaskblurcol->L[ir][jr] / 32768.f;
hue[ir][jr] = xatan2f(bufmaskblurcol->b[ir][jr], bufmaskblurcol->a[ir][jr]);
float chromah = sqrt(SQR(bufmaskblurcol->b[ir][jr]) + SQR(bufmaskblurcol->a[ir][jr]));
blechro[ir][jr] = chromah / 32768.f;//must be good perhaps more or less, only incidence on LIM blea bleb
float X, Y, Z;
float L = bufcolorig->L[ir][jr];
float a = bufcolorig->a[ir][jr];
float b = bufcolorig->b[ir][jr];
Color::Lab2XYZ(L, a, b, X, Y, Z);
guid[ir][jr] = Y / 32768.f;
}
}
}
std::unique_ptr<LabImage> bufprov(new LabImage(bfw, bfh));
bufprov->CopyFrom(bufmaskblurcol);
if (rad != 0.f) {
float blur = rad;
blur = blur < 0.f ? -1.f / blur : 1.f + blur;
int r1 = max(int(4 / sk * blur + 0.5), 1);
int r2 = max(int(25 / sk * blur + 0.5), 1);
double epsilmax = 0.0005;
double epsilmin = 0.00001;
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * 0.1 * rad + bepsil;
if (rad < 0.f) {
epsil = 0.001;
}
rtengine::guidedFilter(guid, blechro, blechro, r1, epsil, multiThread);
rtengine::guidedFilter(guid, ble, ble, r2, 0.2 * epsil, multiThread);
}
LUTf lutTonemaskexp(65536);
calcGammaLut(gamma, slope, lutTonemaskexp);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
float2 sincosval = xsincosf(hue[ir][jr]);
bufmaskblurcol->L[ir][jr] = lutTonemaskexp[LIM01(ble[ir][jr]) * 65536.f];
bufmaskblurcol->a[ir][jr] = 32768.f * sincosval.y * blechro[ir][jr];
bufmaskblurcol->b[ir][jr] = 32768.f * sincosval.x * blechro[ir][jr];
}
}
if (strumask > 0.f && astool) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufmaskblurcol->L[ir][jr] *= (1.f + blendstru[ir][jr]);
}
}
}
if (lmasklocalcurve && localmaskutili) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
bufmaskblurcol->L[ir][jr] = 0.5f * lmasklocalcurve[2.f * bufmaskblurcol->L[ir][jr]];
}
}
if (shado > 0) {
ImProcFunctions::shadowsHighlights(bufmaskblurcol, true, 1, 0, shado, 40, sk, 0, 60);
}
int wavelet_level = level_br;
int minwin = min(bfw, bfh);
int maxlevelspot = 9;
while ((1 << maxlevelspot) >= (minwin * sk) && maxlevelspot > 1) {
--maxlevelspot ;
}
wavelet_level = min(wavelet_level, maxlevelspot);
int maxlvl;
float contrast = 0.f;
bool wavcurvemask = false;
if (loclmasCurvecolwav && lmasutilicolwav) {
for (int i = 0; i < 500; i++) {
if (loclmasCurvecolwav[i] != 0.5) {
wavcurvemask = true;
}
}
}
if (wavcurvemask) {
#ifdef _OPENMP
const int numThreads = omp_get_max_threads();
#else
const int numThreads = 1;
#endif
LocwavCurve dummy;
bool loclevwavutili = false;
bool wavcurvelev = false;
bool locconwavutili = false;
bool wavcurvecon = false;
bool loccompwavutili = false;
bool wavcurvecomp = false;
bool loccomprewavutili = false;
bool wavcurvecompre = false;
bool wavcurve = false;
bool locedgwavutili = false;
wavcontrast4(lp, bufmaskblurcol->L, nullptr, nullptr, contrast, 0.f, 0.f, 0.f, bfw, bfh, level_bl, level_hl, level_br, level_hr, sk, numThreads, loclmasCurvecolwav, lmasutilicolwav, wavcurve, dummy, loclevwavutili, wavcurvelev, dummy, locconwavutili, wavcurvecon, dummy, loccompwavutili, wavcurvecomp, dummy, loccomprewavutili, wavcurvecompre, dummy, locedgwavutili, 1.f, 1.f, maxlvl, 0.f, 0.f, 1.f, 1.f, false, false, false, false, false, 0.f, 0.f);
}
if (lochhhmasCurve && HHmaskcurve) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float huemah = xatan2f(bufmaskblurcol->b[ir][jr], bufmaskblurcol->a[ir][jr]);
float chromah = sqrt(SQR(bufmaskblurcol->b[ir][jr]) + SQR(bufmaskblurcol->a[ir][jr]));
float hh = Color::huelab_to_huehsv2(huemah);
hh += 1.f / 6.f;
if (hh > 1.f) {
hh -= 1.f;
}
const float val_HH = float ((0.5f - lochhhmasCurve[500.f * hh]));
const float hhro = 1.5f * val_HH;
float newhr;
if (hhro != 0) {
newhr = huemah + hhro;//we add radians and other dim between 0 1.. always radians but addition "false"
if (newhr > rtengine::RT_PI_F) {
newhr -= 2 * rtengine::RT_PI_F;
} else if (newhr < -rtengine::RT_PI_F) {
newhr += 2 * rtengine::RT_PI_F;
}
}
float2 sincosval = xsincosf(newhr);
bufmaskblurcol->a[ir][jr] = CLIPC(chromah * sincosval.y);
bufmaskblurcol->b[ir][jr] = CLIPC(chromah * sincosval.x);
}
}
if (amountcd > 1.f) { //dynamic range compression for Mask
FattalToneMappingParams fatParams;
fatParams.enabled = true;
fatParams.threshold = 100.f;
fatParams.amount = amountcd;
fatParams.anchor = anchorcd;
int nlev = 1;
Imagefloat *tmpImagefat = nullptr;
tmpImagefat = new Imagefloat(bfw, bfh);
lab2rgb(*bufmaskblurcol, *tmpImagefat, params->icm.workingProfile);
ToneMapFattal02(tmpImagefat, fatParams, nlev, 0, nullptr, 0, 0, 0);
rgb2lab(*tmpImagefat, *bufmaskblurcol, params->icm.workingProfile);
delete tmpImagefat;
}
if (delt) {
std::unique_ptr<JaggedArray<float>> rdEBuffer(new JaggedArray<float>(bfw, bfh));
float** rdE = *(rdEBuffer.get());
deltaEforMask(rdE, bfw, bfh, bufreserv.get(), hueref, chromaref, lumaref, maxdE, mindE, maxdElim, mindElim, iterat, limscope, scope, lp.balance, lp.balanceh);
std::unique_ptr<LabImage> delta(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
delta->L[ir][jr] = bufmaskblurcol->L[ir][jr] - bufprov->L[ir][jr];
delta->a[ir][jr] = bufmaskblurcol->a[ir][jr] - bufprov->a[ir][jr];
delta->b[ir][jr] = bufmaskblurcol->b[ir][jr] - bufprov->b[ir][jr];
bufmaskblurcol->L[ir][jr] = bufprov->L[ir][jr] + rdE[ir][jr] * delta->L[ir][jr];
bufmaskblurcol->a[ir][jr] = bufprov->a[ir][jr] + rdE[ir][jr] * delta->a[ir][jr];
bufmaskblurcol->b[ir][jr] = bufprov->b[ir][jr] + rdE[ir][jr] * delta->b[ir][jr];
}
rdEBuffer.reset();
}
struct grad_params gp;
if (lp.strmaexp != 0.f) {
calclocalGradientParams(lp, gp, ystart, xstart, bfw, bfh, 0);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gp, jr, ir);
bufmaskblurcol->L[ir][jr] *= factor;
}
}
if (lap > 0.f) {
float *datain = new float[bfh * bfw];
float *data_tmp = new float[bfh * bfw];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
datain[y * bfw + x] = bufmaskblurcol->L[y][x];
}
}
if (!pde) {
ImProcFunctions::discrete_laplacian_threshold(data_tmp, datain, bfw, bfh, 200.f * lap);
} else {
ImProcFunctions::retinex_pde(datain, data_tmp, bfw, bfh, 12.f * lap, 1.f, nullptr, 0, 0, 1);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufmaskblurcol->L[y][x] = data_tmp[y * bfw + x];
}
}
delete [] datain;
delete [] data_tmp;
}
}
const float radiusb = 1.f / sk;
if (deltaE || modmask || enaMask || showmaske) {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(bufmaskblurcol->L, bufmaskblurcol->L, bfw, bfh, radiusb);
gaussianBlur(bufmaskblurcol->a, bufmaskblurcol->a, bfw, bfh, 1.f + (0.5f * rad) / sk);
gaussianBlur(bufmaskblurcol->b, bufmaskblurcol->b, bfw, bfh, 1.f + (0.5f * rad) / sk);
}
if (zero || modif || modmask || deltaE || enaMask) {
originalmaskcol->CopyFrom(bufcolorig);
blendmask(lp, xstart, ystart, cx, cy, bfw, bfh, bufcolorig, original, bufmaskblurcol, originalmaskcol, blendm, inv);
}
}
}
void ImProcFunctions::InverseSharp_Local(float **loctemp, const float hueref, const float lumaref, const float chromaref, local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
//local sharp
// BENCHFUN
const float ach = (float)lp.trans / 100.f;
int GW = transformed->W;
int GH = transformed->H;
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
const bool sharshow = (lp.showmasksharmet == 1);
const bool previewshar = (lp.showmasksharmet == 2);
if (lp.colorde == 0) {
lp.colorde = -1;//to avoid black
}
float ampli = 1.f + fabs(lp.colorde);
ampli = 2.f + 0.5f * (ampli - 2.f);
float darklim = 5000.f;
float aadark = -1.f;
float bbdark = darklim;
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.senssha * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.senssha * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
float reducdE = 0.f;
float reducview = 0.f;
float abdelta2 = SQR(refa - origblur->a[y][x]) + SQR(refb - origblur->b[y][x]);
float chrodelta2 = SQR(sqrt(SQR(origblur->a[y][x]) + SQR(origblur->b[y][x])) - (chromaref * 327.68f));
float huedelta2 = abdelta2 - chrodelta2;
float dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - origblur->L[y][x]));
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.senssha, reducdE);
reducview = reducdE;
switch (zone) {
case 0: { // outside selection and outside transition zone => full effect, no transition
float difL = loctemp[y][x] - original->L[y][x];
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
if (sharshow) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = ampli * 5.f * difL * reducdE;
} else if (previewshar) {
float difbdisp = reducview * 10000.f * lp.colorde;
if (transformed->L[y][x] < darklim) { //enhance dark luminance as user can see!
float dark = transformed->L[y][x];
transformed->L[y][x] = dark * aadark + bbdark;
}
if (lp.colorde <= 0) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = difbdisp;
} else {
transformed->a[y][x] = -difbdisp;
transformed->b[y][x] = 0.f;
}
}
break;
}
case 1: { // inside transition zone
float difL = loctemp[y][x] - original->L[y][x];
float factorx = 1.f - localFactor;
difL *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
if (sharshow) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = ampli * 5.f * difL * reducdE;
} else if (previewshar) {
float difbdisp = reducview * 10000.f * lp.colorde;
if (transformed->L[y][x] < darklim) { //enhance dark luminance as user can see!
float dark = transformed->L[y][x];
transformed->L[y][x] = dark * aadark + bbdark;
}
if (lp.colorde <= 0) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = difbdisp;
} else {
transformed->a[y][x] = -difbdisp;
transformed->b[y][x] = 0.f;
}
}
break;
}
case 2: { // inside selection => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
}
}
}
}
}
}
void ImProcFunctions::Sharp_Local(int call, float **loctemp, int senstype, const float hueref, const float chromaref, const float lumaref, local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
BENCHFUN
const float ach = lp.trans / 100.f;
const float varsens = senstype == 1 ? lp.senslc : lp.senssha;
const bool sharshow = (lp.showmasksharmet == 1);
const bool previewshar = (lp.showmasksharmet == 2);
//balance deltaE
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
if (lp.colorde == 0) {
lp.colorde = -1;//to avoid black
}
float ampli = 1.f + fabs(lp.colorde);
ampli = 2.f + 0.5f * (ampli - 2.f);
float darklim = 5000.f;
float aadark = -1.f;
float bbdark = darklim;
const int GW = transformed->W;
const int GH = transformed->H;
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
const float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int begy = int (lp.yc - lp.lyT);
const int begx = int (lp.xc - lp.lxL);
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
for (int x = 0; x < transformed->W; x++) {
const int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
//deltaE
float abdelta2 = SQR(refa - origblur->a[y][x]) + SQR(refb - origblur->b[y][x]);
float chrodelta2 = SQR(sqrt(SQR(origblur->a[y][x]) + SQR(origblur->b[y][x])) - (chromaref * 327.68f));
float huedelta2 = abdelta2 - chrodelta2;
const float dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - origblur->L[y][x]));
float reducdE = 0.f;
float reducview = 0.f;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
reducview = reducdE;
reducdE *= localFactor;
float difL;
if (call == 2) {
difL = loctemp[loy - begy][lox - begx] - original->L[y][x];
} else {
difL = loctemp[y][x] - original->L[y][x];
}
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
if (sharshow) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = ampli * 5.f * difL * reducdE;
} else if (previewshar) {
float difbdisp = reducview * 10000.f * lp.colorde;
if (transformed->L[y][x] < darklim) { //enhance dark luminance as user can see!
float dark = transformed->L[y][x];
transformed->L[y][x] = dark * aadark + bbdark;
}
if (lp.colorde <= 0) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = difbdisp;
} else {
transformed->a[y][x] = -difbdisp;
transformed->b[y][x] = 0.f;
}
}
}
}
}
}
void ImProcFunctions::Exclude_Local(float **deltaso, float hueref, float chromaref, float lumaref, float sobelref, float meansobel, const struct local_params & lp, const LabImage * original, LabImage * transformed, const LabImage * rsv, const LabImage * reserv, int cx, int cy, int sk)
{
BENCHFUN {
const float ach = (float)lp.trans / 100.f;
const float varsens = lp.sensexclu;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
const int GW = transformed->W;
const int GH = transformed->H;
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
// lumaref *= 327.68f;
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
kL /= SQR(327.68f);
kab /= SQR(327.68f);
//sobel
sobelref = rtengine::min(sobelref / 100.f, 60.f);
const bool recip = sobelref < meansobel && sobelref < lp.stru;
sobelref = log1p(sobelref);
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
const float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(reserv->L, origblur->L, GW, GH, radius);
gaussianBlur(reserv->a, origblur->a, GW, GH, radius);
gaussianBlur(reserv->b, origblur->b, GW, GH, radius);
#ifdef _OPENMP
#pragma omp barrier
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++)
{
const int loy = cy + y;
const bool isZone0 = loy > (lp.yc + lp.ly - 1) || loy < lp.yc - lp.lyT; // // -1 fix issue 5554
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
for (int x = 0; x < transformed->W; x++) {
transformed->L[y][x] = original->L[y][x];
}
continue;
}
for (int x = 0; x < transformed->W; x++) {
const int lox = cx + x;
const bool isZone0x = lox > (lp.xc + lp.lx - 1) || lox < lp.xc - lp.lxL; // -1 fix issue 5554
if (isZone0x) { // outside selection and outside transition zone => no effect, keep original values
for (int x = 0; x < transformed->W; x++) {
transformed->L[y][x] = original->L[y][x];
}
continue;
}
const int begx = int (lp.xc - lp.lxL);
const int begy = int (lp.yc - lp.lyT);
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
continue;
}
float rs = 0.f;
const float csob = xlogf(1.f + rtengine::min(deltaso[loy - begy][lox - begx] / 100.f, 60.f) + 0.001f);
if (!recip) {
rs = sobelref / csob;
} else {
rs = csob / sobelref;
}
float affsob = 1.f;
if (lp.struexc > 0.f && rs > 0.f) {
const float rsob = 0.002f * lp.struexc * rs;
const float minrs = 1.3f + 0.05f * lp.stru;
if (rs < minrs) {
affsob = 1.f;
} else {
affsob = 1.f / pow_F((1.f + rsob), SQR(SQR(rs - minrs)));
}
}
float abdelta2 = SQR(refa - origblur->a[y][x]) + SQR(refb - origblur->b[y][x]);
float chrodelta2 = SQR(sqrt(SQR(origblur->a[y][x]) + SQR(origblur->b[y][x])) - (chromaref * 327.68f));
float huedelta2 = abdelta2 - chrodelta2;
const float dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - origblur->L[y][x]));
const float rL = origblur->L[y][x];
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
const float affde = reducdE;
if (rL > 32.768f) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
if (zone > 0) {
const float difL = (rsv->L[loy - begy][lox - begx] - original->L[y][x]) * localFactor;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * affsob * affde);
const float difa = (rsv->a[loy - begy][lox - begx] - original->a[y][x]) * localFactor;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa * affsob * affde);
const float difb = (rsv->b[loy - begy][lox - begx] - original->b[y][x]) * localFactor;
transformed->b[y][x] = CLIPC(original->b[y][x] + difb * affsob * affde);
}
}
}
}
}
}
}
void ImProcFunctions::transit_shapedetect_retinex(int call, int senstype, LabImage * bufexporig, LabImage * bufmask, LabImage * buforigmas, float **buflight, float **bufchro, const float hueref, const float chromaref, const float lumaref, const struct local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
BENCHFUN {
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const float ach = (float)lp.trans / 100.f;
const float varsens = lp.sensh;
int GW = transformed->W;
int GH = transformed->H;
// const float refa = chromaref * cos(hueref);
// const float refb = chromaref * sin(hueref);
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
const bool retishow = ((lp.showmaskretimet == 1 || lp.showmaskretimet == 2));
const bool previewreti = ((lp.showmaskretimet == 4));
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
bool showmas = false ;
if (lp.showmaskretimet == 3)
{
showmas = true;
}
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
const float radius = 3.f / sk;
const bool usemaskreti = lp.enaretiMask && senstype == 4 && !lp.enaretiMasktmap;
float strcli = 0.03f * lp.str;
if (lp.scalereti == 1)
{
strcli = 0.015 * lp.str;
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
const float previewint = settings->previewselection;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++)
{
const int loy = cy + y;
for (int x = xstart; x < xend; x++) {
const int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float rL = origblur->L[y][x] / 327.68f;
float dE;
float abdelta2 = 0.f;
float chrodelta2 = 0.f;
float huedelta2 = 0.f;
if (!usemaskreti) {
abdelta2 = SQR(refa - origblur->a[y][x]) + SQR(refb - origblur->b[y][x]);
chrodelta2 = SQR(sqrt(SQR(origblur->a[y][x]) + SQR(origblur->b[y][x])) - (chromaref * 327.68f));
huedelta2 = abdelta2 - chrodelta2;
dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - origblur->L[y][x]));
} else {
if (call == 2) {
abdelta2 = SQR(refa - buforigmas->a[y - ystart][x - xstart]) + SQR(refb - buforigmas->b[y - ystart][x - xstart]);
chrodelta2 = SQR(sqrt(SQR(buforigmas->a[y - ystart][x - xstart]) + SQR(buforigmas->b[y - ystart][x - xstart])) - (chromaref * 327.68f));
huedelta2 = abdelta2 - chrodelta2;
dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - buforigmas->L[y - ystart][x - xstart]));
} else {
abdelta2 = SQR(refa - buforigmas->a[y][x]) + SQR(refb - buforigmas->b[y][x]);
chrodelta2 = SQR(sqrt(SQR(buforigmas->a[y][x]) + SQR(buforigmas->b[y][x])) - (chromaref * 327.68f));
huedelta2 = abdelta2 - chrodelta2;
dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - buforigmas->L[y][x]));
}
}
float cli, clc;
if (call == 2) {
cli = buflight[y - ystart][x - xstart];
clc = previewreti ? settings->previewselection * 100.f : bufchro[y - ystart][x - xstart];
} else {
cli = buflight[y][x];
clc = previewreti ? settings->previewselection * 100.f : bufchro[y][x];
}
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
reducdE /= 100.f;
cli *= reducdE;
clc *= reducdE;
cli *= (1.f + strcli);
if (rL > 0.1f) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
if (senstype == 4) {//all except color and light (TODO) and exposure
float lightc;
if (call == 2) {
lightc = bufexporig->L[y - ystart][x - xstart];
} else {
lightc = bufexporig->L[y][x];
}
float fli = 1.f + cli;
float diflc = lightc * fli - original->L[y][x];
diflc *= localFactor;
if (!showmas) {
transformed->L[y][x] = CLIP(original->L[y][x] + diflc);
} else {
if (call == 2) {
transformed->L[y][x] = bufmask->L[y - ystart][x - xstart];
} else {
transformed->L[y][x] = bufmask->L[y][x];
}
} ;
if (retishow) {
transformed->L[y][x] = CLIP(12000.f + diflc);
}
}
float fliab = 1.f;
float chra, chrb;
if (call == 2) {
chra = bufexporig->a[y - ystart][x - xstart];
chrb = bufexporig->b[y - ystart][x - xstart];
} else {
chra = bufexporig->a[y][x];
chrb = bufexporig->b[y][x];
}
if (senstype == 5) {
fliab = 1.f + clc;
}
const float difa = (chra * fliab - original->a[y][x]) * localFactor;
float difb = (chrb * fliab - original->b[y][x]) * localFactor;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
if (showmas) {
if (call == 2) {
transformed->a[y][x] = bufmask->a[y - ystart][x - xstart];
transformed->b[y][x] = bufmask->b[y - ystart][x - xstart];
} else {
transformed->a[y][x] = bufmask->a[y][x];
transformed->b[y][x] = bufmask->b[y][x];
}
}
if (retishow) {
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
}
if (previewreti) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = previewint * difb;
}
}
}
}
}
if (showmas || retishow || previewreti)
{
return;
}
}
}
void ImProcFunctions::transit_shapedetect(int senstype, const LabImage * bufexporig, LabImage * originalmask, float **bufchro, bool HHutili, const float hueref, const float chromaref, const float lumaref, float sobelref, float meansobel, float ** blend2, const struct local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
BENCHFUN {
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfw = xend - xstart;
const int bfh = yend - ystart;
// printf("h=%f l=%f c=%f s=%f\n", hueref, lumaref, chromaref, sobelref);
const float ach = lp.trans / 100.f;
float varsens = lp.sensex;
if (senstype == 6 || senstype == 7) //cbdl
{
varsens = lp.senscb;
} else if (senstype == 8) //TM
{
varsens = lp.senstm;
} else if (senstype == 10) //local contrast
{
varsens = lp.senslc;
}
//sobel //keep in case of, not used
sobelref /= 100.f;
meansobel /= 100.f;
sobelref = rtengine::min(sobelref, 60.f);
const bool k = !(sobelref < meansobel && sobelref < lp.stru); //does not always work with noisy images
sobelref = log1p(sobelref);
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
const float previewint = settings->previewselection;
const bool cbshow = ((lp.showmaskcbmet == 1 || lp.showmaskcbmet == 2) && senstype == 6);
const bool tmshow = ((lp.showmasktmmet == 1 || lp.showmasktmmet == 2) && senstype == 8);
const bool previewcb = ((lp.showmaskcbmet == 4) && senstype == 6);
const bool previewtm = ((lp.showmasktmmet == 4) && senstype == 8);
std::unique_ptr<LabImage> origblur(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> origblurmask;
float radius = 3.f / sk;
/*
if (senstype == 1)
{
radius = (2.f + 0.2f * lp.blurexp) / sk;
} else if (senstype == 0 || senstype == 100)
{
radius = (2.f + 0.2f * lp.blurcol) / sk;
} else if (senstype == 9)
{
radius = (2.f + 0.2f * lp.blurSH) / sk;
}
*/
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
const bool usemaskcb = (lp.showmaskcbmet == 2 || lp.enacbMask || lp.showmaskcbmet == 4) && senstype == 6;
const bool usemasktm = (lp.showmasktmmet == 2 || lp.enatmMask || lp.showmasktmmet == 4) && senstype == 8;
const bool usemaskall = (usemaskcb || usemasktm);
if (usemaskall)
{
origblurmask.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(originalmask->L, origblurmask->L, bfw, bfh, radius);
gaussianBlur(originalmask->a, origblurmask->a, bfw, bfh, radius);
gaussianBlur(originalmask->b, origblurmask->b, bfw, bfh, radius);
}
}
if (lp.equtm && senstype == 8) //normalize luminance for Tone mapping , at this place we can use for others senstype!
{
float *datain = new float[bfh * bfw];
float *data = new float[bfh * bfw];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = ystart; y < yend; y++)
for (int x = xstart; x < xend; x++) {
datain[(y - ystart) * bfw + (x - xstart)] = original->L[y][x];
data[(y - ystart)* bfw + (x - xstart)] = bufexporig->L[y - ystart][x - xstart];
}
normalize_mean_dt(data, datain, bfh * bfw, 1.f, 1.f);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = ystart; y < yend; y++)
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = data[(y - ystart) * bfw + x - xstart];
}
delete [] datain;
delete [] data;
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++)
{
for (int x = 0; x < bfw; x++) {
origblur->L[y][x] = original->L[y + ystart][x + xstart];
origblur->a[y][x] = original->a[y + ystart][x + xstart];
origblur->b[y][x] = original->b[y + ystart][x + xstart];
}
}
gaussianBlur(origblur->L, origblur->L, bfw, bfh, radius);
gaussianBlur(origblur->a, origblur->a, bfw, bfh, radius);
gaussianBlur(origblur->b, origblur->b, bfw, bfh, radius);
}
const LabImage *maskptr = usemaskall ? origblurmask.get() : origblur.get();
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
float atan2Buffer[transformed->W] ALIGNED16;
#endif
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++)
{
const int loy = cy + y;
#ifdef __SSE2__
if (HHutili || senstype == 7) {
int i = xstart;
for (; i < xend - 3; i += 4) {
vfloat av = LVFU(origblur->a[y - ystart][i - xstart]);
vfloat bv = LVFU(origblur->b[y - ystart][i - xstart]);
STVFU(atan2Buffer[i], xatan2f(bv, av));
}
for (; i < xend; i++) {
atan2Buffer[i] = xatan2f(origblur->b[y - ystart][i - xstart], origblur->a[y - ystart][i - xstart]);
}
}
#endif
for (int x = xstart; x < xend; x++) {
const int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float rhue = 0;
if (HHutili || senstype == 7) {
#ifdef __SSE2__
rhue = atan2Buffer[x];
#else
rhue = xatan2f(origblur->b[y - ystart][x - xstart], origblur->a[y - ystart][x - xstart]);
#endif
}
const float rL = origblur->L[y - ystart][x - xstart] / 327.68f;
float rsob = 0.f;
if (blend2 && ((senstype == 1 && lp.struexp > 0.f) || ((senstype == 0 || senstype == 100) && lp.struco > 0.f))) {//keep in case of, not used
const float csob = xlogf(1.f + std::min(blend2[y - ystart][x - xstart] / 100.f, 60.f) + 0.001f);
float rs;
if (k) {
rs = sobelref / csob;
} else {
rs = csob / sobelref;
}
if (rs > 0.f && senstype == 1) {
rsob = 1.1f * lp.struexp * rs;
} else if (rs > 0.f && (senstype == 0 || senstype == 100)) {
rsob = 1.1f * lp.struco * rs;
}
}
const float dE = rsob + sqrt(kab * (SQR(refa - maskptr->a[y - ystart][x - xstart]) + SQR(refb - maskptr->b[y - ystart][x - xstart])) + kL * SQR(refL - maskptr->L[y - ystart][x - xstart]));
const float clc = (previewcb) ? settings->previewselection * 100.f : bufchro[y - ystart][x - xstart];
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
const float realstrchdE = reducdE * clc;
if (rL > 0.1f) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
if (zone > 0) {
float factorx = localFactor;
float difL = 0.f;
if (senstype == 6 || senstype == 8 || senstype == 10) {
difL = (bufexporig->L[y - ystart][x - xstart] - original->L[y][x]) * localFactor * reducdE;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
}
if (senstype == 7) {
float difab = bufexporig->L[y - ystart][x - xstart] - sqrt(SQR(original->a[y][x]) + SQR(original->b[y][x]));
float2 sincosval = xsincosf(rhue);
float difa = difab * sincosval.y;
float difb = difab * sincosval.x;
difa *= factorx * (100.f + realstrchdE) / 100.f;
difb *= factorx * (100.f + realstrchdE) / 100.f;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
} else {
float flia = 1.f;
float flib = 1.f;
float chra = bufexporig->a[y - ystart][x - xstart];
float chrb = bufexporig->b[y - ystart][x - xstart];
if (senstype == 3 || senstype == 30 || senstype == 8 || senstype == 6 || senstype == 10) {
flia = flib = ((100.f + realstrchdE) / 100.f);
}
float difa = chra * flia - original->a[y][x];
float difb = chrb * flib - original->b[y][x];
difa *= factorx;
difb *= factorx;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
if (cbshow || tmshow) {
transformed->L[y][x] = CLIP(12000.f + difL);
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
} else if (previewcb || previewtm) {
if (fabs(difb) < 500.f) {
difb += difL;
}
transformed->a[y][x] = 0.f;
transformed->b[y][x] = previewint * difb;
}
}
}
}
}
}
}
}
}
void ImProcFunctions::InverseColorLight_Local(bool tonequ, bool tonecurv, int sp, int senstype, struct local_params & lp, LabImage * originalmask, LUTf & lightCurveloc, LUTf & hltonecurveloc, LUTf & shtonecurveloc, LUTf & tonecurveloc, LUTf & exlocalcurve, LUTf & cclocalcurve, float adjustr, bool localcutili, LUTf & lllocalcurve, bool locallutili, LabImage * original, LabImage * transformed, int cx, int cy, const float hueref, const float chromaref, const float lumaref, int sk)
{
// BENCHFUN
float ach = (float)lp.trans / 100.f;
const float facc = (100.f + lp.chro) / 100.f; //chroma factor transition
float varsens = lp.sens;
if (senstype == 0) { //Color and Light
varsens = lp.sens;
}
if (senstype == 1) { //exposure
varsens = lp.sensex;
}
if (senstype == 2) { //shadows highlight
varsens = lp.senshs;
}
LabImage *temp = nullptr;
LabImage *tempCL = nullptr;
int GW = transformed->W;
int GH = transformed->H;
// float refa = chromaref * cos(hueref);
// float refb = chromaref * sin(hueref);
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
if (senstype == 2) { // Shadows highlight
temp = new LabImage(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
temp->L[y][x] = original->L[y][x];
temp->a[y][x] = original->a[y][x];
temp->b[y][x] = original->b[y][x];
}
}
if (lp.shmeth == 0) {
ImProcFunctions::shadowsHighlights(temp, lp.hsena, 1, lp.highlihs, lp.shadowhs, lp.radiushs, sk, lp.hltonalhs, lp.shtonalhs);
}
if (lp.shmeth == 1) {
int GH = transformed->H;
int GW = transformed->W;
double scal = (double)(sk);
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(GW, GH);
lab2rgb(*temp, *tmpImage, params->icm.workingProfile);
if (tonecurv) { //Tone response curve : does nothing if gamma=2.4 and slope=12.92 ==> gamma sRGB
float gamtone = params->locallab.spots.at(sp).gamSH;
float slotone = params->locallab.spots.at(sp).sloSH;
cmsHTRANSFORM dummy = nullptr;
workingtrc(tmpImage, tmpImage, GW, GH, -5, params->icm.workingProfile, 2.4, 12.92310, dummy, true, false, false);
workingtrc(tmpImage, tmpImage, GW, GH, 5, params->icm.workingProfile, gamtone, slotone, dummy, false, true, true);
}
if (tonequ) {
tmpImage->normalizeFloatTo1();
array2D<float> Rtemp(GW, GH, tmpImage->r.ptrs, ARRAY2D_BYREFERENCE);
array2D<float> Gtemp(GW, GH, tmpImage->g.ptrs, ARRAY2D_BYREFERENCE);
array2D<float> Btemp(GW, GH, tmpImage->b.ptrs, ARRAY2D_BYREFERENCE);
tone_eq(Rtemp, Gtemp, Btemp, lp, params->icm.workingProfile, scal, multiThread);
tmpImage->normalizeFloatTo65535();
}
rgb2lab(*tmpImage, *temp, params->icm.workingProfile);
delete tmpImage;
}
}
if (senstype == 1) { //exposure
temp = new LabImage(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
temp->a[y][x] = original->a[y][x];
temp->b[y][x] = original->b[y][x];
temp->L[y][x] = original->L[y][x];
}
}
float meanorig = 0.f;
ImProcFunctions::exlabLocal(lp, GH, GW, original, temp, hltonecurveloc, shtonecurveloc, tonecurveloc, meanorig);
if (exlocalcurve) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < temp->H; y++) {
for (int x = 0; x < temp->W; x++) {
float lighn = temp->L[y][x];
float lh = 0.5f * exlocalcurve[2.f * lighn]; // / ((lighn) / 1.9f) / 3.61f; //lh between 0 and 0 50 or more
temp->L[y][x] = lh;
}
}
}
if (lp.expchroma != 0.f) {
float ch;
ch = (1.f + 0.02f * lp.expchroma) ;
float chprosl;
if (ch <= 1.f) {//convert data curve near values of slider -100 + 100, to be used after to detection shape
chprosl = 99.f * ch - 99.f;
} else {
float ampli = 70.f;
chprosl = CLIPCHRO(ampli * ch - ampli); //ampli = 25.f arbitrary empirical coefficient between 5 and 50
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
float epsi = 0.f;
if (original->L[y][x] == 0.f) {
epsi = 0.001f;
}
float rapexp = temp->L[y][x] / (original->L[y][x] + epsi);
temp->a[y][x] *= 0.01f * (100.f + 100.f * chprosl * rapexp);
temp->b[y][x] *= 0.01f * (100.f + 100.f * chprosl * rapexp);
}
}
}
/*
if (lp.war != 0) {
ImProcFunctions::ciecamloc_02float(sp, temp);
}
*/
}
if (senstype == 0) { //Color and Light curves L C
tempCL = new LabImage(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < tempCL->H; y++) {
for (int x = 0; x < tempCL->W; x++) {
tempCL->a[y][x] = original->a[y][x];
tempCL->b[y][x] = original->b[y][x];
tempCL->L[y][x] = original->L[y][x];
}
}
if (cclocalcurve && localcutili) { // C=f(C) curve
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
//same as in "normal"
float chromat = sqrt(SQR(original->a[y][x]) + SQR(original->b[y][x]));
float ch;
float ampli = 25.f;
ch = (cclocalcurve[chromat * adjustr ]) / ((chromat + 0.00001f) * adjustr); //ch between 0 and 0 50 or more
float chprocu = CLIPCHRO(ampli * ch - ampli); //ampli = 25.f arbitrary empirical coefficient between 5 and 50
tempCL->a[y][x] = original->a[y][x] * (1.f + 0.01f * (chprocu));
tempCL->b[y][x] = original->b[y][x] * (1.f + 0.01f * (chprocu));
}
}
}
if (lllocalcurve && locallutili) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
float lighn = original->L[y][x];
float lh = 0.5f * lllocalcurve[2.f * lighn];
tempCL->L[y][x] = lh;
}
}
}
}
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
std::unique_ptr<LabImage> origblurmask;
const bool usemaskcol = (lp.enaColorMaskinv) && senstype == 0;
const bool usemaskexp = (lp.enaExpMaskinv) && senstype == 1;
const bool usemasksh = (lp.enaSHMaskinv) && senstype == 2;
const bool usemaskall = (usemaskcol || usemaskexp || usemasksh);
float radius = 3.f / sk;
if (usemaskall) {
origblurmask.reset(new LabImage(GW, GH));
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(originalmask->L, origblurmask->L, GW, GH, radius);
gaussianBlur(originalmask->a, origblurmask->a, GW, GH, radius);
gaussianBlur(originalmask->b, origblurmask->b, GW, GH, radius);
}
}
if (senstype == 1) {
radius = (2.f + 0.2f * lp.blurexp) / sk;
}
if (senstype == 0) {
radius = (2.f + 0.2f * lp.blurcol) / sk;
}
if (senstype == 2) {
radius = (2.f + 0.2f * lp.blurSH) / sk;
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const LabImage *maskptr = usemaskall ? origblurmask.get() : origblur.get();
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
const int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);//rect not good
}
float rL = origblur->L[y][x] / 327.68f;
if (fabs(origblur->b[y][x]) < 0.01f) {
origblur->b[y][x] = 0.01f;
}
//deltaE
float abdelta2 = SQR(refa - maskptr->a[y][x]) + SQR(refb - maskptr->b[y][x]);
float chrodelta2 = SQR(sqrt(SQR(maskptr->a[y][x]) + SQR(maskptr->b[y][x])) - (chromaref * 327.68f));
float huedelta2 = abdelta2 - chrodelta2;
const float dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - maskptr->L[y][x]));
float reducdE = 0.f;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
float th_r = 0.01f;
if (rL > th_r) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
switch (zone) {
case 2: { // outside selection and outside transition zone => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
transformed->a[y][x] = original->a[y][x];
transformed->b[y][x] = original->b[y][x];
break;
}
case 1: { // inside transition zone
float difa = 0.f;
float difb = 0.f;
float factorx = 1.f - localFactor;
if (senstype == 0) {
float epsia = 0.f;
float epsib = 0.f;
float lumnew = original->L[y][x];
float difL = (tempCL->L[y][x] - original->L[y][x]) * reducdE;
difa = (tempCL->a[y][x] - original->a[y][x]) * reducdE;
difb = (tempCL->b[y][x] - original->b[y][x]) * reducdE;
difL *= factorx;
difa *= factorx;
difb *= factorx;
if (original->a[y][x] == 0.f) {
epsia = 0.0001f;
}
if (original->b[y][x] == 0.f) {
epsib = 0.0001f;
}
float facCa = 1.f + (difa / (original->a[y][x] + epsia));
float facCb = 1.f + (difb / (original->b[y][x] + epsib));
if (lp.sens < 75.f) {
float lightcont;
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(lumnew, lp.ligh, lumnew, lightCurveloc); //replace L-curve
lightcont = lumnew;
} else {
lightcont = lumnew;
}
float fac = (100.f + factorx * lp.chro * reducdE) / 100.f; //chroma factor transition
float diflc = (lightcont - original->L[y][x]) * reducdE;
diflc *= factorx; //transition lightness
transformed->L[y][x] = CLIP(1.f * (original->L[y][x] + diflc + difL));
transformed->a[y][x] = CLIPC(original->a[y][x] * fac * facCa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] * fac * facCb);
} else {
float fac = (100.f + factorx * lp.chro) / 100.f; //chroma factor transition
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(original->L[y][x], lp.ligh, lumnew, lightCurveloc);
}
float lightcont = lumnew ; //apply lightness
float diflc = lightcont - original->L[y][x];
diflc *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + diflc + difL);
transformed->a[y][x] = CLIPC(original->a[y][x] * fac * facCa);
transformed->b[y][x] = CLIPC(original->b[y][x] * fac * facCb);
}
} else if (senstype == 1 || senstype == 2) {
float diflc = (temp->L[y][x] - original->L[y][x]) * reducdE;
diflc *= factorx;
difa = (temp->a[y][x] - original->a[y][x]) * reducdE;
difb = (temp->b[y][x] - original->b[y][x]) * reducdE;
difa *= factorx;
difb *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + diflc);
transformed->a[y][x] = CLIPC(original->a[y][x] + difa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
break;
}
case 0: { // inside selection => full effect, no transition
float diflc = 0.f;
float difa = 0.f;
float difb = 0.f;
if (senstype == 0) {
float epsia = 0.f;
float epsib = 0.f;
float lumnew = original->L[y][x];
float difL = (tempCL->L[y][x] - original->L[y][x]) * reducdE;
difa = (tempCL->a[y][x] - original->a[y][x]) * reducdE;
difb = (tempCL->b[y][x] - original->b[y][x]) * reducdE;
if (original->a[y][x] == 0.f) {
epsia = 0.0001f;
}
if (original->b[y][x] == 0.f) {
epsib = 0.0001f;
}
float facCa = 1.f + (difa / (original->a[y][x] + epsia));
float facCb = 1.f + (difb / (original->b[y][x] + epsib));
if (lp.sens < 75.f) {
float lightcont;
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(lumnew, lp.ligh, lumnew, lightCurveloc); //replace L-curve
lightcont = lumnew;
} else {
lightcont = lumnew;
}
float fac = (100.f + lp.chro * reducdE) / 100.f; //chroma factor transition
diflc = (lightcont - original->L[y][x]) * reducdE;
transformed->L[y][x] = CLIP(1.f * (original->L[y][x] + diflc + difL));
transformed->a[y][x] = CLIPC(original->a[y][x] * fac * facCa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] * fac * facCb);
} else {
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(original->L[y][x], lp.ligh, lumnew, lightCurveloc);
}
float lightcont = lumnew ;
transformed->L[y][x] = CLIP(lightcont + difL) ;
transformed->a[y][x] = CLIPC(original->a[y][x] * facc * facCa);
transformed->b[y][x] = CLIPC(original->b[y][x] * facc * facCb);
}
} else if (senstype == 1 || senstype == 2) {
diflc = (temp->L[y][x] - original->L[y][x]) * reducdE;
difa = (temp->a[y][x] - original->a[y][x]) * reducdE;
difb = (temp->b[y][x] - original->b[y][x]) * reducdE;
transformed->L[y][x] = CLIP(original->L[y][x] + diflc);
transformed->a[y][x] = CLIPC(original->a[y][x] + difa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
}
}
}
}
}
}
if (senstype == 1 || senstype == 2) {
delete temp;
}
if (senstype == 0) {
delete tempCL;
}
}
void ImProcFunctions::calc_ref(int sp, LabImage * original, LabImage * transformed, int cx, int cy, int oW, int oH, int sk, double & huerefblur, double & chromarefblur, double & lumarefblur, double & hueref, double & chromaref, double & lumaref, double & sobelref, float & avg, const LocwavCurve & locwavCurveden, bool & locwavdenutili)
{
if (params->locallab.enabled) {
//always calculate hueref, chromaref, lumaref before others operations use in normal mode for all modules exceprt denoise
struct local_params lp;
calcLocalParams(sp, oW, oH, params->locallab, lp, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, locwavCurveden, locwavdenutili);
int begy = lp.yc - lp.lyT;
int begx = lp.xc - lp.lxL;
int yEn = lp.yc + lp.ly;
int xEn = lp.xc + lp.lx;
float avg2 = 0.f;
int nc2 = 0;
for (int y = 0; y < transformed->H ; y++) //{
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int loy = cy + y;
if (lox >= begx && lox < xEn && loy >= begy && loy < yEn) {
avg2 += original->L[y][x];
nc2++;
}
}
avg2 /= 32768.f;
avg = avg2 / nc2;
// double precision for large summations
double aveA = 0.;
double aveB = 0.;
double aveL = 0.;
double aveChro = 0.;
double aveAblur = 0.;
double aveBblur = 0.;
double aveLblur = 0.;
double aveChroblur = 0.;
double avesobel = 0.;
// int precision for the counters
int nab = 0;
int nso = 0;
int nsb = 0;
// single precision for the result
float avA, avB, avL;
int spotSize = 0.88623f * max(1, lp.cir / sk); //18
//O.88623 = sqrt(PI / 4) ==> sqare equal to circle
int spotSise2; // = 0.88623f * max (1, lp.cir / sk); //18
// very small region, don't use omp here
LabImage *sobelL;
LabImage *deltasobelL;
LabImage *origsob;
LabImage *origblur = nullptr;
LabImage *blurorig = nullptr;
int spotSi = 1 + 2 * max(1, lp.cir / sk);
if (spotSi < 5) {
spotSi = 5;
}
spotSise2 = (spotSi - 1) / 2;
JaggedArray<float> blend3(spotSi, spotSi);
origsob = new LabImage(spotSi, spotSi);
sobelL = new LabImage(spotSi, spotSi);
deltasobelL = new LabImage(spotSi, spotSi);
bool isdenoise = false;
if ((lp.noiself > 0.f || lp.noiself0 > 0.f || lp.noiself2 > 0.f || lp.noiselc > 0.f || lp.noisecf > 0.f || lp.noisecc > 0.f) && lp.denoiena) {
isdenoise = true;
}
if (isdenoise) {
origblur = new LabImage(spotSi, spotSi);
blurorig = new LabImage(spotSi, spotSi);
for (int y = max(cy, (int)(lp.yc - spotSise2)); y < min(transformed->H + cy, (int)(lp.yc + spotSise2 + 1)); y++) {
for (int x = max(cx, (int)(lp.xc - spotSise2)); x < min(transformed->W + cx, (int)(lp.xc + spotSise2 + 1)); x++) {
int yb = max(cy, (int)(lp.yc - spotSise2));
int xb = max(cx, (int)(lp.xc - spotSise2));
int z = y - yb;
int u = x - xb;
origblur->L[z][u] = original->L[y - cy][x - cx];
origblur->a[z][u] = original->a[y - cy][x - cx];
origblur->b[z][u] = original->b[y - cy][x - cx];
}
}
float radius = 3.f / sk;
{
//No omp
gaussianBlur(origblur->L, blurorig->L, spotSi, spotSi, radius);
gaussianBlur(origblur->a, blurorig->a, spotSi, spotSi, radius);
gaussianBlur(origblur->b, blurorig->b, spotSi, spotSi, radius);
}
for (int y = 0; y < spotSi; y++) {
for (int x = 0; x < spotSi; x++) {
aveLblur += blurorig->L[y][x];
aveAblur += blurorig->a[y][x];
aveBblur += blurorig->b[y][x];
aveChroblur += sqrtf(SQR(blurorig->b[y - cy][x - cx]) + SQR(blurorig->a[y - cy][x - cx]));
nsb++;
}
}
}
//ref for luma, chroma, hue
for (int y = max(cy, (int)(lp.yc - spotSize)); y < min(transformed->H + cy, (int)(lp.yc + spotSize + 1)); y++) {
for (int x = max(cx, (int)(lp.xc - spotSize)); x < min(transformed->W + cx, (int)(lp.xc + spotSize + 1)); x++) {
aveL += original->L[y - cy][x - cx];
aveA += original->a[y - cy][x - cx];
aveB += original->b[y - cy][x - cx];
aveChro += sqrtf(SQR(original->b[y - cy][x - cx]) + SQR(original->a[y - cy][x - cx]));
nab++;
}
}
//ref for sobel
for (int y = max(cy, (int)(lp.yc - spotSise2)); y < min(transformed->H + cy, (int)(lp.yc + spotSise2 + 1)); y++) {
for (int x = max(cx, (int)(lp.xc - spotSise2)); x < min(transformed->W + cx, (int)(lp.xc + spotSise2 + 1)); x++) {
int yb = max(cy, (int)(lp.yc - spotSise2));
int xb = max(cx, (int)(lp.xc - spotSise2));
int z = y - yb;
int u = x - xb;
origsob->L[z][u] = original->L[y - cy][x - cx];
nso++;
}
}
const float radius = 3.f / (sk * 1.4f); //0 to 70 ==> see skip
SobelCannyLuma(sobelL->L, origsob->L, spotSi, spotSi, radius);
int nbs = 0;
for (int y = 0; y < spotSi ; y ++)
for (int x = 0; x < spotSi ; x ++) {
avesobel += sobelL->L[y][x];
nbs++;
}
sobelref = avesobel / nbs;
delete sobelL;
delete deltasobelL;
delete origsob;
aveL = aveL / nab;
aveA = aveA / nab;
aveB = aveB / nab;
aveChro = aveChro / nab;
aveChro /= 327.68f;
avA = aveA / 327.68f;
avB = aveB / 327.68f;
avL = aveL / 327.68f;
hueref = xatan2f(avB, avA); //mean hue
if (isdenoise) {
aveLblur = aveLblur / nsb;
aveChroblur = aveChroblur / nsb;
aveChroblur /= 327.68f;
aveAblur = aveAblur / nsb;
aveBblur = aveBblur / nsb;
float avAblur = aveAblur / 327.68f;
float avBblur = aveBblur / 327.68f;
float avLblur = aveLblur / 327.68f;
huerefblur = xatan2f(avBblur, avAblur);
chromarefblur = aveChroblur;
lumarefblur = avLblur;
} else {
huerefblur = 0.f;
chromarefblur = 0.f;
lumarefblur = 0.f;
}
chromaref = aveChro;
lumaref = avL;
// printf("Calcref => sp=%i befend=%i huere=%2.1f chromare=%2.1f lumare=%2.1f sobelref=%2.1f\n", sp, befend, hueref, chromaref, lumaref, sobelref / 100.f);
if (isdenoise) {
delete origblur;
delete blurorig;
}
if (lumaref > 95.f) {//to avoid crash
lumaref = 95.f;
}
}
}
//doc fftw3 says optimum is with size 2^a * 3^b * 5^c * 7^d * 11^e * 13^f with e+f = 0 or 1
//number for size between 18144 and 1 ==> 18000 pixels cover 99% all sensor
const int fftw_size[] = {18144, 18000, 17920, 17836, 17820, 17640, 17600, 17550, 17500, 17496, 17472, 17325, 17280, 17248, 17199, 17150, 17010, 16896, 16875, 16848, 16807,
16800, 16640, 16632, 16500, 16464, 16384, 16380, 16250, 16200, 16170, 16128, 16038, 16000, 15925, 15876, 15840, 15795, 15750, 15680, 15625, 15600, 15552, 15435, 15400,
15360, 15309, 15288, 15120, 15092, 15000, 14976, 14850, 14784, 14742, 14700, 14625, 14580, 14560, 14553, 14336, 14406, 14400, 14256, 14175, 14112, 14080, 14040, 14000, 13860,
13824, 13750, 13720, 13650, 13608, 13500, 13475, 13440, 13377, 13365, 13312, 13230, 13200, 13125, 13122, 13104, 13000, 12960, 12936, 12800, 12740, 12672, 12636, 12600,
12544, 12500, 12480, 12474, 12375, 12348, 12320, 12288, 12285, 12250, 12150, 12096, 12005, 12000, 11907, 11880, 11760, 11700, 11664, 11648, 11550, 11520, 11466, 11375,
11340, 11319, 11264, 11250, 11232, 11200, 11088, 11025, 11000, 10976, 10935, 10920, 10800, 10780, 10752, 10692, 10584, 10560, 10530, 10400, 10395, 10368, 10290, 10240,
10206, 10192, 10125, 10080, 10000, 9984, 9900, 9604, 9856, 9828, 9800, 9750, 9720, 9702, 9625, 9600, 9555, 9504, 9477, 9450, 9408, 9375, 9360, 9261, 9240,
9216, 9100, 9072, 9000, 8960, 8918, 8910, 8820, 8800, 8775, 8750, 8748, 8736, 8640, 8624, 8575, 8505, 8448, 8424, 8400, 8320, 8316, 8250, 8232, 8192, 8190, 8125,
8100, 8085, 8064, 8019, 8000, 7938, 7920, 7875, 7840, 7800, 7776, 7700, 7680, 7644, 7560, 7546, 7500, 7488, 7425, 7392, 7371, 7350, 7290, 7280, 7203, 7200, 7168,
7128, 7056, 7040, 7020, 7000, 6930, 6912, 6875, 6860, 6825, 6804, 6750, 6720, 6656, 6615, 6600, 6561, 6552, 6500, 6480, 6468, 6400, 6370, 6336, 6318, 6300,
6272, 6250, 6240, 6237, 6174, 6160, 6144, 6125, 6075, 6048, 6000, 5940, 5880, 5850, 5832, 5824, 5775, 5760, 5670, 5632, 5625, 5616, 5600, 5544, 5500, 5488,
5460, 5400, 5390, 5376, 5346, 5292, 5280, 5265, 5250, 5200, 5184, 5145, 5120, 5103, 5096, 5040, 5000, 4992, 4950, 4928, 4914, 4900, 4875, 4860, 4851, 4802,
4800, 4752, 4725, 4704, 4680, 4620, 4608, 4550, 4536, 4500, 4480, 4459, 4455, 4410, 4400, 4375, 4374, 4368, 4320, 4312, 4224, 4212, 4200, 4160, 4158, 4125,
4116, 4096, 4095, 4050, 4032, 4000, 3969, 3960, 3920, 3900, 3888, 3850, 3840, 3822, 3780, 3773, 3750, 3744, 3696, 3675, 3645, 3640, 3600, 3584, 3564, 3528,
3520, 3510, 3500, 3465, 3456, 3430, 3402, 3375, 3360, 3328, 3300, 3276, 3250, 3240, 3234, 3200, 3185, 3168, 3159, 3150, 3136, 3125, 3120, 3087, 3080, 3072,
3024, 3000, 2970, 2940, 2925, 2916, 2912, 2880, 2835, 2816, 2808, 2800, 2772, 2750, 2744, 2730, 2700, 2695, 2688, 2673, 2646, 2640, 2625, 2600, 2592, 2560,
2548, 2520, 2500, 2496, 2475, 2464, 2457, 2450, 2430, 2401, 2400, 2376, 2352, 2340, 2310, 2304, 2275, 2268, 2250, 2240, 2205, 2200, 2187, 2184, 2160, 2156,
2112, 2106, 2100, 2080, 2079, 2058, 2048, 2025, 2016, 2000, 1980, 1960, 1950, 1944, 1936, 1925, 1920, 1911, 1890, 1875, 1872, 1848, 1820, 1800, 1792, 1782,
1764, 1760, 1755, 1750, 1728, 1715, 1701, 1680, 1664, 1650, 1638, 1625, 1620, 1617, 1600, 1584, 1575, 1568, 1560, 1540, 1536, 1512, 1500, 1485, 1470, 1458,
1456, 1440, 1408, 1404, 1400, 1386, 1375, 1372, 1365, 1350, 1344, 1323, 1320, 1300, 1296, 1280, 1274, 1260, 1250, 1248, 1232, 1225, 1215, 1200, 1188, 1176,
1170, 1155, 1152, 1134, 1125, 1120, 1100, 1092, 1080, 1078, 1056, 1053, 1050, 1040, 1029, 1024, 1008, 1000, 990, 980, 975, 972, 960, 945, 936, 924, 910, 900,
896, 891, 882, 880, 875, 864, 840, 832, 825, 819, 810, 800, 792, 784, 780, 770, 768, 756, 750, 735, 729, 728, 720, 704, 702, 700, 693, 686, 675, 672, 660,
650, 648, 640, 637, 630, 625, 624, 616, 600, 594, 588, 585, 576, 567, 560, 550, 546, 540, 539, 528, 525, 520, 512, 504, 500, 495, 490, 486, 480, 468, 462, 455,
450, 448, 441, 440, 432, 420, 416, 405, 400, 396, 392, 390, 385, 384, 378, 375, 364, 360, 352, 351, 350, 343, 336, 330, 325, 324, 320, 315, 312, 308, 300, 297,
294, 288, 280, 275, 273, 270, 264, 260, 256, 252, 250, 245, 243, 240, 234, 231, 225, 224, 220, 216, 210, 208, 200, 198, 196, 195, 192, 189, 182, 180, 176, 175,
168, 165, 162, 160, 156, 154, 150, 147, 144, 143, 140, 135, 132, 130, 128, 126, 125, 120, 117, 112, 110, 108, 105, 104, 100, 99, 98, 96, 91, 90, 88, 84, 81,
80, 78, 77, 75, 72, 70, 66, 65, 64, 63, 60, 56, 55, 54, 52, 50, 49, 48, 45, 44, 42, 40, 39, 36, 35, 33, 32, 30, 28, 27, 26, 25, 24, 22, 21, 20, 18, 16, 15,
14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
};
int N_fftwsize = sizeof(fftw_size) / sizeof(fftw_size[0]);
void optfft(int &N_fftwsize, int &bfh, int &bfw, int &bfhr, int &bfwr, bool &reduH, bool &reduW, struct local_params & lp, int &H, int &W, int &xstart, int &ystart, int &xend, int &yend, int cx, int cy)
{
/*
for (int n=0; n< 17; n++){
for(int m=0; m < 11; m++) {
for(int l=0; l < 8; l++) {
for(int p=0; p < 6; p++) {
for (int r=0; r < 2; r++){
int bon = pow(2, n) * pow(3, m) * pow(5, l) * pow(7, p) * pow(13, r);
if(bon >= 18000 && bon < 18200) printf("b=%i", bon);
}
}
}
}
}
*/
int ftsizeH = 1;
int ftsizeW = 1;
for (int ft = 0; ft < N_fftwsize; ft++) { //find best values
if (fftw_size[ft] <= bfh) {
ftsizeH = fftw_size[ft];
break;
}
}
for (int ft = 0; ft < N_fftwsize; ft++) {
if (fftw_size[ft] <= bfw) {
ftsizeW = fftw_size[ft];
break;
}
}
// printf("FTsizeH =%i FTsizeW=%i \n", ftsizeH, ftsizeW);
//optimize with size fftw
if (ystart == 0 && yend < H) {
lp.ly -= (bfh - ftsizeH);
} else if (ystart != 0 && yend == H) {
lp.lyT -= (bfh - ftsizeH);
} else if (ystart != 0 && yend != H) {
if (lp.ly <= lp.lyT) {
lp.lyT -= (bfh - ftsizeH);
} else {
lp.ly -= (bfh - ftsizeH);
}
} else if (ystart == 0 && yend == H) {
bfhr = ftsizeH;
reduH = true;
}
if (xstart == 0 && xend < W) {
lp.lx -= (bfw - ftsizeW);
} else if (xstart != 0 && xend == W) {
lp.lxL -= (bfw - ftsizeW);
} else if (xstart != 0 && xend != W) {
if (lp.lx <= lp.lxL) {
lp.lxL -= (bfw - ftsizeW);
} else {
lp.lx -= (bfw - ftsizeW);
}
} else if (xstart == 0 && xend == W) {
bfwr = ftsizeW;
reduW = true;
}
//new values optimized
ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, H);
xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, W);
bfh = bfhr = yend - ystart;
bfw = bfwr = xend - xstart;
if (reduH) {
bfhr = ftsizeH;
}
if (reduW) {
bfwr = ftsizeW;
}
if (settings->verbose) {
printf("Nyst=%i Nyen=%i lp.yc=%f lp.lyT=%f lp.ly=%f bfh=%i bfhr=%i origH=%i ftsizeH=%i\n", ystart, yend, lp.yc, lp.lyT, lp.ly, bfh, bfhr, H, ftsizeH);
printf("Nxst=%i Nxen=%i lp.xc=%f lp.lxL=%f lp.lx=%f bfw=%i bfwr=%i origW=%i ftsizeW=%i\n", xstart, xend, lp.xc, lp.lxL, lp.lx, bfw, bfwr, W, ftsizeW);
}
}
void ImProcFunctions::BlurNoise_Local(LabImage *tmp1, LabImage * originalmask, float **bufchro, const float hueref, const float chromaref, const float lumaref, local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
//local BLUR
BENCHFUN
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const float ach = lp.trans / 100.f;
const int GW = transformed->W;
const int GH = transformed->H;
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
const bool blshow = ((lp.showmaskblmet == 1 || lp.showmaskblmet == 2));
const bool previewbl = ((lp.showmaskblmet == 4));
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
if (lp.colorde == 0) {
lp.colorde = -1;//to avoid black
}
float ampli = 1.f + fabs(lp.colorde);
ampli = 2.f + 0.5f * (ampli - 2.f);
float darklim = 5000.f;
float aadark = -1.f;
float bbdark = darklim;
const bool usemaskbl = (lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 4);
const bool usemaskall = (usemaskbl);
const float radius = 3.f / sk;
std::unique_ptr<LabImage> origblurmask;
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
if (usemaskall) {
origblurmask.reset(new LabImage(GW, GH));
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(originalmask->L, origblurmask->L, GW, GH, radius);
gaussianBlur(originalmask->a, origblurmask->a, GW, GH, radius);
gaussianBlur(originalmask->b, origblurmask->b, GW, GH, radius);
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const LabImage *maskptr = usemaskall ? origblurmask.get() : origblur.get();
const int limscope = 80;
const float mindE = 4.f + MINSCOPE * lp.sensbn * lp.thr;//best usage ?? with blurnoise
const float maxdE = 5.f + MAXSCOPE * lp.sensbn * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
const int loy = cy + y;
for (int x = xstart, lox = cx + x; x < xend; x++, lox++) {
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float abdelta2 = SQR(refa - maskptr->a[y][x]) + SQR(refb - maskptr->b[y][x]);
float chrodelta2 = SQR(sqrt(SQR(maskptr->a[y][x]) + SQR(maskptr->b[y][x])) - (chromaref * 327.68f));
float huedelta2 = abdelta2 - chrodelta2;
const float dE = sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - maskptr->L[y][x]));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensbn, reducdE);
const float clc = (previewbl) ? settings->previewselection * 100.f : bufchro[y - ystart][x - xstart];
const float realstrchdE = reducdE * clc;
float flia = 1.f;
float flib = 1.f;
const float chra = tmp1->a[y - ystart][x - xstart];
const float chrb = tmp1->b[y - ystart][x - xstart];
float difL = (tmp1->L[y - ystart][x - xstart] - original->L[y][x]) * localFactor * reducdE;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
flia = flib = ((100.f + realstrchdE) / 100.f);
float difa = chra * flia - original->a[y][x];
float difb = chrb * flib - original->b[y][x];
difa *= localFactor;
difb *= localFactor;
if (!lp.actsp) {
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
float maxdifab = max(fabs(difa), fabs(difb));
if ((blshow) && lp.colorde < 0) { //show modifications whith use "b"
// (origshow && lp.colorde < 0) { //original Retinex
transformed->a[y][x] = 0.f;
transformed->b[y][x] = ampli * 8.f * difL * reducdE;
transformed->L[y][x] = CLIP(12000.f + 0.5f * ampli * difL);
} else if ((blshow) && lp.colorde > 0) {//show modifications whithout use "b"
if (difL < 1000.f) {//if too low to be view use ab
difL += 0.5f * maxdifab;
}
transformed->L[y][x] = CLIP(12000.f + 0.5f * ampli * difL);
transformed->a[y][x] = CLIPC(ampli * difa);
transformed->b[y][x] = CLIPC(ampli * difb);
} else if (previewbl) {//show deltaE
float difbdisp = reducdE * 10000.f * lp.colorde;
if (transformed->L[y][x] < darklim) { //enhance dark luminance as user can see!
float dark = transformed->L[y][x];
transformed->L[y][x] = dark * aadark + bbdark;
}
if (lp.colorde <= 0) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = difbdisp;
} else {
transformed->a[y][x] = -difbdisp;
transformed->b[y][x] = 0.f;
}
}
}
}
}
}
static void softlig(float &a, float &b, float minc, float maxc)
{
// as Photoshop
float alpha = 0.5f * (maxc - minc);
if (b <= alpha) {
a = (2.f * a * b) + a * a * (maxc - 2.f * b);
} else {
a = 2.f * a * (maxc - b) + sqrt(LIM(a, 0.f, 2.f)) * (2.f * b - maxc);
}
}
static void softlig3(float &a, float &b)
{
// as w3C
if (b <= 0.5f) {
a = a - (1.f - 2.f * b) * a * (1.f - a);
} else if (((2.f * b) > 1.f) && ((4.f * a) <= 1.f)) {
a = a + ((2.f * b) - 1.f) * (4.f * a * ((4.f * a) + 1.f) * (a - 1.f) + 7.f * a);
} else if (((2.f * b) > 1.f) && ((4.f * a) > 1.f)) {
a = a + ((2.f * a) - 1.f) * (pow(a, 0.5f) - a);
}
}
static void softlig2(float &a, float &b)
{
// illusions.hu
a = pow(b, pow(2.f, (2.f * (0.5f - a))));
}
static void colburn(float &a, float &b)
{
// w3C
if (b == 0.f) {
a = 0.f;
} else {
a = 1.f - std::min(1.f, (1.f - a) / b);
}
}
static void coldodge(float &a, float &b)
{
// w3C
if (b == 1.f) {
a = 1.f;
} else {
a = std::min(1.f, a / (1.f - b));
}
}
static void overlay(float &a, float &b, float minc, float maxc)
{
float alpha = 0.5f * (maxc - minc);
if (b <= alpha) {
a = (2.f * a * b);
} else {
a = maxc - 2.f * (1.f - a) * (maxc - b);
}
}
static void screen(float &a, float &b, float maxc)
{
a = 1.f - (1.f - a) * (maxc - b);
}
static void exclusion(float &a, float &b)
{
a = a + b - 2.f * a * b;
}
void ImProcFunctions::transit_shapedetect2(int call, int senstype, const LabImage * bufexporig, const LabImage * bufexpfin, LabImage * originalmask, const float hueref, const float chromaref, const float lumaref, float sobelref, float meansobel, float ** blend2, struct local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
//initialize coordonates
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfw = xend - xstart;
int bfh = yend - ystart;
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
if (lp.blurcolmask >= 0.25f && lp.fftColorMask && call == 2) {
optfft(N_fftwsize, bfh, bfw, bfhr, bfwr, reduH, reduW, lp, original->H, original->W, xstart, ystart, xend, yend, cx, cy);
}
bfh = bfhr;
bfw = bfwr;
//initialize scope
float varsens = lp.sensex;//exposure
if (senstype == 0) { //Color and light
varsens = lp.sens;
} else if (senstype == 2) { //vibrance
varsens = lp.sensv;
} else if (senstype == 9) { //shadowshighlight
varsens = lp.senshs;
} else if (senstype == 3) { //softlight
varsens = lp.senssf;
} else if (senstype == 30) { //dehaze
varsens = lp.sensh;
} else if (senstype == 8) { //TM
varsens = lp.senstm;
} else if (senstype == 10) { //local contrast
varsens = lp.senslc;
} else if (senstype == 11) { //encoding log
varsens = lp.sensilog;
}
bool delt = lp.deltaem;
//sobel
sobelref /= 100.f;
meansobel /= 100.f;
sobelref = rtengine::min(sobelref, 60.f);
const bool k = !(sobelref < meansobel && sobelref < lp.stru); //does not always work with noisy images
sobelref = log1p(sobelref);
//references Spot
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
//to preview modifications, scope, mask
const bool expshow = ((lp.showmaskexpmet == 1 || lp.showmaskexpmet == 2) && senstype == 1);
const bool vibshow = ((lp.showmaskvibmet == 1 || lp.showmaskvibmet == 2) && senstype == 2);
const bool colshow = ((lp.showmaskcolmet == 1 || lp.showmaskcolmet == 2) && senstype == 0);
const bool SHshow = ((lp.showmaskSHmet == 1 || lp.showmaskSHmet == 2) && senstype == 9);
const bool tmshow = ((lp.showmasktmmet == 1 || lp.showmasktmmet == 2) && senstype == 8);
const bool lcshow = ((lp.showmasklcmet == 1 || lp.showmasklcmet == 2) && senstype == 10);
const bool origshow = ((lp.showmasksoftmet == 5) && senstype == 3 && lp.softmet == 0);
const bool previewvib = ((lp.showmaskvibmet == 4) && senstype == 2);
const bool previewexp = ((lp.showmaskexpmet == 5) && senstype == 1);
const bool previewcol = ((lp.showmaskcolmet == 5) && senstype == 0);
const bool previewSH = ((lp.showmaskSHmet == 4) && senstype == 9);
const bool previewtm = ((lp.showmasktmmet == 4) && senstype == 8);
const bool previewlc = ((lp.showmasklcmet == 4) && senstype == 10);
const bool previeworig = ((lp.showmasksoftmet == 6) && senstype == 3 && lp.softmet == 0);
float radius = 3.f / sk;
if (senstype == 1) {
radius = (2.f + 0.2f * lp.blurexp) / sk;
} else if (senstype == 1) {
radius = (2.f + 0.2f * lp.blurcol) / sk;
} else if (senstype == 9) {
radius = (2.f + 0.2f * lp.blurSH) / sk;
}
std::unique_ptr<LabImage> origblur(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> origblurmask;
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
float kH = lp.balanceh;
float kch = 1.f;
balancedeltaE(kL, kab);
balancedeltaEH(kH, kch);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
if (lp.colorde == 0) {
lp.colorde = -1;//to avoid black
}
float ampli = 1.f + fabs(lp.colorde);
ampli = 2.f + 0.5f * (ampli - 2.f);
float darklim = 5000.f;
float aadark = -1.f;
float bbdark = darklim;
const bool usemaskvib = (lp.showmaskvibmet == 2 || lp.enavibMask || lp.showmaskvibmet == 4) && senstype == 2;
const bool usemaskexp = (lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 5) && senstype == 1;
const bool usemaskcol = (lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 5) && senstype == 0;
const bool usemaskSH = (lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 4) && senstype == 9;
const bool usemasktm = (lp.showmasktmmet == 2 || lp.enatmMask || lp.showmasktmmet == 4) && senstype == 8;
const bool usemasklc = (lp.showmasklcmet == 2 || lp.enalcMask || lp.showmasklcmet == 4) && senstype == 10;
const bool usemaskall = (usemaskexp || usemaskvib || usemaskcol || usemaskSH || usemasktm || usemasklc);
//blur a little mask
if (usemaskall) {
origblurmask.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(originalmask->L, origblurmask->L, bfw, bfh, radius);
gaussianBlur(originalmask->a, origblurmask->a, bfw, bfh, radius);
gaussianBlur(originalmask->b, origblurmask->b, bfw, bfh, radius);
}
}
if (lp.equtm && senstype == 8) { //normalize luminance for Tone mapping , at this place we can use for others senstype!
float *datain = new float[bfh * bfw];
float *data = new float[bfh * bfw];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = ystart; y < yend; y++)
for (int x = xstart; x < xend; x++) {
datain[(y - ystart) * bfw + (x - xstart)] = original->L[y][x];
data[(y - ystart)* bfw + (x - xstart)] = bufexporig->L[y - ystart][x - xstart];
}
normalize_mean_dt(data, datain, bfh * bfw, 1.f, 1.f);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = ystart; y < yend; y++)
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = data[(y - ystart) * bfw + x - xstart];
}
delete [] datain;
delete [] data;
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
origblur->L[y][x] = original->L[y + ystart][x + xstart];
origblur->a[y][x] = original->a[y + ystart][x + xstart];
origblur->b[y][x] = original->b[y + ystart][x + xstart];
}
}
gaussianBlur(origblur->L, origblur->L, bfw, bfh, radius);
gaussianBlur(origblur->a, origblur->a, bfw, bfh, radius);
gaussianBlur(origblur->b, origblur->b, bfw, bfh, radius);
}
//choice between original and mask
const LabImage *maskptr = usemaskexp ? origblurmask.get() : origblur.get();
//parameters deltaE
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
// float atan2Buffer[transformed->W] ALIGNED16;//keep in case of
#endif
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
const int loy = y + ystart + cy;
#ifdef __SSE2__
/* //keep in case of
int i = 0;
for (; i < bfw - 3; i += 4) {
vfloat av = LVFU(maskptr->a[y][i]);
vfloat bv = LVFU(maskptr->b[y][i]);
STVFU(atan2Buffer[i], xatan2f(bv, av));
}
for (; i < bfw; i++) {
atan2Buffer[i] = xatan2f(maskptr->b[y][i], maskptr->a[y][i]);
}
*/
#endif
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
//claculate transition
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
// float hueh = 0;
#ifdef __SSE2__
// hueh = atan2Buffer[x];
#else
// hueh = xatan2f(maskptr->b[y][x], maskptr->a[y][x]);
#endif
float rsob = 0.f;
//claculate additive sobel to deltaE
if (blend2 && ((senstype == 1 && lp.struexp > 0.f) || ((senstype == 0) && lp.struco > 0.f))) {
const float csob = xlogf(1.f + std::min(blend2[y][x] / 100.f, 60.f) + 0.001f);
float rs;
if (k) {
rs = sobelref / csob;
} else {
rs = csob / sobelref;
}
if (rs > 0.f && senstype == 1) {
rsob = 1.1f * lp.struexp * rs;
} else if (rs > 0.f && (senstype == 0)) {
rsob = 1.1f * lp.struco * rs;
}
}
//deltaE
float abdelta2 = SQR(refa - maskptr->a[y][x]) + SQR(refb - maskptr->b[y][x]);
float chrodelta2 = SQR(sqrt(SQR(maskptr->a[y][x]) + SQR(maskptr->b[y][x])) - (chromaref * 327.68f));
float huedelta2 = abdelta2 - chrodelta2;
const float dE = rsob + sqrt(kab * (kch * chrodelta2 + kH * huedelta2) + kL * SQR(refL - maskptr->L[y][x]));
float reducdE;
//reduction action with deltaE
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
float cli = (bufexpfin->L[y][x] - bufexporig->L[y][x]);
float cla = (bufexpfin->a[y][x] - bufexporig->a[y][x]);
float clb = (bufexpfin->b[y][x] - bufexporig->b[y][x]);
if (delt) {
cli = bufexpfin->L[y][x] - original->L[y + ystart][x + xstart];
cla = bufexpfin->a[y][x] - original->a[y + ystart][x + xstart];
clb = bufexpfin->b[y][x] - original->b[y + ystart][x + xstart];
}
// const float previewint = settings->previewselection;
const float realstrdE = reducdE * cli;
const float realstradE = reducdE * cla;
const float realstrbdE = reducdE * clb;
float factorx = localFactor;
float diflc = 0.f;
float difa = 0.f;
float difb = 0.f;
if (zone > 0) {
//simplified transformed with deltaE and transition
transformed->L[y + ystart][x + xstart] = CLIPLOC(original->L[y + ystart][x + xstart] + factorx * realstrdE);
diflc = factorx * realstrdE;
transformed->a[y + ystart][x + xstart] = CLIPC(original->a[y + ystart][x + xstart] + factorx * realstradE);
difa = factorx * realstradE;
transformed->b[y + ystart][x + xstart] = CLIPC(original->b[y + ystart][x + xstart] + factorx * realstrbdE);
difb = factorx * realstrbdE;
float maxdifab = max(fabs(difa), fabs(difb));
if ((expshow || vibshow || colshow || SHshow || tmshow || lcshow || origshow) && lp.colorde < 0) { //show modifications whith use "b"
// (origshow && lp.colorde < 0) { //original Retinex
transformed->a[y + ystart][x + xstart] = 0.f;
transformed->b[y + ystart][x + xstart] = ampli * 8.f * diflc * reducdE;
transformed->L[y + ystart][x + xstart] = CLIP(12000.f + 0.5f * ampli * diflc);
} else if ((expshow || vibshow || colshow || SHshow || tmshow || lcshow || origshow) && lp.colorde > 0) {//show modifications whithout use "b"
if (diflc < 1000.f) {//if too low to be view use ab
diflc += 0.5f * maxdifab;
}
transformed->L[y + ystart][x + xstart] = CLIP(12000.f + 0.5f * ampli * diflc);
transformed->a[y + ystart][x + xstart] = CLIPC(ampli * difa);
transformed->b[y + ystart][x + xstart] = CLIPC(ampli * difb);
} else if (previewexp || previewvib || previewcol || previewSH || previewtm || previewlc || previeworig) {//show deltaE
float difbdisp = reducdE * 10000.f * lp.colorde;
if (transformed->L[y + ystart][x + xstart] < darklim) { //enhance dark luminance as user can see!
float dark = transformed->L[y + ystart][x + xstart];
transformed->L[y + ystart][x + xstart] = dark * aadark + bbdark;
}
if (lp.colorde <= 0) {
transformed->a[y + ystart][x + xstart] = 0.f;
transformed->b[y + ystart][x + xstart] = difbdisp;
} else {
transformed->a[y + ystart][x + xstart] = -difbdisp;
transformed->b[y + ystart][x + xstart] = 0.f;
}
}
}
}
}
}
}
void ImProcFunctions::exposure_pde(float * dataor, float * datain, float * dataout, int bfw, int bfh, float thresh, float mod)
/* Jacques Desmis July 2019
** adapted from Ipol Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*/
{
BENCHFUN
#ifdef _OPENMP
if (multiThread) {
fftwf_init_threads();
fftwf_plan_with_nthreads(omp_get_max_threads());
}
#endif
fftwf_plan dct_fw, dct_bw;
float *data_fft, *data_tmp, *data;
if (NULL == (data_tmp = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
ImProcFunctions::discrete_laplacian_threshold(data_tmp, datain, bfw, bfh, thresh);
if (NULL == (data_fft = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (NULL == (data = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
dct_fw = fftwf_plan_r2r_2d(bfh, bfw, data_tmp, data_fft, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_fw);
fftwf_free(data_tmp);
/* solve the Poisson PDE in Fourier space */
/* 1. / (float) (bfw * bfh)) is the DCT normalisation term, see libfftw */
ImProcFunctions::rex_poisson_dct(data_fft, bfw, bfh, 1. / (double)(bfw * bfh));
dct_bw = fftwf_plan_r2r_2d(bfh, bfw, data_fft, data, FFTW_REDFT01, FFTW_REDFT01, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_bw);
fftwf_destroy_plan(dct_fw);
fftwf_destroy_plan(dct_bw);
fftwf_free(data_fft);
fftwf_cleanup();
if (multiThread) {
fftwf_cleanup_threads();
}
normalize_mean_dt(data, dataor, bfw * bfh, mod, 1.f);
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
dataout[y * bfw + x] = CLIPLOC(data[y * bfw + x]);
}
}
}
fftwf_free(data);
}
void ImProcFunctions::fftw_convol_blur(float * input, float * output, int bfw, int bfh, float radius, int fftkern, int algo)
{
/*
** Jacques Desmis june 2019 - inspired by Copyright 2013 IPOL Image Processing On Line http://www.ipol.im/
** when I read documentation on various FFT blur we found 2 possibilities
** 0) kernel gauss is used with "normal" datas
** 1) kernel gauss is used with FFT
** fftkern allows to change 0) or 1) and test It seems the good solution is with 0, but I keep the code in case of ??
** input real datas to blur
** output real datas blurred with radius
** bfw bfh width and high area
** radius = sigma for kernel
** n_x n_y relative width and high for kernel
** Gaussian blur is given by G(x,y) = (1/2*PI*sigma) * exp(-(x2 + y2) / 2* sigma2)
** its traduction in Fourier transform is G(x,y) = exp((-sigma)*(PI * x2 + PI * y2)), for some authors it is not sigma but sigma^2..I have tried...huge diffrences with Gaussianblur
** after several test the only result that works very well is with fftkern = 0 and algo = 0, and as there is differences with Gaussianblur, I put an empirical correction in Ipretinex and Iplocalcontrast
** you can enabled or disabled this function with rtsettings.fftwsigma in options. By defaut empirical formula is disabled
** in fact no importance....if it is this function (for sigma) or another... we are not in research :)
*/
BENCHFUN
#ifdef _OPENMP
if (multiThread) {
fftwf_init_threads();
fftwf_plan_with_nthreads(omp_get_max_threads());
}
#endif
float *out; //for FFT datas
float *kern = nullptr;//for kernel gauss
float *outkern = nullptr;//for FFT kernel
fftwf_plan p;
fftwf_plan pkern;//plan for FFT
int image_size, image_sizechange;
float n_x = 1.f;
float n_y = 1.f;//relative coordonates for kernel Gauss
float radsig = 1.f;
out = (float*) fftwf_malloc(sizeof(float) * (bfw * bfh));//allocate real datas for FFT
if (fftkern == 1) { //allocate memory FFT if kernel fft = 1
// kern = new float[bfw * bfh];
kern = (float*) fftwf_malloc(sizeof(float) * (bfw * bfh));//allocate real datas for FFT
outkern = (float*) fftwf_malloc(sizeof(float) * (bfw * bfh));//allocate real datas for FFT
}
/*compute the Fourier transform of the input data*/
p = fftwf_plan_r2r_2d(bfh, bfw, input, out, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE);//FFT 2 dimensions forward FFTW_MEASURE FFTW_ESTIMATE
fftwf_execute(p);
fftwf_destroy_plan(p);
/*define the gaussian constants for the convolution kernel*/
if (algo == 0) {
n_x = rtengine::RT_PI / (double) bfw; //ipol
n_y = rtengine::RT_PI / (double) bfh;
} else if (algo == 1) {
n_x = 1.f / (float) bfw; //gauss
n_y = 1.f / (float) bfh;
radsig = 1.f / (2.f * rtengine::RT_PI * radius * radius);//gauss
}
n_x = n_x * n_x;
n_y = n_y * n_y;
image_size = bfw * bfh;
image_sizechange = 4 * image_size;
if (fftkern == 1) { //convolution with FFT kernel
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++)
if (algo == 0) {
kern[ i + index] = exp((float)(-radius) * (n_x * i * i + n_y * j * j)); //calculate Gauss kernel Ipol formula
} else if (algo == 1) {
kern[ i + index] = radsig * exp((float)(-(n_x * i * i + n_y * j * j) / (2.f * radius * radius))); //calculate Gauss kernel with Gauss formula
}
}
/*compute the Fourier transform of the kernel data*/
pkern = fftwf_plan_r2r_2d(bfh, bfw, kern, outkern, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE); //FFT 2 dimensions forward
fftwf_execute(pkern);
fftwf_destroy_plan(pkern);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++) {
out[i + index] *= outkern[i + index]; //apply Gauss kernel whith FFT
}
}
fftwf_free(outkern);
fftwf_free(kern);
// delete [] kern;
} else if (fftkern == 0) {//whithout FFT kernel
if (algo == 0) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++) {
out[i + index] *= exp((float)(-radius) * (n_x * i * i + n_y * j * j)); //apply Gauss kernel whithout FFT - some authors says radius*radius but differences with Gaussianblur
}
}
} else if (algo == 1) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++) {
out[i + index] *= radsig * exp((float)(-(n_x * i * i + n_y * j * j) / (2.f * radius * radius))); //calculate Gauss kernel with Gauss formula
}
}
}
}
p = fftwf_plan_r2r_2d(bfh, bfw, out, output, FFTW_REDFT01, FFTW_REDFT01, FFTW_ESTIMATE);//FFT 2 dimensions backward
fftwf_execute(p);
for (int index = 0; index < image_size; index++) { //restore datas
output[index] /= image_sizechange;
// output[index] = CLIPMAX(output[index]);
}
fftwf_destroy_plan(p);
fftwf_free(out);
if (multiThread) {
fftwf_cleanup_threads();
}
}
void ImProcFunctions::fftw_convol_blur2(float **input2, float **output2, int bfw, int bfh, float radius, int fftkern, int algo)
{
MyMutex::MyLock lock(*fftwMutex);
float *input = nullptr;
if (NULL == (input = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
float *output = nullptr;
if (NULL == (output = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
input[y * bfw + x] = input2[y][x];
}
}
ImProcFunctions::fftw_convol_blur(input, output, bfw, bfh, radius, fftkern, algo);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
output2[y][x] = output[y * bfw + x];
}
}
fftwf_free(input);
fftwf_free(output);
}
void ImProcFunctions::fftw_tile_blur(int GW, int GH, int tilssize, int max_numblox_W, int min_numblox_W, float **tmp1, int numThreads, double radius)
{
BENCHFUN
float epsil = 0.001f / (tilssize * tilssize);
fftwf_plan plan_forward_blox[2];
fftwf_plan plan_backward_blox[2];
array2D<float> tilemask_in(tilssize, tilssize);
array2D<float> tilemask_out(tilssize, tilssize);
float *Lbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
float *fLbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
int nfwd[2] = {tilssize, tilssize};
//for DCT:
fftw_r2r_kind fwdkind[2] = {FFTW_REDFT10, FFTW_REDFT10};
fftw_r2r_kind bwdkind[2] = {FFTW_REDFT01, FFTW_REDFT01};
// Creating the plans with FFTW_MEASURE instead of FFTW_ESTIMATE speeds up the execute a bit
plan_forward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, Lbloxtmp, nullptr, 1, tilssize * tilssize, fLbloxtmp, nullptr, 1, tilssize * tilssize, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, fLbloxtmp, nullptr, 1, tilssize * tilssize, Lbloxtmp, nullptr, 1, tilssize * tilssize, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_forward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, Lbloxtmp, nullptr, 1, tilssize * tilssize, fLbloxtmp, nullptr, 1, tilssize * tilssize, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, fLbloxtmp, nullptr, 1, tilssize * tilssize, Lbloxtmp, nullptr, 1, tilssize * tilssize, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
fftwf_free(Lbloxtmp);
fftwf_free(fLbloxtmp);
const int border = MAX(2, tilssize / 16);
for (int i = 0; i < tilssize; ++i) {
float i1 = abs((i > tilssize / 2 ? i - tilssize + 1 : i));
float vmask = (i1 < border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
float vmask2 = (i1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
for (int j = 0; j < tilssize; ++j) {
float j1 = abs((j > tilssize / 2 ? j - tilssize + 1 : j));
tilemask_in[i][j] = (vmask * (j1 < border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsil;
tilemask_out[i][j] = (vmask2 * (j1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsil;
}
}
float *LbloxArray[numThreads];
float *fLbloxArray[numThreads];
const int numblox_W = ceil((static_cast<float>(GW)) / (offset2)) + 2 * blkrad;
const int numblox_H = ceil((static_cast<float>(GH)) / (offset2)) + 2 * blkrad;
array2D<float> Lresult(GW, GH, ARRAY2D_CLEAR_DATA);
array2D<float> totwt(GW, GH, ARRAY2D_CLEAR_DATA); //weight for combining DCT blocks
for (int i = 0; i < numThreads; ++i) {
LbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
fLbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
}
#ifdef _OPENMP
int masterThread = omp_get_thread_num();
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
int subThread = masterThread * 1 + omp_get_thread_num();
#else
int subThread = 0;
#endif
float *Lblox = LbloxArray[subThread];
float *fLblox = fLbloxArray[subThread];
float pBuf[GW + tilssize + 2 * blkrad * offset2] ALIGNED16;
#ifdef _OPENMP
#pragma omp for
#endif
for (int vblk = 0; vblk < numblox_H; ++vblk) {
int top = (vblk - blkrad) * offset2;
float * datarow = pBuf + blkrad * offset2;
for (int i = 0; i < tilssize; ++i) {
int row = top + i;
int rr = row;
if (row < 0) {
rr = MIN(-row, GH - 1);
} else if (row >= GH) {
rr = MAX(0, 2 * GH - 2 - row);
}
for (int j = 0; j < GW; ++j) {
datarow[j] = (tmp1[rr][j]);
}
for (int j = -blkrad * offset2; j < 0; ++j) {
datarow[j] = datarow[MIN(-j, GW - 1)];
}
for (int j = GW; j < GW + tilssize + blkrad * offset2; ++j) {
datarow[j] = datarow[MAX(0, 2 * GW - 2 - j)];
}//now we have a padded data row
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int left = (hblk - blkrad) * offset2;
int indx = (hblk) * tilssize; //index of block in malloc
if (top + i >= 0 && top + i < GH) {
int j;
for (j = 0; j < min((-left), tilssize); ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
for (; j < min(tilssize, GW - left); ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
totwt[top + i][left + j] += tilemask_in[i][j] * tilemask_out[i][j];
}
for (; j < tilssize; ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
} else {
for (int j = 0; j < tilssize; ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
}
}
}//end of filling block row
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//fftwf_print_plan (plan_forward_blox);
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_forward_blox[0], Lblox, fLblox); // DCT an entire row of tiles
} else {
fftwf_execute_r2r(plan_forward_blox[1], Lblox, fLblox); // DCT an entire row of tiles
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
double n_x = rtengine::RT_PI / (double) tilssize;
double n_y = rtengine::RT_PI / (double) tilssize;
n_x = n_x * n_x;
n_y = n_y * n_y;
//radius = 30.f;
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int blkstart = hblk * tilssize * tilssize;
for (int j = 0; j < tilssize; j++) {
int index = j * tilssize;
for (int i = 0; i < tilssize; i++) {
fLblox[blkstart + index + i] *= exp((float)(-radius) * (n_x * i * i + n_y * j * j));
}
}
}//end of horizontal block loop
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//now perform inverse FT of an entire row of blocks
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_backward_blox[0], fLblox, Lblox); //for DCT
} else {
fftwf_execute_r2r(plan_backward_blox[1], fLblox, Lblox); //for DCT
}
int topproc = (vblk - blkrad) * offset2;
const int numblox_W = ceil((static_cast<float>(GW)) / (offset2));
const float DCTnorm = 1.0f / (4 * tilssize * tilssize); //for DCT
int imin = MAX(0, - topproc);
int bottom = MIN(topproc + tilssize, GH);
int imax = bottom - topproc;
for (int i = imin; i < imax; ++i) {
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int left = (hblk - blkrad) * offset2;
int right = MIN(left + tilssize, GW);
int jmin = MAX(0, -left);
int jmax = right - left;
int indx = hblk * tilssize;
for (int j = jmin; j < jmax; ++j) {
Lresult[topproc + i][left + j] += tilemask_out[i][j] * Lblox[(indx + i) * tilssize + j] * DCTnorm; //for DCT
}
}
}
}//end of vertical block loop
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
tmp1[i][j] = Lresult[i][j] / totwt[i][j];
tmp1[i][j] = CLIPLOC(tmp1[i][j]);
}
}
for (int i = 0; i < numThreads; ++i) {
fftwf_free(LbloxArray[i]);
fftwf_free(fLbloxArray[i]);
}
fftwf_destroy_plan(plan_forward_blox[0]);
fftwf_destroy_plan(plan_backward_blox[0]);
fftwf_destroy_plan(plan_forward_blox[1]);
fftwf_destroy_plan(plan_backward_blox[1]);
fftwf_cleanup();
}
void ImProcFunctions::wavcbd(wavelet_decomposition &wdspot, int level_bl, int maxlvl,
const LocwavCurve & locconwavCurve, bool & locconwavutili, float sigm, float offs, float chromalev, int sk)
{
float mean[10];
float meanN[10];
float sigma[10];
float sigmaN[10];
float MaxP[10];
float MaxN[10];
Evaluate2(wdspot, mean, meanN, sigma, sigmaN, MaxP, MaxN);
float beta;
float mea[9];
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot.level_W(level);
int H_L = wdspot.level_H(level);
float **wav_L = wdspot.level_coeffs(level);
//offset
float rap = offs * mean[level] - 2.f * sigm * sigma[level];
if (rap > 0.f) {
mea[0] = rap;
} else {
mea[0] = mean[level] / 6.f;
}
rap = offs * mean[level] - sigm * sigma[level];
if (rap > 0.f) {
mea[1] = rap;
} else {
mea[1] = mean[level] / 2.f;
}
mea[2] = offs * mean[level]; // 50% data
mea[3] = offs * mean[level] + sigm * sigma[level] / 2.f;
mea[4] = offs * mean[level] + sigm * sigma[level]; //66%
mea[5] = offs * mean[level] + sigm * 1.2f * sigma[level];
mea[6] = offs * mean[level] + sigm * 1.5f * sigma[level]; //
mea[7] = offs * mean[level] + sigm * 2.f * sigma[level]; //95%
mea[8] = offs * mean[level] + sigm * 2.5f * sigma[level]; //99%
if (locconwavCurve && locconwavutili) {
float cpMul = 200.f * (locconwavCurve[level * 55.5f] - 0.5f);
if (cpMul > 0.f) {
cpMul *= 3.5f;
}
cpMul /= sk;
for (int i = 0; i < W_L * H_L; i++) {
{
float WavCL = fabsf(wav_L[dir][i]);
//reduction amplification: max action between mean / 2 and mean + sigma
// arbitrary coefficient, we can add a slider !!
if (WavCL < mea[0]) {
beta = 0.6f; //preserve very low contrast (sky...)
} else if (WavCL < mea[1]) {
beta = 0.8f;
} else if (WavCL < mea[2]) {
beta = 1.f; //standard
} else if (WavCL < mea[3]) {
beta = 1.f;
} else if (WavCL < mea[4]) {
beta = 0.8f; //+sigma
} else if (WavCL < mea[5]) {
beta = 0.6f;
} else if (WavCL < mea[6]) {
beta = 0.4f;
} else if (WavCL < mea[7]) {
beta = 0.2f; // + 2 sigma
} else if (WavCL < mea[8]) {
beta = 0.1f;
} else {
beta = 0.0f;
}
}
float alpha = max((1024.f + 15.f * (float) cpMul * beta) / 1024.f, 0.02f) ;
wav_L[dir][i] *= alpha * chromalev;
}
}
}
}
}
void ImProcFunctions::Compresslevels(float **Source, int W_L, int H_L, float compression, float detailattenuator, float thres, float mean, float maxp, float meanN, float maxN, float madL)
{
//J.Desmis 12-2019
float exponent;
// printf("maxp=%f maxn=%f\n", maxp, maxn);
if (detailattenuator > 0.f && detailattenuator < 0.05f) {
float betemp = expf(-(2.f - detailattenuator + 0.693147f)) - 1.f; //0.69315 = log(2)
exponent = 1.2f * xlogf(-betemp);
exponent /= 20.f;
} else if (detailattenuator >= 0.05f && detailattenuator < 0.25f) {
float betemp = expf(-(2.f - detailattenuator + 0.693147f)) - 1.f;
exponent = 1.2f * xlogf(-betemp);
exponent /= (-75.f * detailattenuator + 23.75f);
} else if (detailattenuator >= 0.25f) {
float betemp = expf(-(2.f - detailattenuator + 0.693147f)) - 1.f;
exponent = 1.2f * xlogf(-betemp);
exponent /= (-2.f * detailattenuator + 5.5f);
} else {
exponent = (compression - 1.0f) / 20.f;
}
exponent += 1.f;
float ap = (thres - 1.f) / (maxp - mean);
float bp = 1.f - ap * mean;
float a0 = (1.33f * thres - 1.f) / (1.f - mean);
float b0 = 1.f - a0 * mean;
float apn = (thres - 1.f) / (maxN - meanN);
float bpn = 1.f - apn * meanN;
float a0n = (1.33f * thres - 1.f) / (1.f - meanN);
float b0n = 1.f - a0n * meanN;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
float expone = 1.f;
if (Source[y][x] >= 0.f) {
if (Source[y][x] > mean) {
expone = 1.f + (exponent - 1.f) * (ap * Source[y][x] + bp);
} else {
expone = 1.f + (exponent - 1.f) * (a0 * Source[y][x] + b0);
}
Source[y][x] = xexpf(xlogf(Source[y][x] + 0.05f * madL) * expone);
} else if (Source[y][x] < 0.f) {
if (-Source[y][x] > mean) {
expone = 1.f + (exponent - 1.f) * (apn * -Source[y][x] + bpn);
} else {
expone = 1.f + (exponent - 1.f) * (a0n * -Source[y][x] + b0n);
}
Source[y][x] = -xexpf(xlogf(-Source[y][x] + 0.05f * madL) * expone);
}
}
}
}
void ImProcFunctions::wavcont(wavelet_decomposition &wdspot, float ****templevel, int level_bl, int maxlvl,
const LocwavCurve & loclevwavCurve, bool & loclevwavutili,
const LocwavCurve & loccompwavCurve, bool & loccompwavutili,
const LocwavCurve & loccomprewavCurve, bool & loccomprewavutili,
float radlevblur, int process, FattalToneMappingParams &fatParams, float chromablu, float thres)
{
float madL[10][3];
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot.level_W(level);
int H_L = wdspot.level_H(level);
float **wav_L = wdspot.level_coeffs(level);
madL[level][dir - 1] = Mad(wav_L[dir], W_L * H_L);//evaluate noise by level
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
float val = wav_L[dir][y * W_L + x];
templevel[dir - 1][level][y][x] = val;
}
}
}
}
if (process == 1) { //blur
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot.level_W(level);
int H_L = wdspot.level_H(level);
if (loclevwavCurve && loclevwavutili) {
float klev = 0.25f * (loclevwavCurve[level * 55.5f]);
#pragma omp parallel
{
gaussianBlur(templevel[dir - 1][level], templevel[dir - 1][level], W_L, H_L, radlevblur * klev * chromablu);
}
}
}
}
}
if (process == 2) { //Dynamic compression laplacian - Huge ressources
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot.level_W(level);
int H_L = wdspot.level_H(level);
if (loccompwavCurve && loccompwavutili) {
float klev = (loccompwavCurve[level * 55.5f]);
fatParams.amount = 50.f * klev;
{
ToneMapFattal02(nullptr, fatParams, 3, 1, templevel[dir - 1][level], W_L, H_L, 0);
}
}
}
}
}
if (process == 3) { //Dynamic compression wavelet
float mean[10];
float meanN[10];
float sigma[10];
float sigmaN[10];
float MaxP[10];
float MaxN[10];
Evaluate2(wdspot, mean, meanN, sigma, sigmaN, MaxP, MaxN);
// printf("levbl=%i maxlvl=%i\n", level_bl, maxlvl);
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot.level_W(level);
int H_L = wdspot.level_H(level);
if (loccomprewavCurve && loccomprewavutili) {
float klev = (loccomprewavCurve[level * 55.5f] - 0.75f);
if (klev < 0.f) {
klev *= 2.6666f;//compression increase contraste
} else {
klev *= 4.f;//dilatation reduce contraste - detailattenuator
}
float compression = expf(-klev);
float detailattenuator = klev;
if (klev < 0.0f) {
detailattenuator = 0.0f;
}
// float thresref = mean[level];
// float thresreal = 0.1f * thres * thresref;//small values to take into account noise and artifacts
//printf("mean=%f level=%i\n", mean[level], level);
Compresslevels(templevel[dir - 1][level], W_L, H_L, compression, detailattenuator, thres, mean[level], MaxP[level], meanN[level], MaxN[level], madL[level][dir - 1]);
}
}
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot.level_W(level);
int H_L = wdspot.level_H(level);
float **wav_L = wdspot.level_coeffs(level);
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
wav_L[dir][y * W_L + x] = templevel[dir - 1][level][y][x];
}
}
}
}
}
void ImProcFunctions::wavcontrast4(struct local_params& lp, float ** tmp, float ** tmpa, float ** tmpb, float contrast, float fatres, float radblur, float radlevblur, int bfw, int bfh, int level_bl, int level_hl, int level_br, int level_hr, int sk, bool numThreads,
const LocwavCurve & locwavCurve, bool & locwavutili, bool wavcurve, const LocwavCurve & loclevwavCurve, bool & loclevwavutili, bool wavcurvelev,
const LocwavCurve & locconwavCurve, bool & locconwavutili, bool wavcurvecon,
const LocwavCurve & loccompwavCurve, bool & loccompwavutili, bool wavcurvecomp,
const LocwavCurve & loccomprewavCurve, bool & loccomprewavutili, bool wavcurvecompre,
const LocwavCurve & locedgwavCurve, bool & locedgwavutili,
float sigm, float offs, int & maxlvl, float fatdet, float fatanch, float chromalev, float chromablu, bool blurlc, bool blurena, bool levelena, bool comprena, bool compreena, float compress, float thres)
{
wavelet_decomposition *wdspot = new wavelet_decomposition(tmp[0], bfw, bfh, maxlvl, 1, sk, numThreads, lp.daubLen);
//first decomposition for compress dynamic range positive values and other process
if (wdspot->memoryAllocationFailed) {
return;
}
struct grad_params gpwav;
maxlvl = wdspot->maxlevel();
int W_Lm = wdspot->level_W(maxlvl - 1); //I assume all decomposition have same W and H
int H_Lm = wdspot->level_H(maxlvl - 1);
if (lp.strwav != 0.f && lp.wavgradl) {
array2D<float> factorwav(W_Lm, H_Lm);
calclocalGradientParams(lp, gpwav, 0, 0, W_Lm, H_Lm, 10);
for (int y = 0; y < H_Lm; y++) {
for (int x = 0; x < W_Lm; x++) {
float factor = ImProcFunctions::calcGradientFactor(gpwav, x, y);
factorwav[y][x] = factor;
factorwav[y][x] = 1.f - factorwav[y][x];
if (lp.strwav < 0.f) {
factorwav[y][x] *= -1.f;
}
}
}
float mean[10];
float meanN[10];
float sigma[10];
float sigmaN[10];
float MaxP[10];
float MaxN[10];
Evaluate2(*wdspot, mean, meanN, sigma, sigmaN, MaxP, MaxN);
float alowg = 1.f;
float blowg = 0.f;
if (level_hl != level_bl) {
alowg = 1.f / (level_hl - level_bl);
blowg = -alowg * level_bl;
}
float ahighg = 1.f;
float bhighg = 0.f;
if (level_hr != level_br) {
ahighg = 1.f / (level_hr - level_br);
bhighg = -ahighg * level_br;
}
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot->level_W(level);
int H_L = wdspot->level_H(level);
float **wav_L = wdspot->level_coeffs(level);
if (MaxP[level] > 0.f && mean[level] != 0.f && sigma[level] != 0.f) {
float insigma = 0.666f; //SD
float logmax = log(MaxP[level]); //log Max
float rapX = (mean[level] + sigma[level]) / MaxP[level]; //rapport between sD / max
float inx = log(insigma);
float iny = log(rapX);
float rap = inx / iny; //koef
float asig = 0.166f / sigma[level];
float bsig = 0.5f - asig * mean[level];
float amean = 0.5f / mean[level];
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
float absciss;
float &val = wav_L[dir][y * W_L + x];
if (fabsf(val) >= (mean[level] + sigma[level])) { //for max
float valcour = xlogf(fabsf(val));
float valc = valcour - logmax;
float vald = valc * rap;
absciss = xexpf(vald);
} else if (fabsf(val) >= mean[level]) {
absciss = asig * fabsf(val) + bsig;
} else {
absciss = amean * fabsf(val);
}
float klev = 1.f;
if (level >= level_hl && level <= level_hr) {
klev = 1.f;
}
if (level_hl != level_bl) {
if (level >= level_bl && level < level_hl) {
klev = alowg * level + blowg;
}
}
if (level_hr != level_br) {
if (level > level_hr && level <= level_br) {
klev = ahighg * level + bhighg;
}
}
float kc = 0.5f * klev * factorwav[y][x] * absciss;
float reduceeffect = kc <= 0.f ? 1.f : 1.5f;
float kinterm = 1.f + reduceeffect * kc;
kinterm = kinterm <= 0.f ? 0.01f : kinterm;
val *= kinterm;
}
}
}
}
}
}
//declare a and b if need
wavelet_decomposition *wdspota = nullptr;
wavelet_decomposition *wdspotb = nullptr;
int W_L = wdspot->level_W(0);
int H_L = wdspot->level_H(0);
float *wav_L0 = wdspot->coeff0;
FattalToneMappingParams fatParams;
fatParams.threshold = fatdet;
fatParams.anchor = fatanch;
if (fatres > 0.f) {
fatParams.enabled = true;
fatParams.amount = fatres;
array2D<float> bufl(W_L, H_L);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
bufl[y][x] = wav_L0[y * W_L + x];
}
}
ToneMapFattal02(nullptr, fatParams, 3, 1, bufl, W_L, H_L, 0);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
wav_L0[y * W_L + x] = bufl[y][x];
}
}
}
if (radblur > 0.f && blurena) {
array2D<float> bufl(W_L, H_L);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
bufl[y][x] = wav_L0[y * W_L + x];
}
}
#pragma omp parallel
{
gaussianBlur(bufl, bufl, W_L, H_L, radblur);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
wav_L0[y * W_L + x] = bufl[y][x];
}
}
}
if (compress != 0.f && compreena) {
float Compression = expf(-compress);
float DetailBoost = compress;
if (compress < 0.0f) {
DetailBoost = 0.0f;
}
CompressDR(wav_L0, W_L, H_L, Compression, DetailBoost);
}
if (contrast != 0.) {
double avedbl = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel for reduction(+:avedbl) if (multiThread)
#endif
for (int i = 0; i < W_L * H_L; i++) {
avedbl += wav_L0[i];
}
float ave = avedbl / double(W_L * H_L);
float avg = ave / 32768.f;
avg = LIM01(avg);
double contreal = 0.6 * contrast;
DiagonalCurve resid_contrast({
DCT_NURBS,
0, 0,
avg - avg * (0.6 - contreal / 250.0), avg - avg * (0.6 + contreal / 250.0),
avg + (1. - avg) * (0.6 - contreal / 250.0), avg + (1. - avg) * (0.6 + contreal / 250.0),
1, 1
});
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < W_L * H_L; i++) {
float buf = LIM01(wav_L0[i] / 32768.f);
buf = resid_contrast.getVal(buf);
buf *= 32768.f;
wav_L0[i] = buf;
}
}
float alow = 1.f;
float blow = 0.f;
if (level_hl != level_bl) {
alow = 1.f / (level_hl - level_bl);
blow = -alow * level_bl;
}
float ahigh = 1.f;
float bhigh = 0.f;
if (level_hr != level_br) {
ahigh = 1.f / (level_hr - level_br);
bhigh = -ahigh * level_br;
}
int dir = 3;
int leve = maxlvl;
float ****templevel = nullptr;
float ****templevela = nullptr;
float ****templevelb = nullptr;
if (wavcurvelev || wavcurvecomp || wavcurvecompre) {//compress dynamic and blur
/*
float mean[10];
float meanN[10];
float sigma[10];
float sigmaN[10];
float MaxP[10];
float MaxN[10];
Evaluate2(*wdspot, mean, meanN, sigma, sigmaN, MaxP, MaxN);
*/
fatParams.enabled = wavcurvecomp;
templevel = new float***[dir];
//allocate memory for 3 DIR n levels, H_L, W_L
for (int d = 0; d < dir; d++) {
templevel[d] = new float**[leve];
for (int k = 0; k < leve; k++) {
templevel[d][k] = new float*[H_L];
for (int i = 0; i < H_L; i++) {
templevel[d][k][i] = new float[W_L];
}
}
}
if (templevel == nullptr) {
fprintf(stderr, "allocation error\n");
return;
}
if (wavcurvelev && radlevblur > 0.f && blurena) {
wavcont(*wdspot, templevel, level_bl, maxlvl, loclevwavCurve, loclevwavutili, loccompwavCurve, loccompwavutili, loccomprewavCurve, loccomprewavutili, radlevblur, 1, fatParams, 1.f, 0.f);
}
if (wavcurvecomp && comprena) {
wavcont(*wdspot, templevel, level_bl, maxlvl, loclevwavCurve, loclevwavutili, loccompwavCurve, loccompwavutili, loccomprewavCurve, loccomprewavutili, radlevblur, 2, fatParams, 1.f, 0.f);
}
if (wavcurvecompre && compreena) {
wavcont(*wdspot, templevel, level_bl, maxlvl, loclevwavCurve, loclevwavutili, loccompwavCurve, loccompwavutili, loccomprewavCurve, loccomprewavutili, radlevblur, 3, fatParams, 1.f, thres);
}
//free memory templevel
if (wavcurvelev || wavcurvecomp || wavcurvecompre) {
for (int i = 0; i < dir; i++) {
for (int j = 0; j < leve; j++) {
for (int l = 0; l < H_L; l++) {
delete [] templevel[i][j][l];
}
}
}
for (int i = 0; i < dir; i++) {
for (int j = 0; j < leve; j++) {
delete [] templevel[i][j];
}
}
for (int i = 0; i < dir; i++) {
delete [] templevel[i];
}
delete [] templevel;
}
}
if (wavcurvecon && levelena) {//contrast by levels for luminance
wavcbd(*wdspot, level_bl, maxlvl, locconwavCurve, locconwavutili, sigm, offs, 1.f, sk);
}
//edge sharpness begin
if (lp.edgwena && level_bl == 0 && level_br >= 3 && locedgwavCurve && locedgwavutili && lp.strengthw > 0) { //needs the first levels to work!
float mean[10];
float meanN[10];
float sigma[10];
float sigmaN[10];
float MaxP[10];
float MaxN[10];
Evaluate2(*wdspot, mean, meanN, sigma, sigmaN, MaxP, MaxN);
float edd = 3.f;
float eddlow = 15.f;
float eddlipinfl = 0.005f * lp.edgw + 0.4f;
float eddlipampl = 1.f + lp.basew / 50.f;
int W_L = wdspot->level_W(0);//provisory W_L H_L
int H_L = wdspot->level_H(0);
float *koeLi[12];
float maxkoeLi[12];
float *koeLibuffer = nullptr;
for (int y = 0; y < 12; y++) {
maxkoeLi[y] = 0.f; //9
}
koeLibuffer = new float[12 * H_L * W_L]; //12
for (int i = 0; i < 12; i++) { //9
koeLi[i] = &koeLibuffer[i * W_L * H_L];
}
for (int j = 0; j < 12; j++) //9
for (int i = 0; i < W_L * H_L; i++) {
koeLi[j][i] = 0.f;
}
float *tmCBuffer = new float[H_L * W_L];
float *tmC[H_L];
for (int i = 0; i < H_L; i++) {
tmC[i] = &tmCBuffer[i * W_L];
}
float gradw = lp.gradw;
float tloww = lp.tloww;
#ifdef _OPENMP
#pragma omp for schedule(dynamic) collapse(2)
#endif
for (int lvl = 0; lvl < 4; lvl++) {
for (int dir = 1; dir < 4; dir++) {
int W_L = wdspot->level_W(lvl);
int H_L = wdspot->level_H(lvl);
float **wav_L = wdspot->level_coeffs(lvl);
calckoe(wav_L, gradw, tloww, koeLi, lvl, dir, W_L, H_L, edd, maxkoeLi, tmC);
// return convolution KoeLi and maxkoeLi of level 0 1 2 3 and Dir Horiz, Vert, Diag
}
}
delete [] tmCBuffer;
float aamp = 1.f + lp.thigw / 100.f;
for (int lvl = 0; lvl < 4; lvl++) {
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 1; i < H_L - 1; i++) {
for (int j = 1; j < W_L - 1; j++) {
//treatment of koeLi and maxkoeLi
float interm = 0.f;
if (lp.lip3) {//Sobel Canny algo improve with parameters
// comparison between pixel and neighbours
const auto neigh = lp.neiwmet == 1;
const auto kneigh = neigh ? 28.f : 38.f;
const auto somm = neigh ? 40.f : 50.f;
for (int dir = 1; dir < 4; dir++) { //neighbours proxi
koeLi[lvl * 3 + dir - 1][i * W_L + j] = (kneigh * koeLi[lvl * 3 + dir - 1][i * W_L + j] + 2.f * koeLi[lvl * 3 + dir - 1][(i - 1) * W_L + j] + 2.f * koeLi[lvl * 3 + dir - 1][(i + 1) * W_L + j]
+ 2.f * koeLi[lvl * 3 + dir - 1][i * W_L + j + 1] + 2.f * koeLi[lvl * 3 + dir - 1][i * W_L + j - 1] + koeLi[lvl * 3 + dir - 1][(i - 1) * W_L + j - 1]
+ koeLi[lvl * 3 + dir - 1][(i - 1) * W_L + j + 1] + koeLi[lvl * 3 + dir - 1][(i + 1) * W_L + j - 1] + koeLi[lvl * 3 + dir - 1][(i + 1) * W_L + j + 1]) / somm;
}
}
for (int dir = 1; dir < 4; dir++) {
//here I evaluate combinaison of vert / diag / horiz...we are with multiplicators of the signal
interm += SQR(koeLi[lvl * 3 + dir - 1][i * W_L + j]);
}
interm = sqrt(interm);
interm *= 0.57736721f;
float kampli = 1.f;
float eps = 0.0001f;
// I think this double ratio (alph, beta) is better than arctg
float alph = koeLi[lvl * 3][i * W_L + j] / (koeLi[lvl * 3 + 1][i * W_L + j] + eps); //ratio between horizontal and vertical
float beta = koeLi[lvl * 3 + 2][i * W_L + j] / (koeLi[lvl * 3 + 1][i * W_L + j] + eps); //ratio between diagonal and horizontal
float alipinfl = (eddlipampl - 1.f) / (1.f - eddlipinfl);
float blipinfl = eddlipampl - alipinfl;
//alph evaluate the direction of the gradient regularity Lipschitz
// if = 1 we are on an edge
// if 0 we are not
// we can change and use log..or Arctg but why ?? we can change if need ...
//Liamp=1 for eddlipinfl
//liamp > 1 for alp >eddlipinfl and alph < 1
//Liamp < 1 for alp < eddlipinfl and alph > 0
if (alph > 1.f) {
alph = 1.f / alph;
}
if (beta > 1.f) {
beta = 1.f / beta;
}
//take into account diagonal
//if in same value OK
//if not no edge or reduction
float bet = 1.f;
//if(cp.lip3) {//enhance algorithm
if (alph > eddlipinfl && beta < 0.85f * eddlipinfl) { //0.85 arbitrary value ==> eliminate from edge if H V D too different
bet = beta;
}
//}
float AmpLip = 1.f;
if (alph > eddlipinfl) {
AmpLip = alipinfl * alph + blipinfl; //If beta low reduce kampli
kampli = SQR(bet) * AmpLip * aamp;
} else {
AmpLip = (1.f / eddlipinfl) * SQR(SQR(alph * bet)); //Strong Reduce if beta low
kampli = AmpLip / aamp;
}
interm *= kampli;
if (interm < lp.tloww / eddlow) {
interm = 0.01f; //eliminate too low values
}
//we can change this part of algo==> not equal but ponderate
koeLi[lvl * 3][i * W_L + j] = koeLi[lvl * 3 + 1][i * W_L + j] = koeLi[lvl * 3 + 2][i * W_L + j] = interm; //new value
//here KoeLi contains values where gradient is high and coef high, and eliminate low values...
}
}
}
static const float scales[10] = {1.f, 2.f, 4.f, 8.f, 16.f, 32.f, 64.f, 128.f, 256.f, 512.f};
float scaleskip[10];
for (int sc = 0; sc < 10; sc++) {
scaleskip[sc] = scales[sc] / sk;
}
float rad = ((float)lp.radiusw) / 60.f; //radius ==> not too high value to avoid artifacts
float value = ((float)lp.strengthw) / 8.f; //strength
if (scaleskip[1] < 1.f) {
float atten01234 = 0.80f;
value *= (atten01234 * scaleskip[1]); //for zoom < 100% reduce strength...I choose level 1...but!!
}
float edge = 1.f;
float lim0 = 20.f; //arbitrary limit for low radius and level between 2 or 3 to 30 maxi
float repart = (float)lp.detailw;
float brepart;
if (lp.edgwmet == 0) {
brepart = 3.f;
}
if (lp.edgwmet == 2) {
brepart = 0.5f; //arbitrary value to increase / decrease repart, between 1 and 0
}
float arepart = - (brepart - 1.f) / (lim0 / 60.f);
if (lp.edgwmet != 1) {
if (rad < lim0 / 60.f) {
repart *= (arepart * rad + brepart); //linear repartition of repart
}
}
float al0 = 1.f + (repart) / 50.f;
float al10 = 1.0f; //arbitrary value ==> less = take into account high levels
float ak = - (al0 - al10) / 10.f; //10 = maximum levels
float bk = al0;
#ifdef _OPENMP
#pragma omp for schedule(dynamic) collapse(2)
#endif
for (int lvl = 0; lvl < maxlvl; lvl++) {
for (int dir = 1; dir < 4; dir++) {
int W_L = wdspot->level_W(lvl);
int H_L = wdspot->level_H(lvl);
float **wav_L = wdspot->level_coeffs(lvl);
float lev = float (lvl);
float koef = ak * lvl + bk; //modulate for levels : more levels high, more koef low ==> concentrated action on low levels, without or near for high levels
float expkoef = -pow(fabs(rad - lev), koef); //reduce effect for high levels
if (lp.edgwmet == 2) {
if (rad < lim0 / 60.f && lvl == 0) {
expkoef *= abs(repart); //reduce effect for low values of rad and level=0==> quasi only level 1 is effective
}
}
if (lp.edgwmet == 0) {
if (rad < lim0 / 60.f && lvl == 1) {
expkoef /= repart; //increase effect for low values of rad and level=1==> quasi only level 0 is effective
}
}
//take into account local contrast
float refin = value * exp(expkoef);
float edgePrecalc = 1.f + refin; //estimate edge "pseudo variance"
if (MaxP[lvl] > 0.f) { //curve
float insigma = 0.666f; //SD
float logmax = log(MaxP[lvl]); //log Max
float rapX = (mean[lvl] + sigma[lvl]) / MaxP[lvl]; //rapport between sD / max
float inx = log(insigma);
float iny = log(rapX);
float rap = inx / iny; //koef
float asig = 0.166f / sigma[lvl];
float bsig = 0.5f - asig * mean[lvl];
float amean = 0.5f / mean[lvl];
float absciss = 0.f;
float kinterm;
float kmul;
int borderL = 1;
for (int i = borderL; i < H_L - borderL; i++) {
for (int j = borderL; j < W_L - borderL; j++) {
int k = i * W_L + j;
if (lvl < 4) {
edge = 1.f + (edgePrecalc - 1.f) * (koeLi[lvl * 3][k]) / (1.f + 0.9f * maxkoeLi[lvl * 3 + dir - 1]);
} else {
edge = edgePrecalc;
}
if (fabs(wav_L[dir][k]) >= (mean[lvl] + sigma[lvl])) { //for max
float valcour = log(fabs(wav_L[dir][k]));
float valc = valcour - logmax;
float vald = valc * rap;
absciss = exp(vald);
} else if (fabs(wav_L[dir][k]) >= mean[lvl] && fabs(wav_L[dir][k]) < (mean[lvl] + sigma[lvl])) {
absciss = asig * fabs(wav_L[dir][k]) + bsig;
} else if (fabs(wav_L[dir][k]) < mean[lvl]) {
absciss = amean * fabs(wav_L[dir][k]);
}
// Threshold adjuster settings==> approximative for curve
//kmul about average cbrt(3--40 / 10)==>1.5 to 2.5
//kmul about SD 10--60 / 35 ==> 2
// kmul about low cbrt((5.f+cp.edg_low)/5.f);==> 1.5
// kmul about max ==> 9
// we can change these values
// result is different not best or bad than threshold slider...but similar
float abssd = 4.f; //amplification reference
float bbssd = 2.f; //mini ampli
float maxamp = 2.5f; //maxi ampli at end
float maxampd = 10.f; //maxi ampli at end
float a_abssd = (maxamp - abssd) / 0.333f;
float b_abssd = maxamp - a_abssd;
float da_abssd = (maxampd - abssd) / 0.333f;
float db_abssd = maxampd - da_abssd;
float am = (abssd - bbssd) / 0.666f;
float kmuld = 0.f;
if (absciss > 0.666f && absciss < 1.f) {
kmul = a_abssd * absciss + b_abssd; //about max ==> kinterm
kmuld = da_abssd * absciss + db_abssd;
} else {
kmul = kmuld = absciss * am + bbssd;
}
kinterm = 1.f;
float kc = kmul * (locedgwavCurve[absciss * 500.f] - 0.5f);
float kcd = kmuld * (locedgwavCurve[absciss * 500.f] - 0.5f);
if (kc >= 0.f) {
float reduceeffect = 0.6f;
kinterm = 1.f + reduceeffect * kmul * (locedgwavCurve[absciss * 500.f] - 0.5f); //about 1 to 3 general and big amplification for max (under 0)
} else {
kinterm = 1.f - (SQR(kcd)) / 10.f;
}
if (kinterm < 0.f) {
kinterm = 0.01f;
}
edge *= kinterm;
if (edge < 1.f) {
edge = 1.f;
}
wav_L[dir][k] *= edge;
}
}
}
}
}
if (koeLibuffer) {
delete [] koeLibuffer;
}
}
//edge sharpness end
if (locwavCurve && locwavutili && wavcurve) {//simple local contrast in function luminance
float mean[10];
float meanN[10];
float sigma[10];
float sigmaN[10];
float MaxP[10];
float MaxN[10];
Evaluate2(*wdspot, mean, meanN, sigma, sigmaN, MaxP, MaxN);
for (int dir = 1; dir < 4; dir++) {
for (int level = level_bl; level < maxlvl; ++level) {
int W_L = wdspot->level_W(level);
int H_L = wdspot->level_H(level);
float **wav_L = wdspot->level_coeffs(level);
// printf("W_L=%i H_L=%i lev=%i\n", W_L, H_L, level);
if (MaxP[level] > 0.f && mean[level] != 0.f && sigma[level] != 0.f) {
float insigma = 0.666f; //SD
float logmax = log(MaxP[level]); //log Max
float rapX = (mean[level] + sigma[level]) / MaxP[level]; //rapport between sD / max
float inx = log(insigma);
float iny = log(rapX);
float rap = inx / iny; //koef
float asig = 0.166f / sigma[level];
float bsig = 0.5f - asig * mean[level];
float amean = 0.5f / mean[level];
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < W_L * H_L; i++) {
if (locwavCurve && locwavutili) {
float absciss;
float &val = wav_L[dir][i];
if (fabsf(val) >= (mean[level] + sigma[level])) { //for max
float valcour = xlogf(fabsf(val));
float valc = valcour - logmax;
float vald = valc * rap;
absciss = xexpf(vald);
} else if (fabsf(val) >= mean[level]) {
absciss = asig * fabsf(val) + bsig;
} else {
absciss = amean * fabsf(val);
}
float klev = 1.f;
if (level >= level_hl && level <= level_hr) {
klev = 1.f;
}
if (level_hl != level_bl) {
if (level >= level_bl && level < level_hl) {
klev = alow * level + blow;
}
}
if (level_hr != level_br) {
if (level > level_hr && level <= level_br) {
klev = ahigh * level + bhigh;
}
}
float kc = klev * (locwavCurve[absciss * 500.f] - 0.5f);
float reduceeffect = kc <= 0.f ? 1.f : 1.5f;
float kinterm = 1.f + reduceeffect * kc;
kinterm = kinterm <= 0.f ? 0.01f : kinterm;
val *= kinterm;
}
}
}
}
}
}
//reconstruct all for L
wdspot->reconstruct(tmp[0], 1.f);
delete wdspot;
if (wavcurvecon && (chromalev != 1.f) && levelena) { // a and b if need ) {//contrast by levels for chroma a and b
wdspota = new wavelet_decomposition(tmpa[0], bfw, bfh, maxlvl, 1, sk, numThreads, lp.daubLen);
if (wdspota->memoryAllocationFailed) {
return;
}
wavcbd(*wdspota, level_bl, maxlvl, locconwavCurve, locconwavutili, sigm, offs, chromalev, sk);
wdspota->reconstruct(tmpa[0], 1.f);
delete wdspota;
wdspotb = new wavelet_decomposition(tmpb[0], bfw, bfh, maxlvl, 1, sk, numThreads, lp.daubLen);
if (wdspotb->memoryAllocationFailed) {
return;
}
wavcbd(*wdspotb, level_bl, maxlvl, locconwavCurve, locconwavutili, sigm, offs, chromalev, sk);
wdspotb->reconstruct(tmpb[0], 1.f);
delete wdspotb;
}
if (wavcurvelev && radlevblur > 0.f && blurena) {//chroma blur if need
if (!blurlc) {
// a
wdspota = new wavelet_decomposition(tmpa[0], bfw, bfh, maxlvl, 1, sk, numThreads, lp.daubLen);
if (wdspota->memoryAllocationFailed) {
return;
}
templevela = new float***[dir];
for (int d = 0; d < dir; d++) {
templevela[d] = new float**[leve];
for (int k = 0; k < leve; k++) {
templevela[d][k] = new float*[H_L];
for (int i = 0; i < H_L; i++) {
templevela[d][k][i] = new float[W_L];
}
}
}
if (templevela == nullptr) {
fprintf(stderr, "allocation error\n");
return;
}
if (wavcurvelev && radlevblur > 0.f) {
wavcont(*wdspota, templevela, level_bl, maxlvl, loclevwavCurve, loclevwavutili, loccompwavCurve, loccompwavutili, loccomprewavCurve, loccomprewavutili, radlevblur, 1, fatParams, chromablu, 0.f);
}
wdspota->reconstruct(tmpa[0], 1.f);
delete wdspota;
for (int i = 0; i < dir; i++) {
for (int j = 0; j < leve; j++) {
for (int l = 0; l < H_L; l++) {
delete [] templevela[i][j][l];
}
}
}
for (int i = 0; i < dir; i++) {
for (int j = 0; j < leve; j++) {
delete [] templevela[i][j];
}
}
for (int i = 0; i < dir; i++) {
delete [] templevela[i];
}
delete [] templevela;
//b
wdspotb = new wavelet_decomposition(tmpb[0], bfw, bfh, maxlvl, 1, sk, numThreads, lp.daubLen);
if (wdspotb->memoryAllocationFailed) {
return;
}
templevelb = new float***[dir];
for (int d = 0; d < dir; d++) {
templevelb[d] = new float**[leve];
for (int k = 0; k < leve; k++) {
templevelb[d][k] = new float*[H_L];
for (int i = 0; i < H_L; i++) {
templevelb[d][k][i] = new float[W_L];
}
}
}
if (templevelb == nullptr) {
fprintf(stderr, "allocation error\n");
return;
}
if (wavcurvelev && radlevblur > 0.f) {
wavcont(*wdspotb, templevelb, level_bl, maxlvl, loclevwavCurve, loclevwavutili, loccompwavCurve, loccompwavutili, loccomprewavCurve, loccomprewavutili, radlevblur, 1, fatParams, chromablu, 0.f);
}
wdspotb->reconstruct(tmpb[0], 1.f);
delete wdspotb;
for (int i = 0; i < dir; i++) {
for (int j = 0; j < leve; j++) {
for (int l = 0; l < H_L; l++) {
delete [] templevelb[i][j][l];
}
}
}
for (int i = 0; i < dir; i++) {
for (int j = 0; j < leve; j++) {
delete [] templevelb[i][j];
}
}
for (int i = 0; i < dir; i++) {
delete [] templevelb[i];
}
delete [] templevelb;
}
}
}
void ImProcFunctions::fftw_denoise(int GW, int GH, int max_numblox_W, int min_numblox_W, float **tmp1, array2D<float> *Lin, int numThreads, const struct local_params & lp, int chrom)
{
BENCHFUN
fftwf_plan plan_forward_blox[2];
fftwf_plan plan_backward_blox[2];
array2D<float> tilemask_in(TS, TS);
array2D<float> tilemask_out(TS, TS);
float *Lbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
float *fLbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
float params_Ldetail = 0.f;
int nfwd[2] = {TS, TS};
//for DCT:
fftw_r2r_kind fwdkind[2] = {FFTW_REDFT10, FFTW_REDFT10};
fftw_r2r_kind bwdkind[2] = {FFTW_REDFT01, FFTW_REDFT01};
// Creating the plans with FFTW_MEASURE instead of FFTW_ESTIMATE speeds up the execute a bit
plan_forward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, Lbloxtmp, nullptr, 1, TS * TS, fLbloxtmp, nullptr, 1, TS * TS, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, fLbloxtmp, nullptr, 1, TS * TS, Lbloxtmp, nullptr, 1, TS * TS, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_forward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, Lbloxtmp, nullptr, 1, TS * TS, fLbloxtmp, nullptr, 1, TS * TS, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, fLbloxtmp, nullptr, 1, TS * TS, Lbloxtmp, nullptr, 1, TS * TS, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
fftwf_free(Lbloxtmp);
fftwf_free(fLbloxtmp);
const int border = MAX(2, TS / 16);
for (int i = 0; i < TS; ++i) {
float i1 = abs((i > TS / 2 ? i - TS + 1 : i));
float vmask = (i1 < border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
float vmask2 = (i1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
for (int j = 0; j < TS; ++j) {
float j1 = abs((j > TS / 2 ? j - TS + 1 : j));
tilemask_in[i][j] = (vmask * (j1 < border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsilonw;
tilemask_out[i][j] = (vmask2 * (j1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsilonw;
}
}
float *LbloxArray[numThreads];
float *fLbloxArray[numThreads];
const int numblox_W = ceil((static_cast<float>(GW)) / (offset1)) + 2 * blkrad;
const int numblox_H = ceil((static_cast<float>(GH)) / (offset1)) + 2 * blkrad;
//residual between input and denoised L channel
array2D<float> Ldetail(GW, GH, ARRAY2D_CLEAR_DATA);
array2D<float> totwt(GW, GH, ARRAY2D_CLEAR_DATA); //weight for combining DCT blocks
for (int i = 0; i < numThreads; ++i) {
LbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
fLbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
}
#ifdef _OPENMP
int masterThread = omp_get_thread_num();
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
int subThread = masterThread * 1 + omp_get_thread_num();
#else
int subThread = 0;
#endif
float *Lblox = LbloxArray[subThread];
float *fLblox = fLbloxArray[subThread];
float pBuf[GW + TS + 2 * blkrad * offset1] ALIGNED16;
#ifdef _OPENMP
#pragma omp for
#endif
for (int vblk = 0; vblk < numblox_H; ++vblk) {
int top = (vblk - blkrad) * offset1;
float * datarow = pBuf + blkrad * offset1;
for (int i = 0; i < TS; ++i) {
int row = top + i;
int rr = row;
if (row < 0) {
rr = MIN(-row, GH - 1);
} else if (row >= GH) {
rr = MAX(0, 2 * GH - 2 - row);
}
for (int j = 0; j < GW; ++j) {
datarow[j] = ((*Lin)[rr][j] - tmp1[rr][j]);
}
for (int j = -blkrad * offset1; j < 0; ++j) {
datarow[j] = datarow[MIN(-j, GW - 1)];
}
for (int j = GW; j < GW + TS + blkrad * offset1; ++j) {
datarow[j] = datarow[MAX(0, 2 * GW - 2 - j)];
}//now we have a padded data row
//now fill this row of the blocks with Lab high pass data
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int left = (hblk - blkrad) * offset1;
int indx = (hblk) * TS; //index of block in malloc
if (top + i >= 0 && top + i < GH) {
int j;
for (j = 0; j < min((-left), TS); ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
for (; j < min(TS, GW - left); ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
totwt[top + i][left + j] += tilemask_in[i][j] * tilemask_out[i][j];
}
for (; j < TS; ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
} else {
for (int j = 0; j < TS; ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
}
}
}//end of filling block row
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//fftwf_print_plan (plan_forward_blox);
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_forward_blox[0], Lblox, fLblox); // DCT an entire row of tiles
} else {
fftwf_execute_r2r(plan_forward_blox[1], Lblox, fLblox); // DCT an entire row of tiles
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// now process the vblk row of blocks for noise reduction
// float params_Ldetail = 0.f;
float noisevar_Ldetail = 1.f;
if (chrom == 0) {
params_Ldetail = min(float(lp.noiseldetail), 99.9f); // max out to avoid div by zero when using noisevar_Ldetail as divisor
noisevar_Ldetail = SQR(static_cast<float>(SQR(100. - params_Ldetail) + 50.*(100. - params_Ldetail)) * TS * 0.5f);
} else if (chrom == 1) {
params_Ldetail = min(float(lp.noisechrodetail), 99.9f);
// noisevar_Ldetail = 100.f * pow((static_cast<float>(SQR(100. - params_Ldetail) + 50.*(100. - params_Ldetail)) * TS * 0.5f), 2);//to test ???
noisevar_Ldetail = 100.f * pow((static_cast<float>(SQR(100. - params_Ldetail)) * TS * 0.5f), 2);//to test ???
}
// float noisevar_Ldetail = SQR(static_cast<float>(SQR(100. - params_Ldetail) + 50.*(100. - params_Ldetail)) * TS * 0.5f);
for (int hblk = 0; hblk < numblox_W; ++hblk) {
ImProcFunctions::RGBtile_denoise(fLblox, hblk, noisevar_Ldetail);
}//end of horizontal block loop
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//now perform inverse FT of an entire row of blocks
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_backward_blox[0], fLblox, Lblox); //for DCT
} else {
fftwf_execute_r2r(plan_backward_blox[1], fLblox, Lblox); //for DCT
}
int topproc = (vblk - blkrad) * offset1;
//add row of blocks to output image tile
ImProcFunctions::RGBoutput_tile_row(Lblox, Ldetail, tilemask_out, GH, GW, topproc);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}//end of vertical block loop
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
//Threshold DCT from Alberto Grigio
const int detail_thresh = lp.detailthr;
array2D<float> mask;
float scalea = 1.f;
if (detail_thresh > 0) {
mask(GW, GH);
float thr = log2lin(float(detail_thresh) / 200.f, 100.f);
buildBlendMask(tmp1, mask, GW, GH, thr);
float r = 20.f / scalea;
if (r > 0) {
float **m = mask;
gaussianBlur(m, m, GW, GH, r);
}
array2D<float> m2(GW, GH);
const float alfa = 0.856f;
const float beta = 1.f + std::sqrt(log2lin(thr, 100.f));
buildGradientsMask(GW, GH, tmp1, m2, params_Ldetail / 100.f, 7, 3, alfa, beta, multiThread);
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
mask[i][j] *= m2[i][j];
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
float d = Ldetail[i][j] / totwt[i][j];
if (detail_thresh > 0) {
d *= mask[i][j];
}
//may want to include masking threshold for large hipass data to preserve edges/detail
tmp1[i][j] += d;
}
}
mask.free();
//end Threshold DCT
delete Lin;
for (int i = 0; i < numThreads; ++i) {
fftwf_free(LbloxArray[i]);
fftwf_free(fLbloxArray[i]);
}
fftwf_destroy_plan(plan_forward_blox[0]);
fftwf_destroy_plan(plan_backward_blox[0]);
fftwf_destroy_plan(plan_forward_blox[1]);
fftwf_destroy_plan(plan_backward_blox[1]);
fftwf_cleanup();
}
void ImProcFunctions::DeNoise(int call, int del, float * slidL, float * slida, float * slidb, int aut, bool noiscfactiv, struct local_params & lp, LabImage * originalmaskbl, int levred, float huerefblur, float lumarefblur, float chromarefblur, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
//local denoise
//all these variables are to prevent use of denoise when non necessary
// but with qualmet = 2 (default for best quality) we must denoise chroma with little values to prevent artifacts due to variations of Hue
// but if user select volontary denoise, it is that choice the good (prioritary)
bool execcolor = (lp.chro != 0.f || lp.ligh != 0.f || lp.cont != 0); // only if one slider ore more is engaged
bool execbdl = (lp.mulloc[0] != 1.f || lp.mulloc[1] != 1.f || lp.mulloc[2] != 1.f || lp.mulloc[3] != 1.f || lp.mulloc[4] != 1.f || lp.mulloc[5] != 1.f) ;//only if user want cbdl
bool execdenoi = noiscfactiv && ((lp.colorena && execcolor) || (lp.tonemapena && lp.strengt != 0.f) || (lp.cbdlena && execbdl) || (lp.sfena && lp.strng > 0.f) || (lp.lcena && lp.lcamount > 0.f) || (lp.sharpena && lp.shrad > 0.42) || (lp.retiena && lp.str > 0.f) || (lp.exposena && lp.expcomp != 0.f) || (lp.expvib && lp.past != 0.f));
if (((lp.noiself > 0.f || lp.noiself0 > 0.f || lp.noiself2 > 0.f || lp.noiselc > 0.f || lp.noisecf > 0.f || lp.noisecc > 0.f
|| lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 3 || lp.showmaskblmet == 4 || aut == 1 || aut == 2) && lp.denoiena) || execdenoi) { // sk == 1 ??
StopWatch Stop1("locallab Denoise called");
if (aut == 0) {
MyMutex::MyLock lock(*fftwMutex);
}
if (lp.noisecf >= 0.01f || lp.noisecc >= 0.01f || aut == 1 || aut == 2) {
noiscfactiv = false;
levred = 7;
}
int GW = transformed->W;
int GH = transformed->H;
#ifdef _OPENMP
const int numThreads = omp_get_max_threads();
#else
const int numThreads = 1;
#endif
if (call == 1 && GW >= mDEN && GH >= mDEN) {
LabImage tmp1(transformed->W, transformed->H);
LabImage tmp2(transformed->W, transformed->H);
tmp2.clear();
array2D<float> *Lin = nullptr;
array2D<float> *Ain = nullptr;
array2D<float> *Bin = nullptr;
int GW = transformed->W;
int GH = transformed->H;
int max_numblox_W = ceil((static_cast<float>(GW)) / (offset1)) + 2 * blkrad;
// calculate min size of numblox_W.
int min_numblox_W = ceil((static_cast<float>(GW)) / (offset1)) + 2 * blkrad;
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
tmp1.L[ir][jr] = original->L[ir][jr];
tmp1.a[ir][jr] = original->a[ir][jr];
tmp1.b[ir][jr] = original->b[ir][jr];
}
// int DaubLen = 6;
int levwavL = levred;
int skip = 1;
wavelet_decomposition Ldecomp(tmp1.L[0], tmp1.W, tmp1.H, levwavL, 1, skip, numThreads, lp.daubLen);
wavelet_decomposition adecomp(tmp1.a[0], tmp1.W, tmp1.H, levwavL, 1, skip, numThreads, lp.daubLen);
wavelet_decomposition bdecomp(tmp1.b[0], tmp1.W, tmp1.H, levwavL, 1, skip, numThreads, lp.daubLen);
float madL[8][3];
int edge = 2;
if (!Ldecomp.memoryAllocationFailed) {
#pragma omp parallel for collapse(2) schedule(dynamic,1)
for (int lvl = 0; lvl < levred; lvl++) {
for (int dir = 1; dir < 4; dir++) {
int Wlvl_L = Ldecomp.level_W(lvl);
int Hlvl_L = Ldecomp.level_H(lvl);
float ** WavCoeffs_L = Ldecomp.level_coeffs(lvl);
madL[lvl][dir - 1] = SQR(Mad(WavCoeffs_L[dir], Wlvl_L * Hlvl_L));
}
}
float vari[levred];
float mxsl = 0.f;
// float mxsfl = 0.f;
if (aut == 0) {
if (levred == 7) {
edge = 2;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiself2 / 125.0) * (1.0 + lp.noiself2 / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[4] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[5] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[6] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
} else if (levred == 4) {
edge = 3;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
}
} else if (aut == 1 || aut == 2) {
edge = 2;
vari[0] = SQR(slidL[0]);
vari[1] = SQR(slidL[1]);
vari[2] = SQR(slidL[2]);
// float maxf01 = max(slidL[0], slidL[1]);
// mxsfl = max(maxf01, slidL[2]);
vari[3] = SQR(slidL[3]);
vari[4] = SQR(slidL[4]);
vari[5] = SQR(slidL[5]);
vari[6] = SQR(slidL[6]);
float mxslid34 = max(slidL[3], slidL[4]);
float mxslid56 = max(slidL[5], slidL[6]);
mxsl = max(mxslid34, mxslid56);
}
{
float kr3 = 0.f;
float kr4 = 0.f;
float kr5 = 0.f;
if (aut == 0 || aut == 1) {
if ((lp.noiselc < 30.f && aut == 0) || (mxsl < 30.f && aut == 1)) {
kr3 = 0.f;
kr4 = 0.f;
kr5 = 0.f;
} else if ((lp.noiselc < 50.f && aut == 0) || (mxsl < 50.f && aut == 1)) {
kr3 = 0.5f;
kr4 = 0.3f;
kr5 = 0.2f;
} else if ((lp.noiselc < 70.f && aut == 0) || (mxsl < 70.f && aut == 1)) {
kr3 = 0.7f;
kr4 = 0.5f;
kr5 = 0.3f;
} else {
kr3 = 1.f;
kr4 = 1.f;
kr5 = 1.f;
}
} else if (aut == 2) {
kr3 = 1.f;
kr4 = 1.f;
kr5 = 1.f;
}
vari[0] = max(0.0001f, vari[0]);
vari[1] = max(0.0001f, vari[1]);
vari[2] = max(0.0001f, vari[2]);
vari[3] = max(0.0001f, kr3 * vari[3]);
if (levred == 7) {
vari[4] = max(0.0001f, kr4 * vari[4]);
vari[5] = max(0.0001f, kr5 * vari[5]);
vari[6] = max(0.0001f, kr5 * vari[6]);
}
float* noisevarlum = new float[GH * GW];
int GW2 = (GW + 1) / 2;
float nvlh[13] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 0.7f, 0.5f}; //high value
float nvll[13] = {0.1f, 0.15f, 0.2f, 0.25f, 0.3f, 0.35f, 0.4f, 0.45f, 0.7f, 0.8f, 1.f, 1.f, 1.f}; //low value
float seuillow = 3000.f;//low
float seuilhigh = 18000.f;//high
int i = 10 - lp.noiselequal;
float ac = (nvlh[i] - nvll[i]) / (seuillow - seuilhigh);
float bc = nvlh[i] - seuillow * ac;
//ac and bc for transition
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
float lN = tmp1.L[ir][jr];
if (lN < seuillow) {
noisevarlum[(ir >> 1)*GW2 + (jr >> 1)] = nvlh[i];
} else if (lN < seuilhigh) {
noisevarlum[(ir >> 1)*GW2 + (jr >> 1)] = ac * lN + bc;
} else {
noisevarlum[(ir >> 1)*GW2 + (jr >> 1)] = nvll[i];
}
}
if ((lp.noiselc < 0.02f && aut == 0) || (mxsl < 1.f && (aut == 1 || aut == 2))) {
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
} else {
WaveletDenoiseAll_BiShrinkL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
}
delete[] noisevarlum;
}
}
float variC[levred];
float variCb[levred];
float noisecfr = lp.noisecf;
float noiseccr = lp.noisecc;
if (lp.adjch > 0.f) {
noisecfr = lp.noisecf * ((100.f + lp.adjch) / 10.f);
noiseccr = lp.noisecc + ((100.f + lp.adjch) / 10.f);
}
float noisecfb = lp.noisecf;
float noiseccb = lp.noisecc;
if (lp.adjch < 0.f) {
noisecfb = lp.noisecf * ((100.f - lp.adjch) / 10.f);
noiseccb = lp.noisecc * ((100.f - lp.adjch) / 10.f);
}
if (noisecfr < 0.f) {
noisecfr = 0.0001f;
}
if (noiseccr < 0.f) {
noiseccr = 0.0001f;
}
if (noisecfb < 0.f) {
noisecfb = 0.0001f;
}
if (noiseccb < 0.f) {
noiseccb = 0.0001f;
}
if (!adecomp.memoryAllocationFailed && !bdecomp.memoryAllocationFailed) {
float maxcfine = 0.f;
float maxccoarse = 0.f;
if (aut == 0) {
if (levred == 7) {
edge = 2;
variC[0] = SQR(noisecfr);
variC[1] = SQR(noisecfr);
variC[2] = SQR(noisecfr);
variC[3] = SQR(noisecfr);
variC[4] = SQR(noisecfr);
variC[5] = SQR(noiseccr);
variC[6] = SQR(noiseccr);
variCb[0] = SQR(noisecfb);
variCb[1] = SQR(noisecfb);
variCb[2] = SQR(noisecfb);
variCb[3] = SQR(noisecfb);
variCb[4] = SQR(noisecfb);
variCb[5] = SQR(noiseccb);
variCb[6] = SQR(noiseccb);
} else if (levred == 4) {
edge = 3;
variC[0] = SQR(lp.noisecf / 10.0);
variC[1] = SQR(lp.noisecf / 10.0);
variC[2] = SQR(lp.noisecf / 10.0);
variC[3] = SQR(lp.noisecf / 10.0);
variCb[0] = SQR(lp.noisecf / 10.0);
variCb[1] = SQR(lp.noisecf / 10.0);
variCb[2] = SQR(lp.noisecf / 10.0);
variCb[3] = SQR(lp.noisecf / 10.0);
}
} else if (aut == 1 || aut == 2) {
edge = 2;
variC[0] = SQR(slida[0]);
variC[1] = SQR(slida[1]);
variC[2] = SQR(slida[2]);
variC[3] = SQR(slida[3]);
variC[4] = SQR(slida[4]);
variC[5] = SQR(slida[5]);
variC[6] = SQR(slida[6]);
float maxc01 = max(slida[0], slida[1]);
float maxc23 = max(slida[2], slida[3]);
float max03 = max(maxc01, maxc23);
float maxrf = max(max03, slida[4]);
float maxrc = max(slida[5], slida[6]);
variCb[0] = SQR(slidb[0]);
variCb[1] = SQR(slidb[1]);
variCb[2] = SQR(slidb[2]);
variCb[3] = SQR(slidb[3]);
variCb[4] = SQR(slidb[4]);
variCb[5] = SQR(slidb[5]);
variCb[6] = SQR(slidb[6]);
float maxb01 = max(slidb[0], slidb[1]);
float maxb23 = max(slidb[2], slidb[3]);
float maxb03 = max(maxb01, maxb23);
float maxbf = max(maxb03, slidb[4]);
maxcfine = max(maxrf, maxbf);
float maxbc = max(slidb[5], slidb[6]);
maxccoarse = max(maxrc, maxbc);
}
{
float minic = 0.0001f;
if (noiscfactiv) {
minic = 0.1f;//only for artifact shape detection
}
float k1 = 0.f;
float k2 = 0.f;
float k3 = 0.f;
if (aut == 0 || aut == 1) {
if ((lp.noisecf < 0.2f && aut == 0) || (maxcfine < 0.2f && aut == 1)) {
k1 = 0.f;
k2 = 0.f;
k3 = 0.f;
} else if ((lp.noisecf < 0.3f && aut == 0) || (maxcfine < 0.3f && aut == 1)) {
k1 = 0.1f;
k2 = 0.0f;
k3 = 0.f;
} else if ((lp.noisecf < 0.5f && aut == 0) || (maxcfine < 0.5f && aut == 1)) {
k1 = 0.2f;
k2 = 0.1f;
k3 = 0.f;
} else if ((lp.noisecf < 0.8f && aut == 0) || (maxcfine < 0.8f && aut == 1)) {
k1 = 0.3f;
k2 = 0.25f;
k3 = 0.f;
} else if ((lp.noisecf < 1.f && aut == 0) || (maxcfine < 1.f && aut == 1)) {
k1 = 0.4f;
k2 = 0.25f;
k3 = 0.1f;
} else if ((lp.noisecf < 2.f && aut == 0) || (maxcfine < 2.f && aut == 1)) {
k1 = 0.5f;
k2 = 0.3f;
k3 = 0.15f;
} else if ((lp.noisecf < 3.f && aut == 0) || (maxcfine < 3.f && aut == 1)) {
k1 = 0.6f;
k2 = 0.45f;
k3 = 0.3f;
} else if ((lp.noisecf < 4.f && aut == 0) || (maxcfine < 4.f && aut == 1)) {
k1 = 0.7f;
k2 = 0.5f;
k3 = 0.4f;
} else if ((lp.noisecf < 5.f && aut == 0) || (maxcfine < 5.f && aut == 1)) {
k1 = 0.8f;
k2 = 0.6f;
k3 = 0.5f;
} else if ((lp.noisecf < 10.f && aut == 0) || (maxcfine < 10.f && aut == 1)) {
k1 = 0.85f;
k2 = 0.7f;
k3 = 0.6f;
} else if ((lp.noisecf < 20.f && aut == 0) || (maxcfine < 20.f && aut == 1)) {
k1 = 0.9f;
k2 = 0.8f;
k3 = 0.7f;
} else if ((lp.noisecf < 50.f && aut == 0) || (maxcfine < 50.f && aut == 1)) {
k1 = 1.f;
k2 = 1.f;
k3 = 0.9f;
} else {
k1 = 1.f;
k2 = 1.f;
k3 = 1.f;
}
} else if (aut == 2) {
k1 = 1.f;
k2 = 1.f;
k3 = 1.f;
}
variC[0] = max(minic, variC[0]);
variC[1] = max(minic, k1 * variC[1]);
variC[2] = max(minic, k2 * variC[2]);
variC[3] = max(minic, k3 * variC[3]);
variCb[0] = max(minic, variCb[0]);
variCb[1] = max(minic, k1 * variCb[1]);
variCb[2] = max(minic, k2 * variCb[2]);
variCb[3] = max(minic, k3 * variCb[3]);
if (levred == 7) {
float k4 = 0.f;
float k5 = 0.f;
float k6 = 0.f;
if ((lp.noisecc == 0.01f && aut == 0) || (maxccoarse == 0.1f && aut == 1)) {
k4 = 0.f;
k5 = 0.0f;
} else if ((lp.noisecc < 0.2f && aut == 0) || (maxccoarse < 0.2f && aut == 1)) {
k4 = 0.1f;
k5 = 0.0f;
} else if ((lp.noisecc < 0.5f && aut == 0) || (maxccoarse < 0.5f && aut == 1)) {
k4 = 0.15f;
k5 = 0.0f;
} else if ((lp.noisecc < 1.f && aut == 0) || (maxccoarse < 1.f && aut == 1)) {
k4 = 0.15f;
k5 = 0.1f;
} else if ((lp.noisecc < 3.f && aut == 0) || (maxccoarse < 3.f && aut == 1)) {
k4 = 0.3f;
k5 = 0.15f;
} else if ((lp.noisecc < 4.f && aut == 0) || (maxccoarse < 5.f && aut == 1)) {
k4 = 0.6f;
k5 = 0.4f;
} else if ((lp.noisecc < 6.f && aut == 0) || (maxccoarse < 6.f && aut == 1)) {
k4 = 0.8f;
k5 = 0.6f;
} else {
k4 = 1.f;
k5 = 1.f;
}
variC[4] = max(0.0001f, k4 * variC[4]);
variC[5] = max(0.0001f, k5 * variC[5]);
variCb[4] = max(0.0001f, k4 * variCb[4]);
variCb[5] = max(0.0001f, k5 * variCb[5]);
if ((lp.noisecc < 4.f && aut == 0) || (maxccoarse < 4.f && aut == 1)) {
k6 = 0.f;
} else if ((lp.noisecc < 5.f && aut == 0) || (maxccoarse < 5.f && aut == 1)) {
k6 = 0.4f;
} else if ((lp.noisecc < 6.f && aut == 0) || (maxccoarse < 6.f && aut == 1)) {
k6 = 0.7f;
} else {
k6 = 1.f;
}
variC[6] = max(0.0001f, k6 * variC[6]);
variCb[6] = max(0.0001f, k6 * variCb[6]);
}
float* noisevarchrom = new float[GH * GW];
//noisevarchrom in function chroma
int GW2 = (GW + 1) / 2;
float nvch = 0.6f;//high value
float nvcl = 0.1f;//low value
if ((lp.noisecf > 100.f && aut == 0) || (maxcfine > 100.f && (aut == 1 || aut == 2))) {
nvch = 0.8f;
nvcl = 0.4f;
}
float seuil = 4000.f;//low
float seuil2 = 15000.f;//high
//ac and bc for transition
float ac = (nvch - nvcl) / (seuil - seuil2);
float bc = nvch - seuil * ac;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
float cN = sqrt(SQR(tmp1.a[ir][jr]) + SQR(tmp1.b[ir][jr]));
if (cN < seuil) {
noisevarchrom[(ir >> 1)*GW2 + (jr >> 1)] = nvch;
} else if (cN < seuil2) {
noisevarchrom[(ir >> 1)*GW2 + (jr >> 1)] = ac * cN + bc;
} else {
noisevarchrom[(ir >> 1)*GW2 + (jr >> 1)] = nvcl;
}
}
float noisevarab_r = 100.f; //SQR(lp.noisecc / 10.0);
if ((lp.noisecc < 0.02f && aut == 0) || (maxccoarse < 0.1f && (aut == 1 || aut == 2))) {
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
} else {
WaveletDenoiseAll_BiShrinkAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAll_BiShrinkAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
}
delete[] noisevarchrom;
}
}
if (!Ldecomp.memoryAllocationFailed) {
Lin = new array2D<float>(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
(*Lin)[i][j] = tmp1.L[i][j];
}
}
Ldecomp.reconstruct(tmp1.L[0]);
}
if (!Ldecomp.memoryAllocationFailed && aut == 0) {
if ((lp.noiself >= 0.01f || lp.noiself0 >= 0.01f || lp.noiself2 >= 0.01f || lp.noiselc >= 0.01f) && levred == 7 && lp.noiseldetail != 100.f) {
fftw_denoise(GW, GH, max_numblox_W, min_numblox_W, tmp1.L, Lin, numThreads, lp, 0);
}
}
if (!adecomp.memoryAllocationFailed) {
Ain = new array2D<float>(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
(*Ain)[i][j] = tmp1.a[i][j];
}
}
adecomp.reconstruct(tmp1.a[0]);
}
if (!adecomp.memoryAllocationFailed && aut == 0) {
if ((lp.noisecf >= 0.01f || lp.noisecc >= 0.01f) && levred == 7 && lp.noisechrodetail != 100.f) {
fftw_denoise(GW, GH, max_numblox_W, min_numblox_W, tmp1.a, Ain, numThreads, lp, 1);
}
}
if (!bdecomp.memoryAllocationFailed) {
Bin = new array2D<float>(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
(*Bin)[i][j] = tmp1.b[i][j];
}
}
bdecomp.reconstruct(tmp1.b[0]);
}
if (!bdecomp.memoryAllocationFailed && aut == 0) {
if ((lp.noisecf >= 0.01f || lp.noisecc >= 0.01f) && levred == 7 && lp.noisechrodetail != 100.f) {
fftw_denoise(GW, GH, max_numblox_W, min_numblox_W, tmp1.b, Bin, numThreads, lp, 1);
}
}
DeNoise_Local(call, lp, originalmaskbl, levred, huerefblur, lumarefblur, chromarefblur, original, transformed, tmp1, cx, cy, sk);
} else if (call == 2) { //simpleprocess
int bfh = int (lp.ly + lp.lyT) + del; //bfw bfh real size of square zone
int bfw = int (lp.lx + lp.lxL) + del;
if (bfh >= mDEN && bfw >= mDEN) {
LabImage bufwv(bfw, bfh);
bufwv.clear(true);
array2D<float> *Lin = nullptr;
array2D<float> *Ain = nullptr;
array2D<float> *Bin = nullptr;
int max_numblox_W = ceil((static_cast<float>(bfw)) / (offset1)) + 2 * blkrad;
// calculate min size of numblox_W.
int min_numblox_W = ceil((static_cast<float>(bfw)) / (offset1)) + 2 * blkrad;
// these are needed only for creation of the plans and will be freed before entering the parallel loop
int begy = lp.yc - lp.lyT;
int begx = lp.xc - lp.lxL;
int yEn = lp.yc + lp.ly;
int xEn = lp.xc + lp.lx;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++) //{
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int loy = cy + y;
if (lox >= begx && lox < xEn && loy >= begy && loy < yEn) {
bufwv.L[loy - begy][lox - begx] = original->L[y][x];
bufwv.a[loy - begy][lox - begx] = original->a[y][x];
bufwv.b[loy - begy][lox - begx] = original->b[y][x];
}
}
// int DaubLen = 6;
int levwavL = levred;
int skip = 1;
wavelet_decomposition Ldecomp(bufwv.L[0], bufwv.W, bufwv.H, levwavL, 1, skip, numThreads, lp.daubLen);
wavelet_decomposition adecomp(bufwv.a[0], bufwv.W, bufwv.H, levwavL, 1, skip, numThreads, lp.daubLen);
wavelet_decomposition bdecomp(bufwv.b[0], bufwv.W, bufwv.H, levwavL, 1, skip, numThreads, lp.daubLen);
float madL[8][3];
int edge = 2;
if (!Ldecomp.memoryAllocationFailed) {
#pragma omp parallel for collapse(2) schedule(dynamic,1)
for (int lvl = 0; lvl < levred; lvl++) {
for (int dir = 1; dir < 4; dir++) {
int Wlvl_L = Ldecomp.level_W(lvl);
int Hlvl_L = Ldecomp.level_H(lvl);
float ** WavCoeffs_L = Ldecomp.level_coeffs(lvl);
madL[lvl][dir - 1] = SQR(Mad(WavCoeffs_L[dir], Wlvl_L * Hlvl_L));
}
}
float vari[levred];
float mxsl = 0.f;
// float mxsfl = 0.f;
if (aut == 0) {
if (levred == 7) {
edge = 2;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiself2 / 125.0) * (1.0 + lp.noiself2 / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[4] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[5] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[6] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
} else if (levred == 4) {
edge = 3;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
}
} else if (aut == 1 || aut == 2) {
edge = 2;
vari[0] = SQR(slidL[0]);
vari[1] = SQR(slidL[1]);
vari[2] = SQR(slidL[2]);
// float maxf01 = max(slidL[0], slidL[1]);
// mxsfl = max(maxf01, slidL[2]);
vari[3] = SQR(slidL[3]);
vari[4] = SQR(slidL[4]);
vari[5] = SQR(slidL[5]);
vari[6] = SQR(slidL[6]);
float mxslid34 = max(slidL[3], slidL[4]);
float mxslid56 = max(slidL[5], slidL[6]);
mxsl = max(mxslid34, mxslid56);
}
// if ((lp.noiself >= 0.1f || lp.noiself0 >= 0.1f || lp.noiself2 >= 0.1f || lp.noiselc >= 0.1f || mxsl >= 0.1f || mxsfl >= 0.1f)) {
{
float kr3 = 0.f;
float kr4 = 0.f;
float kr5 = 0.f;
if (aut == 0 || aut == 1) {
if ((lp.noiselc < 30.f && aut == 0) || (mxsl < 30.f && aut == 1)) {
kr3 = 0.f;
kr4 = 0.f;
kr5 = 0.f;
} else if ((lp.noiselc < 50.f && aut == 0) || (mxsl < 50.f && aut == 1)) {
kr3 = 0.5f;
kr4 = 0.3f;
kr5 = 0.2f;
} else if ((lp.noiselc < 70.f && aut == 0) || (mxsl < 70.f && aut == 1)) {
kr3 = 0.7f;
kr4 = 0.5f;
kr5 = 0.3f;
} else {
kr3 = 1.f;
kr4 = 1.f;
kr5 = 1.f;
}
} else if (aut == 2) {
kr3 = 1.f;
kr4 = 1.f;
kr5 = 1.f;
}
vari[0] = max(0.0001f, vari[0]);
vari[1] = max(0.0001f, vari[1]);
vari[2] = max(0.0001f, vari[2]);
vari[3] = max(0.0001f, kr3 * vari[3]);
if (levred == 7) {
vari[4] = max(0.0001f, kr4 * vari[4]);
vari[5] = max(0.0001f, kr5 * vari[5]);
vari[6] = max(0.0001f, kr5 * vari[6]);
}
// float* noisevarlum = nullptr; // we need a dummy to pass it to WaveletDenoiseAllL
float* noisevarlum = new float[bfh * bfw];
int bfw2 = (bfw + 1) / 2;
float nvlh[13] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 0.7f, 0.5f}; //high value
float nvll[13] = {0.1f, 0.15f, 0.2f, 0.25f, 0.3f, 0.35f, 0.4f, 0.45f, 0.7f, 0.8f, 1.f, 1.f, 1.f}; //low value
float seuillow = 3000.f;//low
float seuilhigh = 18000.f;//high
int i = 10 - lp.noiselequal;
float ac = (nvlh[i] - nvll[i]) / (seuillow - seuilhigh);
float bc = nvlh[i] - seuillow * ac;
//ac and bc for transition
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float lN = bufwv.L[ir][jr];
if (lN < seuillow) {
noisevarlum[(ir >> 1)*bfw2 + (jr >> 1)] = nvlh[i];
} else if (lN < seuilhigh) {
noisevarlum[(ir >> 1)*bfw2 + (jr >> 1)] = ac * lN + bc;
} else {
noisevarlum[(ir >> 1)*bfw2 + (jr >> 1)] = nvll[i];
}
}
if ((lp.noiselc < 0.02f && aut == 0) || (mxsl < 1.f && (aut == 1 || aut == 2))) {
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
} else {
WaveletDenoiseAll_BiShrinkL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
}
delete [] noisevarlum;
}
}
float variC[levred];
float variCb[levred];
float noisecfr = lp.noisecf;
float noiseccr = lp.noisecc;
if (lp.adjch > 0.f) {
noisecfr = lp.noisecf * ((100.f + lp.adjch) / 10.f);
noiseccr = lp.noisecc + ((100.f + lp.adjch) / 10.f);
}
float noisecfb = lp.noisecf;
float noiseccb = lp.noisecc;
if (lp.adjch < 0.f) {
noisecfb = lp.noisecf * ((100.f - lp.adjch) / 10.f);
noiseccb = lp.noisecc * ((100.f - lp.adjch) / 10.f);
}
if (noisecfr < 0.f) {
noisecfr = 0.0001f;
}
if (noiseccr < 0.f) {
noiseccr = 0.0001f;
}
if (noisecfb < 0.f) {
noisecfb = 0.0001f;
}
if (noiseccb < 0.f) {
noiseccb = 0.0001f;
}
if (!adecomp.memoryAllocationFailed && !bdecomp.memoryAllocationFailed) {
float maxcfine = 0.f;
float maxccoarse = 0.f;
if (aut == 0) {
if (levred == 7) {
edge = 2;
variC[0] = SQR(noisecfr);
variC[1] = SQR(noisecfr);
variC[2] = SQR(noisecfr);
variC[3] = SQR(noisecfr);
variC[4] = SQR(noisecfr);
variC[5] = SQR(noiseccr);
variC[6] = SQR(noiseccr);
variCb[0] = SQR(noisecfb);
variCb[1] = SQR(noisecfb);
variCb[2] = SQR(noisecfb);
variCb[3] = SQR(noisecfb);
variCb[4] = SQR(noisecfb);
variCb[5] = SQR(noiseccb);
variCb[6] = SQR(noiseccb);
} else if (levred == 4) {
edge = 3;
variC[0] = SQR(lp.noisecf / 10.0);
variC[1] = SQR(lp.noisecf / 10.0);
variC[2] = SQR(lp.noisecf / 10.0);
variC[3] = SQR(lp.noisecf / 10.0);
variCb[0] = SQR(lp.noisecf / 10.0);
variCb[1] = SQR(lp.noisecf / 10.0);
variCb[2] = SQR(lp.noisecf / 10.0);
variCb[3] = SQR(lp.noisecf / 10.0);
}
} else if (aut == 1 || aut == 2) {
edge = 2;
variC[0] = SQR(slida[0]);
variC[1] = SQR(slida[1]);
variC[2] = SQR(slida[2]);
variC[3] = SQR(slida[3]);
variC[4] = SQR(slida[4]);
variC[5] = SQR(slida[5]);
variC[6] = SQR(slida[6]);
float maxc01 = max(slida[0], slida[1]);
float maxc23 = max(slida[2], slida[3]);
float max03 = max(maxc01, maxc23);
float maxrf = max(max03, slida[4]);
float maxrc = max(slida[5], slida[6]);
variCb[0] = SQR(slidb[0]);
variCb[1] = SQR(slidb[1]);
variCb[2] = SQR(slidb[2]);
variCb[3] = SQR(slidb[3]);
variCb[4] = SQR(slidb[4]);
variCb[5] = SQR(slidb[5]);
variCb[6] = SQR(slidb[6]);
float maxb01 = max(slidb[0], slidb[1]);
float maxb23 = max(slidb[2], slidb[3]);
float maxb03 = max(maxb01, maxb23);
float maxbf = max(maxb03, slidb[4]);
maxcfine = max(maxrf, maxbf);
float maxbc = max(slidb[5], slidb[6]);
maxccoarse = max(maxrc, maxbc);
}
// if ((lp.noisecf >= 0.1f || lp.noisecc >= 0.1f || noiscfactiv || maxcfine >= 0.1f || maxccoarse > 0.1f)) {
{
float minic = 0.0001f;
if (noiscfactiv) {
minic = 0.1f;//only for artifact shape detection
}
float k1 = 0.f;
float k2 = 0.f;
float k3 = 0.f;
if (aut == 0 || aut == 1) {
if ((lp.noisecf < 0.2f && aut == 0) || (maxcfine < 0.2f && aut == 1)) {
k1 = 0.f;
k2 = 0.f;
k3 = 0.f;
} else if ((lp.noisecf < 0.3f && aut == 0) || (maxcfine < 0.3f && aut == 1)) {
k1 = 0.1f;
k2 = 0.0f;
k3 = 0.f;
} else if ((lp.noisecf < 0.5f && aut == 0) || (maxcfine < 0.5f && aut == 1)) {
k1 = 0.2f;
k2 = 0.1f;
k3 = 0.f;
} else if ((lp.noisecf < 0.8f && aut == 0) || (maxcfine < 0.8f && aut == 1)) {
k1 = 0.3f;
k2 = 0.25f;
k3 = 0.f;
} else if ((lp.noisecf < 1.f && aut == 0) || (maxcfine < 1.f && aut == 1)) {
k1 = 0.4f;
k2 = 0.25f;
k3 = 0.1f;
} else if ((lp.noisecf < 2.f && aut == 0) || (maxcfine < 2.f && aut == 1)) {
k1 = 0.5f;
k2 = 0.3f;
k3 = 0.15f;
} else if ((lp.noisecf < 3.f && aut == 0) || (maxcfine < 3.f && aut == 1)) {
k1 = 0.6f;
k2 = 0.45f;
k3 = 0.3f;
} else if ((lp.noisecf < 4.f && aut == 0) || (maxcfine < 4.f && aut == 1)) {
k1 = 0.7f;
k2 = 0.5f;
k3 = 0.4f;
} else if ((lp.noisecf < 5.f && aut == 0) || (maxcfine < 5.f && aut == 1)) {
k1 = 0.8f;
k2 = 0.6f;
k3 = 0.5f;
} else if ((lp.noisecf < 10.f && aut == 0) || (maxcfine < 10.f && aut == 1)) {
k1 = 0.85f;
k2 = 0.7f;
k3 = 0.6f;
} else if ((lp.noisecf < 20.f && aut == 0) || (maxcfine < 20.f && aut == 1)) {
k1 = 0.9f;
k2 = 0.8f;
k3 = 0.7f;
} else if ((lp.noisecf < 50.f && aut == 0) || (maxcfine < 50.f && aut == 1)) {
k1 = 1.f;
k2 = 1.f;
k3 = 0.9f;
} else {
k1 = 1.f;
k2 = 1.f;
k3 = 1.f;
}
} else if (aut == 2) {
k1 = 1.f;
k2 = 1.f;
k3 = 1.f;
}
variC[0] = max(minic, variC[0]);
variC[1] = max(minic, k1 * variC[1]);
variC[2] = max(minic, k2 * variC[2]);
variC[3] = max(minic, k3 * variC[3]);
variCb[0] = max(minic, variCb[0]);
variCb[1] = max(minic, k1 * variCb[1]);
variCb[2] = max(minic, k2 * variCb[2]);
variCb[3] = max(minic, k3 * variCb[3]);
if (levred == 7) {
float k4 = 0.f;
float k5 = 0.f;
float k6 = 0.f;
if ((lp.noisecc == 0.01f && aut == 0) || (maxccoarse == 0.1f && aut == 1)) {
k4 = 0.f;
k5 = 0.0f;
} else if ((lp.noisecc < 0.2f && aut == 0) || (maxccoarse < 0.2f && aut == 1)) {
k4 = 0.1f;
k5 = 0.0f;
} else if ((lp.noisecc < 0.5f && aut == 0) || (maxccoarse < 0.5f && aut == 1)) {
k4 = 0.15f;
k5 = 0.0f;
} else if ((lp.noisecc < 1.f && aut == 0) || (maxccoarse < 1.f && aut == 1)) {
k4 = 0.15f;
k5 = 0.1f;
} else if ((lp.noisecc < 3.f && aut == 0) || (maxccoarse < 3.f && aut == 1)) {
k4 = 0.3f;
k5 = 0.15f;
} else if ((lp.noisecc < 4.f && aut == 0) || (maxccoarse < 5.f && aut == 1)) {
k4 = 0.6f;
k5 = 0.4f;
} else if ((lp.noisecc < 6.f && aut == 0) || (maxccoarse < 6.f && aut == 1)) {
k4 = 0.8f;
k5 = 0.6f;
} else {
k4 = 1.f;
k5 = 1.f;
}
variC[4] = max(0.0001f, k4 * variC[4]);
variC[5] = max(0.0001f, k5 * variC[5]);
variCb[4] = max(0.0001f, k4 * variCb[4]);
variCb[5] = max(0.0001f, k5 * variCb[5]);
if ((lp.noisecc < 4.f && aut == 0) || (maxccoarse < 4.f && aut == 1)) {
k6 = 0.f;
} else if ((lp.noisecc < 5.f && aut == 0) || (maxccoarse < 5.f && aut == 1)) {
k6 = 0.4f;
} else if ((lp.noisecc < 6.f && aut == 0) || (maxccoarse < 6.f && aut == 1)) {
k6 = 0.7f;
} else {
k6 = 1.f;
}
variC[6] = max(0.0001f, k6 * variC[6]);
variCb[6] = max(0.0001f, k6 * variCb[6]);
}
float* noisevarchrom = new float[bfh * bfw];
int bfw2 = (bfw + 1) / 2;
float nvch = 0.6f;//high value
float nvcl = 0.1f;//low value
if ((lp.noisecf > 100.f && aut == 0) || (maxcfine > 100.f && (aut == 1 || aut == 2))) {
nvch = 0.8f;
nvcl = 0.4f;
}
float seuil = 4000.f;//low
float seuil2 = 15000.f;//high
//ac and bc for transition
float ac = (nvch - nvcl) / (seuil - seuil2);
float bc = nvch - seuil * ac;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float cN = sqrt(SQR(bufwv.a[ir][jr]) + SQR(bufwv.b[ir][jr]));
if (cN < seuil) {
noisevarchrom[(ir >> 1)*bfw2 + (jr >> 1)] = nvch;
} else if (cN < seuil2) {
noisevarchrom[(ir >> 1)*bfw2 + (jr >> 1)] = ac * cN + bc;
} else {
noisevarchrom[(ir >> 1)*bfw2 + (jr >> 1)] = nvcl;
}
}
float noisevarab_r = 100.f; //SQR(lp.noisecc / 10.0);
if ((lp.noisecc < 0.02f && aut == 0) || (maxccoarse < 0.1f && (aut == 1 || aut == 2))) {
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
} else {
WaveletDenoiseAll_BiShrinkAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAll_BiShrinkAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
}
delete[] noisevarchrom;
}
}
if (!Ldecomp.memoryAllocationFailed) {
Lin = new array2D<float>(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < bfh; ++i) {
for (int j = 0; j < bfw; ++j) {
(*Lin)[i][j] = bufwv.L[i][j];
}
}
Ldecomp.reconstruct(bufwv.L[0]);
}
if (!Ldecomp.memoryAllocationFailed && aut == 0) {
if ((lp.noiself >= 0.01f || lp.noiself0 >= 0.01f || lp.noiself2 >= 0.01f || lp.noiselc >= 0.01f) && levred == 7 && lp.noiseldetail != 100.f) {
fftw_denoise(bfw, bfh, max_numblox_W, min_numblox_W, bufwv.L, Lin, numThreads, lp, 0);
}
}
if (!adecomp.memoryAllocationFailed) {
Ain = new array2D<float>(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < bfh; ++i) {
for (int j = 0; j < bfw; ++j) {
(*Ain)[i][j] = bufwv.a[i][j];
}
}
adecomp.reconstruct(bufwv.a[0]);
}
if (!adecomp.memoryAllocationFailed && aut == 0) {
if ((lp.noisecf >= 0.001f || lp.noisecc >= 0.001f) && levred == 7 && lp.noisechrodetail != 100.f) {
fftw_denoise(bfw, bfh, max_numblox_W, min_numblox_W, bufwv.a, Ain, numThreads, lp, 1);
}
}
if (!bdecomp.memoryAllocationFailed) {
Bin = new array2D<float>(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < bfh; ++i) {
for (int j = 0; j < bfw; ++j) {
(*Bin)[i][j] = bufwv.b[i][j];
}
}
bdecomp.reconstruct(bufwv.b[0]);
}
if (!bdecomp.memoryAllocationFailed && aut == 0) {
if ((lp.noisecf >= 0.001f || lp.noisecc >= 0.001f) && levred == 7 && lp.noisechrodetail != 100.f) {
fftw_denoise(bfw, bfh, max_numblox_W, min_numblox_W, bufwv.b, Bin, numThreads, lp, 1);
}
}
DeNoise_Local(call, lp, originalmaskbl, levred, huerefblur, lumarefblur, chromarefblur, original, transformed, bufwv, cx, cy, sk);
}
}
}
}
float triangle(float a, float a1, float b)
{
if (a != b) {
float b1;
float a2 = a1 - a;
if (b < a) {
b1 = b + a2 * b / a ;
} else {
b1 = b + a2 * (65535.f - b) / (65535.f - a);
}
return b1;
}
return a1;
}
void rgbtone(float & maxval, float & medval, float & minval, LUTf & lutToneCurve)
{
float minvalold = minval, medvalold = medval, maxvalold = maxval;
maxval = lutToneCurve[maxvalold];
minval = lutToneCurve[minvalold];
medval = minval + ((maxval - minval) * (medvalold - minvalold) / (maxvalold - minvalold));
}
void clarimerge(struct local_params& lp, float &mL, float &mC, bool &exec, LabImage *tmpresid, int wavelet_level, int sk, bool numThreads)
{
if (mL != 0.f && mC == 0.f) {
mC = 0.0001f;
exec = true;
}
if (mC != 0.f && mL == 0.f) {
mL = 0.0001f;
exec = true;
}
if (mL != 0.f && mC != 0.f) {
exec = true;
}
if (mL != 0.f) {
wavelet_decomposition *wdspotresid = new wavelet_decomposition(tmpresid->L[0], tmpresid->W, tmpresid->H, wavelet_level, 1, sk, numThreads, lp.daubLen);
if (wdspotresid->memoryAllocationFailed) {
return;
}
int maxlvlresid = wdspotresid->maxlevel();
if (maxlvlresid > 4) {//Clarity
for (int dir = 1; dir < 4; dir++) {
for (int level = 0; level < maxlvlresid; ++level) {
int W_L = wdspotresid->level_W(level);
int H_L = wdspotresid->level_H(level);
float **wav_Lresid = wdspotresid->level_coeffs(level);
for (int i = 0; i < W_L * H_L; i++) {
wav_Lresid[dir][i] = 0.f;
}
}
}
} else {//Sharp
float *wav_L0resid = wdspotresid->coeff0;
int W_L = wdspotresid->level_W(0);
int H_L = wdspotresid->level_H(0);
for (int i = 0; i < W_L * H_L; i++) {
wav_L0resid[i] = 0.f;
}
}
wdspotresid->reconstruct(tmpresid->L[0], 1.f);
delete wdspotresid;
}
if (mC != 0.f) {
wavelet_decomposition *wdspotresida = new wavelet_decomposition(tmpresid->a[0], tmpresid->W, tmpresid->H, wavelet_level, 1, sk, numThreads, lp.daubLen);
if (wdspotresida->memoryAllocationFailed) {
return;
}
int maxlvlresid = wdspotresida->maxlevel();
if (maxlvlresid > 4) {//Clarity
for (int dir = 1; dir < 4; dir++) {
for (int level = 0; level < maxlvlresid; ++level) {
int W_L = wdspotresida->level_W(level);
int H_L = wdspotresida->level_H(level);
float **wav_Lresida = wdspotresida->level_coeffs(level);
for (int i = 0; i < W_L * H_L; i++) {
wav_Lresida[dir][i] = 0.f;
}
}
}
} else {//Sharp
float *wav_L0resida = wdspotresida->coeff0;
int W_L = wdspotresida->level_W(0);
int H_L = wdspotresida->level_H(0);
for (int i = 0; i < W_L * H_L; i++) {
wav_L0resida[i] = 0.f;
}
}
wdspotresida->reconstruct(tmpresid->a[0], 1.f);
delete wdspotresida;
}
if (mC != 0.f) {
wavelet_decomposition *wdspotresidb = new wavelet_decomposition(tmpresid->b[0], tmpresid->W, tmpresid->H, wavelet_level, 1, sk, numThreads, lp.daubLen);
if (wdspotresidb->memoryAllocationFailed) {
return;
}
int maxlvlresid = wdspotresidb->maxlevel();
if (maxlvlresid > 4) {//Clarity
for (int dir = 1; dir < 4; dir++) {
for (int level = 0; level < maxlvlresid; ++level) {
int W_L = wdspotresidb->level_W(level);
int H_L = wdspotresidb->level_H(level);
float **wav_Lresidb = wdspotresidb->level_coeffs(level);
for (int i = 0; i < W_L * H_L; i++) {
wav_Lresidb[dir][i] = 0.f;
}
}
}
} else {//Sharp
float *wav_L0residb = wdspotresidb->coeff0;
int W_L = wdspotresidb->level_W(0);
int H_L = wdspotresidb->level_H(0);
for (int i = 0; i < W_L * H_L; i++) {
wav_L0residb[i] = 0.f;
}
}
wdspotresidb->reconstruct(tmpresid->b[0], 1.f);
delete wdspotresidb;
}
}
void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * original, LabImage * transformed, LabImage * reserved, LabImage * lastorig, int cx, int cy, int oW, int oH, int sk,
const LocretigainCurve & locRETgainCcurve, const LocretitransCurve & locRETtransCcurve,
LUTf & lllocalcurve, bool & locallutili,
LUTf & cllocalcurve, bool & localclutili,
LUTf & lclocalcurve, bool & locallcutili,
const LocLHCurve & loclhCurve, const LocHHCurve & lochhCurve,
LUTf & lmasklocalcurve, bool & localmaskutili,
LUTf & lmaskexplocalcurve, bool & localmaskexputili,
LUTf & lmaskSHlocalcurve, bool & localmaskSHutili,
LUTf & lmaskviblocalcurve, bool & localmaskvibutili,
LUTf & lmasktmlocalcurve, bool & localmasktmutili,
LUTf & lmaskretilocalcurve, bool & localmaskretiutili,
LUTf & lmaskcblocalcurve, bool & localmaskcbutili,
LUTf & lmaskbllocalcurve, bool & localmaskblutili,
LUTf & lmasklclocalcurve, bool & localmasklcutili,
const LocCCmaskCurve & locccmasCurve, bool & lcmasutili, const LocLLmaskCurve & locllmasCurve, bool & llmasutili, const LocHHmaskCurve & lochhmasCurve, bool & lhmasutili, const LocHHmaskCurve & lochhhmasCurve, bool & lhhmasutili,
const LocCCmaskCurve & locccmasexpCurve, bool & lcmasexputili, const LocLLmaskCurve & locllmasexpCurve, bool & llmasexputili, const LocHHmaskCurve & lochhmasexpCurve, bool & lhmasexputili,
const LocCCmaskCurve & locccmasSHCurve, bool & lcmasSHutili, const LocLLmaskCurve & locllmasSHCurve, bool & llmasSHutili, const LocHHmaskCurve & lochhmasSHCurve, bool & lhmasSHutili,
const LocCCmaskCurve & locccmasvibCurve, bool & lcmasvibutili, const LocLLmaskCurve & locllmasvibCurve, bool & llmasvibutili, const LocHHmaskCurve & lochhmasvibCurve, bool & lhmasvibutili,
const LocCCmaskCurve & locccmascbCurve, bool & lcmascbutili, const LocLLmaskCurve & locllmascbCurve, bool & llmascbutili, const LocHHmaskCurve & lochhmascbCurve, bool & lhmascbutili,
const LocCCmaskCurve & locccmasretiCurve, bool & lcmasretiutili, const LocLLmaskCurve & locllmasretiCurve, bool & llmasretiutili, const LocHHmaskCurve & lochhmasretiCurve, bool & lhmasretiutili,
const LocCCmaskCurve & locccmastmCurve, bool & lcmastmutili, const LocLLmaskCurve & locllmastmCurve, bool & llmastmutili, const LocHHmaskCurve & lochhmastmCurve, bool & lhmastmutili,
const LocCCmaskCurve & locccmasblCurve, bool & lcmasblutili, const LocLLmaskCurve & locllmasblCurve, bool & llmasblutili, const LocHHmaskCurve & lochhmasblCurve, bool & lhmasblutili,
const LocCCmaskCurve & locccmaslcCurve, bool & lcmaslcutili, const LocLLmaskCurve & locllmaslcCurve, bool & llmaslcutili, const LocHHmaskCurve & lochhmaslcCurve, bool & lhmaslcutili,
const LocwavCurve & loclmasCurveblwav, bool & lmasutiliblwav,
const LocwavCurve & loclmasCurvecolwav, bool & lmasutilicolwav,
const LocwavCurve & locwavCurve, bool & locwavutili,
const LocwavCurve & loclevwavCurve, bool & loclevwavutili,
const LocwavCurve & locconwavCurve, bool & locconwavutili,
const LocwavCurve & loccompwavCurve, bool & loccompwavutili,
const LocwavCurve & loccomprewavCurve, bool & loccomprewavutili,
const LocwavCurve & locwavCurveden, bool & locwavdenutili,
const LocwavCurve & locedgwavCurve, bool & locedgwavutili,
bool & LHutili, bool & HHutili, LUTf & cclocalcurve, bool & localcutili, LUTf & rgblocalcurve, bool & localrgbutili, bool & localexutili, LUTf & exlocalcurve, LUTf & hltonecurveloc, LUTf & shtonecurveloc, LUTf & tonecurveloc, LUTf & lightCurveloc,
double & huerefblur, double & chromarefblur, double & lumarefblur, double & hueref, double & chromaref, double & lumaref, double & sobelref, int &lastsav,
int llColorMask, int llColorMaskinv, int llExpMask, int llExpMaskinv, int llSHMask, int llSHMaskinv, int llvibMask, int lllcMask, int llsharMask, int llcbMask, int llretiMask, int llsoftMask, int lltmMask, int llblMask,
float & minCD, float & maxCD, float & mini, float & maxi, float & Tmean, float & Tsigma, float & Tmin, float & Tmax)
{
//general call of others functions : important return hueref, chromaref, lumaref
if (params->locallab.enabled) {
BENCHFUN
int complexsoft = options.complexity;
#ifdef _DEBUG
// init variables to display Munsell corrections
MunsellDebugInfo* MunsDebugInfo = new MunsellDebugInfo();
#endif
int del = 3; // to avoid crash with [loy - begy] and [lox - begx] and bfh bfw // with gtk2 [loy - begy-1] [lox - begx -1 ] and del = 1
int delxy = 0;
struct local_params lp;
calcLocalParams(sp, oW, oH, params->locallab, lp, llColorMask, llColorMaskinv, llExpMask, llExpMaskinv, llSHMask, llSHMaskinv, llvibMask, lllcMask, llsharMask, llcbMask, llretiMask, llsoftMask, lltmMask, llblMask, locwavCurveden, locwavdenutili);
const float radius = lp.rad / (sk * 1.4f); //0 to 70 ==> see skip
int strred = 1;//(lp.strucc - 1);
float radiussob = strred / (sk * 1.4f);
int levred;
bool noiscfactiv = false;
if (lp.qualmet == 2) { //suppress artifacts with quality enhanced
levred = 4;
noiscfactiv = true;
} else {
levred = 7;
noiscfactiv = false;
}
//lastsav for save restore image
lastsav = 0;
if (lp.excmet == 1 && call <= 3) {//exclude
const int bfh = int (lp.ly + lp.lyT) + del; //bfw bfh real size of square zone
const int bfw = int (lp.lx + lp.lxL) + del;
const int begy = lp.yc - lp.lyT;
const int begx = lp.xc - lp.lxL;
const int yEn = lp.yc + lp.ly;
const int xEn = lp.xc + lp.lx;
LabImage bufreserv(bfw, bfh);
array2D<float> bufsob(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = std::max(begy - cy, 0); y < ((std::min(yEn - cy, original->H)) + delxy); y++) {
const int loy = cy + y;
for (int x = std::max(begx - cx, 0); x < ((std::min(xEn - cx, original->W)) + delxy); x++) {
const int lox = cx + x;
bufsob[loy - begy][lox - begx] = bufreserv.L[loy - begy][lox - begx] = reserved->L[y][x];
bufreserv.a[loy - begy][lox - begx] = reserved->a[y][x];
bufreserv.b[loy - begy][lox - begx] = reserved->b[y][x];
}
}
array2D<float> ble(bfw, bfh);
SobelCannyLuma(ble, bufsob, bfw, bfh, radiussob, true);
array2D<float> &guid = bufsob;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
ble[ir][jr] /= 32768.f;
guid[ir][jr] /= 32768.f;
}
const float blur = 25 / sk * (10.f + 0.8f * lp.struexp);
rtengine::guidedFilter(guid, ble, ble, blur, 0.001, multiThread);
double sombel = 0.f;
const int ncsobel = bfh * bfw;
float maxsob = -1.f;
float minsob = 100000.f;
array2D<float> &deltasobelL = guid;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:sombel) reduction(min:minsob) reduction(max:maxsob)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
const float val = ble[ir][jr] * 32768.f;
sombel += val;
minsob = rtengine::min(maxsob, val);
maxsob = rtengine::max(minsob, val);
deltasobelL[ir][jr] = val;
}
}
const float meansob = sombel / ncsobel;
Exclude_Local(deltasobelL, hueref, chromaref, lumaref, sobelref, meansob, lp, original, transformed, &bufreserv, reserved, cx, cy, sk);
}
//encoding lab at the beginning
if (lp.logena) {
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
if (bfh >= mSP && bfw >= mSP) {
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh)); //buffer for data in zone limit
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh)); //buffer for data in zone limit
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
bufexporig->a[y - ystart][x - xstart] = original->a[y][x];
bufexporig->b[y - ystart][x - xstart] = original->b[y][x];
}
}
bufexpfin->CopyFrom(bufexporig.get());
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(bfw, bfh);
lab2rgb(*bufexpfin, *tmpImage, params->icm.workingProfile);
log_encode(tmpImage, lp, float (sk), multiThread, bfw, bfh);
rgb2lab(*tmpImage, *bufexpfin, params->icm.workingProfile);
delete tmpImage;
//here begin graduated filter
//first solution "easy" but we can do other with log_encode...to see the results
if (lp.strlog != 0.f) {
struct grad_params gplog;
calclocalGradientParams(lp, gplog, ystart, xstart, bfw, bfh, 11);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gplog, jr, ir);
bufexpfin->L[ir][jr] *= factor;
}
}
//end graduated
transit_shapedetect2(call, 11, bufexporig.get(), bufexpfin.get(), nullptr, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
//Prepare mask for Blur and noise and Denoise
bool denoiz = false;
if (((lp.noiself > 0.f || lp.noiself0 > 0.f || lp.noiself2 > 0.f || lp.noiselc > 0.f || lp.noisecf > 0.f || lp.noisecc > 0.f || lp.bilat > 0.f) && lp.denoiena)) {
denoiz = true;
}
bool blurz = false;
bool delt = params->locallab.spots.at(sp).deltae;
bool astool = params->locallab.spots.at(sp).toolbl;
if (((radius > 1.5 * GAUSS_SKIP) || lp.stren > 0.1 || lp.blmet == 1 || lp.guidb > 1 || lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 3 || lp.showmaskblmet == 4) && lp.blurena) {
blurz = true;
}
const int GW = transformed->W;
const int GH = transformed->H;
LabImage * originalmaskbl = nullptr;
std::unique_ptr<LabImage> bufmaskorigbl;
std::unique_ptr<LabImage> bufmaskblurbl;
std::unique_ptr<LabImage> bufgb;
std::unique_ptr<LabImage> bufprov(new LabImage(GW, GH));
if (denoiz || blurz || lp.denoiena || lp.blurena) {
bufgb.reset(new LabImage(GW, GH));
if (lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 3 || lp.showmaskblmet == 4) {
bufmaskorigbl.reset(new LabImage(GW, GH));
bufmaskblurbl.reset(new LabImage(GW, GH));
originalmaskbl = new LabImage(GW, GH);
}
array2D<float> ble(GW, GH);
array2D<float> blechro(GW, GH);
array2D<float> hue(GW, GH);
array2D<float> guid(GW, GH);
float meanfab, fab;
mean_fab(0, 0, GW, GH, bufgb.get(), original, fab, meanfab, lp.chromabl);
float chromult = 1.f - 0.01f * lp.chromabl;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
bufgb->L[y][x] = original->L[y][x];
bufgb->a[y][x] = original->a[y][x];
bufgb->b[y][x] = original->b[y][x];
}
}
float strumask = 0.02f * (float) params->locallab.spots.at(sp).strumaskbl;
JaggedArray<float> blendstru(GW, GH);
if (lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 3 || lp.showmaskblmet == 4) {
if (strumask > 0.f) {
float delstrumask = 4.1f - strumask;//4.1 = 2 * max slider strumask + 0.1
buildBlendMask(bufgb->L, blendstru, GW, GH, delstrumask);
float radblur = 0.02f * 0.1f * fabs(lp.radmabl);
float rm = radblur / sk;
if (rm > 0) {
float **mb = blendstru;
gaussianBlur(mb, mb, GW, GH, rm);
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < GH; ir++) {
for (int jr = 0; jr < GW; jr++) {
float kmaskLexp = 0;
float kmaskCH = 0;
float kmasstru = 0.f;
if (strumask > 0.f && !astool) {
kmasstru = bufgb->L[ir][jr] * blendstru[ir][jr];
}
if (locllmasblCurve && llmasblutili) {
float ligh = bufgb->L[ir][jr] / 32768.f;
kmaskLexp = 32768.f * LIM01(1.f - locllmasblCurve[500.f * ligh]);
}
if (lp.showmaskblmet != 4) {
if (locccmasblCurve && lcmasblutili) {
float chromask = 0.0001f + sqrt(SQR((bufgb->a[ir][jr]) / fab) + SQR((bufgb->b[ir][jr]) / fab));
kmaskCH = LIM01(1.f - locccmasblCurve[500.f * chromask]);
}
}
if (lochhmasblCurve && lhmasblutili) {
float huema = xatan2f(bufgb->b[ir][jr], bufgb->a[ir][jr]);
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
float valHH = LIM01(1.f - lochhmasblCurve[500.f * h]);
if (lp.showmaskblmet != 4) {
kmaskCH += chromult * valHH;
}
kmaskLexp += 32768.f * valHH;
}
bufmaskblurbl->L[ir][jr] = CLIPLOC(kmaskLexp + kmasstru);
bufmaskblurbl->a[ir][jr] = kmaskCH;
bufmaskblurbl->b[ir][jr] = kmaskCH;
ble[ir][jr] = bufmaskblurbl->L[ir][jr] / 32768.f;
hue[ir][jr] = xatan2f(bufmaskblurbl->b[ir][jr], bufmaskblurbl->a[ir][jr]);
float chromah = sqrt(SQR(bufmaskblurbl->b[ir][jr]) + SQR(bufmaskblurbl->a[ir][jr]));
blechro[ir][jr] = chromah / 32768.f;
float X, Y, Z;
float L = bufgb->L[ir][jr];
float a = bufgb->a[ir][jr];
float b = bufgb->b[ir][jr];
Color::Lab2XYZ(L, a, b, X, Y, Z);
guid[ir][jr] = Y / 32768.f;
}
}
std::unique_ptr<LabImage> bufprov(new LabImage(GW, GH));
bufprov->CopyFrom(bufmaskblurbl.get());
if (lp.radmabl != 0.f) {
float blur = lp.radmabl;
blur = blur < 0.f ? -1.f / blur : 1.f + blur;
int r1 = max(int(4 / sk * blur + 0.5), 1);
int r2 = max(int(25 / sk * blur + 0.5), 1);
double epsilmax = 0.0005;
double epsilmin = 0.00001;
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * lp.radmabl + bepsil;
if (lp.radmabl < 0.f) {
epsil = 0.001;
}
rtengine::guidedFilter(guid, blechro, blechro, r1, epsil, multiThread);
rtengine::guidedFilter(guid, ble, ble, r2, 0.2 * epsil, multiThread);
// guidedFilter(guid, ble, ble, lp.radmabl * 10.f / sk, 0.001, multiThread, 4);
}
LUTf lutTonemaskbl(65536);
calcGammaLut(lp.gammabl, lp.slomabl, lutTonemaskbl);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
float L_;
float2 sincosval = xsincosf(hue[ir][jr]);
bufmaskblurbl->L[ir][jr] = LIM01(ble[ir][jr]) * 32768.f;
L_ = 2.f * bufmaskblurbl->L[ir][jr];
bufmaskblurbl->L[ir][jr] = lutTonemaskbl[L_];
bufmaskblurbl->a[ir][jr] = 32768.f * sincosval.y * blechro[ir][jr];
bufmaskblurbl->b[ir][jr] = 32768.f * sincosval.x * blechro[ir][jr];
}
}
if (strumask > 0.f && astool && (lp.enablMask || lp.showmaskblmet == 3)) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < GH; ir++) {
for (int jr = 0; jr < GW; jr++) {
bufmaskblurbl->L[ir][jr] *= (1.f + blendstru[ir][jr]);
}
}
}
if (lmaskbllocalcurve && localmaskblutili && (lp.enablMask || lp.showmaskblmet == 3)) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
bufmaskblurbl->L[ir][jr] = 0.5f * lmaskbllocalcurve[2.f * bufmaskblurbl->L[ir][jr]];
}
}
int wavelet_level = params->locallab.spots.at(sp).shadmaskbl;
int minwin = min(GW, GH);
int maxlevelspot = 9;
while ((1 << maxlevelspot) >= (minwin * sk) && maxlevelspot > 1) {
--maxlevelspot ;
}
wavelet_level = min(wavelet_level, maxlevelspot);
int maxlvl;
float contrast = 0.f;
bool wavcurvemask = false;
if (loclmasCurveblwav && lmasutiliblwav && (lp.enablMask || lp.showmaskblmet == 3)) {
for (int i = 0; i < 500; i++) {
if (loclmasCurveblwav[i] != 0.5) {
wavcurvemask = true;
}
}
}
if (wavcurvemask && (lp.enablMask || lp.showmaskblmet == 3)) {
#ifdef _OPENMP
const int numThreads = omp_get_max_threads();
#else
const int numThreads = 1;
#endif
int level_bl = params->locallab.spots.at(sp).csthresholdblur.getBottomLeft();
int level_hl = params->locallab.spots.at(sp).csthresholdblur.getTopLeft();
int level_br = params->locallab.spots.at(sp).csthresholdblur.getBottomRight();
int level_hr = params->locallab.spots.at(sp).csthresholdblur.getTopRight();
LocwavCurve dummy;
bool loclevwavutili = false;
bool wavcurvelev = false;
bool locconwavutili = false;
bool wavcurvecon = false;
bool loccompwavutili = false;
bool wavcurvecomp = false;
bool loccomprewavutili = false;
bool locedgwavutili = false;
bool wavcurvecompre = false;
bool wavcurve = false;
wavcontrast4(lp, bufmaskblurbl->L, nullptr, nullptr, contrast, 0.f, 0.f, 0.f, GW, GH, level_bl, level_hl, level_br, level_hr, sk, numThreads, loclmasCurveblwav, lmasutiliblwav, wavcurve, dummy, loclevwavutili, wavcurvelev, dummy, locconwavutili, wavcurvecon, dummy, loccompwavutili, wavcurvecomp, dummy, loccomprewavutili, wavcurvecompre, dummy, locedgwavutili, 1.f, 1.f, maxlvl, 0.f, 0.f, 1.f, 1.f, false, false, false, false, false, 0.f, 0.f);
}
int shado = params->locallab.spots.at(sp).shadmaskbl;
if (shado > 0 && (lp.enablMask || lp.showmaskblmet == 3)) {
ImProcFunctions::shadowsHighlights(bufmaskblurbl.get(), true, 1, shado, 0, 40, sk, 50, 0);//50 middle value for highlight tonal width
}
// deltae Mask with scope
// bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
//printf("minde=%f maxde=%f, scopee=%i huref=%f lumaref=%f chromaref=%f\n", mindE, maxdE, sco, hueref, lumaref, chromaref);
if (delt && lp.blurmet == 0 && (lp.enablMask || lp.showmaskblmet == 3)) {
std::unique_ptr<JaggedArray<float>> rdEBuffer(new JaggedArray<float>(GW, GH));
float** rdE = *(rdEBuffer.get());
deltaEforMask(rdE, GW, GH, bufgb.get(), hueref, chromaref, lumaref, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco, lp.balance, lp.balanceh);
std::unique_ptr<LabImage> delta(new LabImage(GW, GH));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
delta->L[ir][jr] = bufmaskblurbl->L[ir][jr] - bufprov->L[ir][jr];
delta->a[ir][jr] = bufmaskblurbl->a[ir][jr] - bufprov->a[ir][jr];
delta->b[ir][jr] = bufmaskblurbl->b[ir][jr] - bufprov->b[ir][jr];
bufmaskblurbl->L[ir][jr] = bufprov->L[ir][jr] + rdE[ir][jr] * delta->L[ir][jr];
bufmaskblurbl->a[ir][jr] = bufprov->a[ir][jr] + rdE[ir][jr] * delta->a[ir][jr];
bufmaskblurbl->b[ir][jr] = bufprov->b[ir][jr] + rdE[ir][jr] * delta->b[ir][jr];
}
rdEBuffer.reset();
}
//
float lap = params->locallab.spots.at(sp).lapmaskbl;
bool pde = params->locallab.spots.at(sp).laplac;
float lumask = params->locallab.spots.at(sp).lumask;
if (lap > 0.f && (lp.enablMask || lp.showmaskblmet == 3)) {
float *datain = new float[GH * GW];
float *data_tmp = new float[GH * GW];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
datain[y * GW + x] = bufmaskblurbl->L[y][x];
}
}
if (!pde) {
ImProcFunctions::discrete_laplacian_threshold(data_tmp, datain, GW, GH, 200.f * lap);
} else {
ImProcFunctions::retinex_pde(datain, data_tmp, GW, GH, 12.f * lap, 1.f, nullptr, 0, 0, 1);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
bufmaskblurbl->L[y][x] = data_tmp[y * GW + x];
}
}
delete [] datain;
delete [] data_tmp;
}
float radiusb = 1.f / sk;
if (lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 3 || lp.showmaskblmet == 4) {
int invers = 0;
if (lp.blurmet == 0) {
invers = 0;
} else if (lp.blurmet == 1) {
invers = 1;
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(bufmaskblurbl->L, bufmaskorigbl->L, GW, GH, radiusb);
gaussianBlur(bufmaskblurbl->a, bufmaskorigbl->a, GW, GH, 1.f + (0.005f * lp.radmabl) / sk);
gaussianBlur(bufmaskblurbl->b, bufmaskorigbl->b, GW, GH, 1.f + (0.005f * lp.radmabl) / sk);
}
if (lp.showmaskblmet == 0 || lp.showmaskblmet == 1 || lp.showmaskblmet == 2 || lp.showmaskblmet == 4 || lp.enablMask) {
blendmask(lp, 0, 0, cx, cy, GW, GH, bufgb.get(), original, bufmaskorigbl.get(), originalmaskbl, lp.blendmabl, invers);
} else if (lp.showmaskblmet == 3) {
showmask(lumask, lp, 0, 0, cx, cy, GW, GH, bufgb.get(), transformed, bufmaskorigbl.get(), invers);
return;
}
}
//end mask
}
if (((radius > 1.5 * GAUSS_SKIP && lp.rad > 1.6) || lp.stren > 0.1 || lp.blmet == 1 || lp.guidb > 0 || lp.showmaskblmet == 2 || lp.enablMask || lp.showmaskblmet == 3 || lp.showmaskblmet == 4) && lp.blurena) { // radius < GAUSS_SKIP means no gauss, just copy of original image
std::unique_ptr<LabImage> tmp1;
std::unique_ptr<LabImage> tmp2;
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
bool fft = params->locallab.spots.at(sp).fftwbl;
int isogr = params->locallab.spots.at(sp).isogr;
int strengr = params->locallab.spots.at(sp).strengr;
int scalegr = params->locallab.spots.at(sp).scalegr;
if (bfw >= mSP && bfh >= mSP) {
if (lp.blurmet == 0 && (fft || lp.rad > 30.f)) {
optfft(N_fftwsize, bfh, bfw, bfhr, bfwr, reduH, reduW, lp, original->H, original->W, xstart, ystart, xend, yend, cx, cy);
}
JaggedArray<float> bufchroi(GW, GH);
std::unique_ptr<LabImage> bufgbi(new LabImage(GW, GH));
JaggedArray<float> bufchro(bfw, bfh);
//here mask is used with plein image for normal and inverse
//if it is possible to optimze with maskcalccol(), I don't to preserv lisibility
if (lp.showmaskblmet == 0 || lp.showmaskblmet == 1 || lp.showmaskblmet == 2 || lp.showmaskblmet == 4 || lp.enablMask) {
if (lp.blurmet == 0) {
if (bfw > 0 && bfh > 0) {
tmp1.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++) {
for (int x = xstart; x < xend; x++) {
tmp1->L[y - ystart][x - xstart] = original->L[y][x];
tmp1->a[y - ystart][x - xstart] = original->a[y][x];
tmp1->b[y - ystart][x - xstart] = original->b[y][x];
}
}
}
} else if (lp.blurmet == 1) {
tmp1.reset(new LabImage(transformed->W, transformed->H));
tmp2.reset(new LabImage(transformed->W, transformed->H));
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
tmp2->L[y][x] = original->L[y][x];
tmp2->a[y][x] = original->a[y][x];
tmp2->b[y][x] = original->b[y][x];
bufgbi->L[y][x] = original->L[y][x];
bufgbi->a[y][x] = original->a[y][x];
bufgbi->b[y][x] = original->b[y][x];
}
}
}
if (lp.blurmet == 0 && lp.blmet == 0 && radius > (1.5 * GAUSS_SKIP) && lp.rad > 1.6) {
if (fft || lp.rad > 30.f) {
if (lp.chromet == 0) {
ImProcFunctions::fftw_convol_blur2(tmp1->L, tmp1->L, bfwr, bfhr, radius, 0, 0);
} else if (lp.chromet == 1) {
ImProcFunctions::fftw_convol_blur2(tmp1->a, tmp1->a, bfwr, bfhr, radius, 0, 0);
ImProcFunctions::fftw_convol_blur2(tmp1->b, tmp1->b, bfwr, bfhr, radius, 0, 0);
} else if (lp.chromet == 2) {
ImProcFunctions::fftw_convol_blur2(tmp1->L, tmp1->L, bfwr, bfhr, radius, 0, 0);
ImProcFunctions::fftw_convol_blur2(tmp1->a, tmp1->a, bfwr, bfhr, radius, 0, 0);
ImProcFunctions::fftw_convol_blur2(tmp1->b, tmp1->b, bfwr, bfhr, radius, 0, 0);
}
} else {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
if (lp.chromet == 0)
{
gaussianBlur(tmp1->L, tmp1->L, bfw, bfh, radius);
}
else if (lp.chromet == 1)
{
gaussianBlur(tmp1->a, tmp1->a, bfw, bfh, radius);
gaussianBlur(tmp1->b, tmp1->b, bfw, bfh, radius);
} else if (lp.chromet == 2)
{
gaussianBlur(tmp1->L, tmp1->L, bfw, bfh, radius);
gaussianBlur(tmp1->a, tmp1->a, bfw, bfh, radius);
gaussianBlur(tmp1->b, tmp1->b, bfw, bfh, radius);
}
}
}
} else if (lp.blurmet == 1 && lp.blmet == 0 && radius > (1.5 * GAUSS_SKIP) && lp.rad > 1.6) {
if (fft || lp.rad > 30.f) {
if (lp.chromet == 0) {
ImProcFunctions::fftw_convol_blur2(original->L, tmp1->L, GW, GH, radius, 0, 0);
}
else if (lp.chromet == 1) {
ImProcFunctions::fftw_convol_blur2(original->a, tmp1->a, GW, GH, radius, 0, 0);
ImProcFunctions::fftw_convol_blur2(original->b, tmp1->b, GW, GH, radius, 0, 0);
} else if (lp.chromet == 2) {
ImProcFunctions::fftw_convol_blur2(original->L, tmp1->L, GW, GH, radius, 0, 0);
ImProcFunctions::fftw_convol_blur2(original->a, tmp1->a, GW, GH, radius, 0, 0);
ImProcFunctions::fftw_convol_blur2(original->b, tmp1->b, GW, GH, radius, 0, 0);
}
} else {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
if (lp.chromet == 0)
{
gaussianBlur(original->L, tmp1->L, GW, GH, radius);
} else if (lp.chromet == 1)
{
gaussianBlur(original->a, tmp1->a, GW, GH, radius);
gaussianBlur(original->b, tmp1->b, GW, GH, radius);
} else if (lp.chromet == 2)
{
gaussianBlur(original->L, tmp1->L, GW, GH, radius);
gaussianBlur(original->a, tmp1->a, GW, GH, radius);
gaussianBlur(original->b, tmp1->b, GW, GH, radius);
}
}
}
}
//add noise
if (tmp1.get() && lp.stren > 0.1f && lp.blmet == 0) {
float mean = 0.f;//0 best result
float variance = lp.stren ;
addGaNoise(tmp1.get(), tmp1.get(), mean, variance, sk) ;
}
//add grain
if (lp.blmet == 0 && strengr > 0) {
int wi = bfw;
int he = bfh;
if (lp.blurmet == 1) {
wi = GW;
he = GH;
}
if (tmp1.get()) {
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(wi, he);
for (int y = 0; y < he ; y++) {
for (int x = 0; x < wi; x++) {
tmpImage->g(y, x) = tmp1->L[y][x];
tmpImage->r(y, x) = tmp1->a[y][x];
tmpImage->b(y, x) = tmp1->b[y][x];
}
}
filmGrain(tmpImage, isogr, strengr, scalegr, wi, he);
for (int y = 0; y < he ; y++) {
for (int x = 0; x < wi; x++) {
tmp1->L[y][x] = tmpImage->g(y, x);
tmp1->a[y][x] = tmpImage->r(y, x);
tmp1->b[y][x] = tmpImage->b(y, x);
}
}
delete tmpImage;
}
}
Median medianTypeL = Median::TYPE_3X3_STRONG;
Median medianTypeAB = Median::TYPE_3X3_STRONG;
if (lp.medmet == 0) {
medianTypeL = medianTypeAB = Median::TYPE_3X3_STRONG;
} else if (lp.medmet == 1) {
medianTypeL = medianTypeAB = Median::TYPE_5X5_STRONG;
} else if (lp.medmet == 2) {
medianTypeL = medianTypeAB = Median::TYPE_7X7;
} else if (lp.medmet == 3) {
medianTypeL = medianTypeAB = Median::TYPE_9X9;
}
if (lp.blurmet == 0 && lp.blmet == 1 && lp.medmet != -1) {
float** tmL;
int wid = bfw;
int hei = bfh;
tmL = new float*[hei];
for (int i = 0; i < hei; ++i) {
tmL[i] = new float[wid];
}
if (lp.chromet == 0) {
Median_Denoise(tmp1->L, tmp1->L, bfw, bfh, medianTypeL, lp.it, multiThread, tmL);
}
else if (lp.chromet == 1) {
Median_Denoise(tmp1->a, tmp1->a, bfw, bfh, medianTypeAB, lp.it, multiThread, tmL);
Median_Denoise(tmp1->b, tmp1->b, bfw, bfh, medianTypeAB, lp.it, multiThread, tmL);
} else if (lp.chromet == 2) {
Median_Denoise(tmp1->L, tmp1->L, bfw, bfh, medianTypeL, lp.it, multiThread, tmL);
Median_Denoise(tmp1->a, tmp1->a, bfw, bfh, medianTypeAB, lp.it, multiThread, tmL);
Median_Denoise(tmp1->b, tmp1->b, bfw, bfh, medianTypeAB, lp.it, multiThread, tmL);
}
for (int i = 0; i < hei; ++i) {
delete[] tmL[i];
}
delete[] tmL;
} else if (lp.blurmet == 1 && lp.blmet == 1) {
float** tmL;
int wid = GW;
int hei = GH;
tmL = new float*[hei];
for (int i = 0; i < hei; ++i) {
tmL[i] = new float[wid];
}
if (lp.chromet == 0) {
Median_Denoise(tmp2->L, tmp1->L, GW, GH, medianTypeL, lp.it, multiThread, tmL);
} else if (lp.chromet == 1) {
Median_Denoise(tmp2->a, tmp1->a, GW, GH, medianTypeAB, lp.it, multiThread, tmL);
Median_Denoise(tmp2->b, tmp1->b, GW, GH, medianTypeAB, lp.it, multiThread, tmL);
} else if (lp.chromet == 2) {
Median_Denoise(tmp2->L, tmp1->L, GW, GH, medianTypeL, lp.it, multiThread, tmL);
Median_Denoise(tmp2->a, tmp1->a, GW, GH, medianTypeAB, lp.it, multiThread, tmL);
Median_Denoise(tmp2->b, tmp1->b, GW, GH, medianTypeAB, lp.it, multiThread, tmL);
}
for (int i = 0; i < hei; ++i) {
delete[] tmL[i];
}
delete[] tmL;
}
if (lp.blurmet == 0 && lp.blmet == 2) {
if (lp.guidb > 0) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++) {
for (int x = xstart; x < xend; x++) {
tmp1->L[y - ystart][x - xstart] = original->L[y][x];
tmp1->a[y - ystart][x - xstart] = original->a[y][x];
tmp1->b[y - ystart][x - xstart] = original->b[y][x];
bufgb->L[y - ystart][x - xstart] = original->L[y][x];
}
}
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(bfw, bfh);
lab2rgb(*tmp1, *tmpImage, params->icm.workingProfile);
array2D<float> LL(bfw, bfh);
array2D<float> rr(bfw, bfh);
array2D<float> gg(bfw, bfh);
array2D<float> bb(bfw, bfh);
array2D<float> guide(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
LL[y][x] = tmp1->L[y][x];
float ll = LL[y][x];
guide[y][x] = xlin2log(max(ll, 0.f), 10.f);
rr[y][x] = tmpImage->r(y, x);
gg[y][x] = tmpImage->g(y, x);
bb[y][x] = tmpImage->b(y, x);
}
}
array2D<float> iR(bfw, bfh, rr, 0);
array2D<float> iG(bfw, bfh, gg, 0);
array2D<float> iB(bfw, bfh, bb, 0);
array2D<float> iL(bfw, bfh, LL, 0);
int r = max(int(lp.guidb / sk), 1);
const float epsil = 0.001f * std::pow(2, - lp.epsb);
if (lp.chromet == 0) {
rtengine::guidedFilterLog(guide, 10.f, LL, r, epsil, multiThread);
} else if (lp.chromet == 1) {
rtengine::guidedFilterLog(guide, 10.f, rr, r, epsil, multiThread);
rtengine::guidedFilterLog(guide, 10.f, bb, r, epsil, multiThread);
} else if (lp.chromet == 2) {
rtengine::guidedFilterLog(10.f, gg, r, epsil, multiThread);
rtengine::guidedFilterLog(10.f, rr, r, epsil, multiThread);
rtengine::guidedFilterLog(10.f, bb, r, epsil, multiThread);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
rr[y][x] = intp(lp.strbl, rr[y][x] , iR[y][x]);
gg[y][x] = intp(lp.strbl, gg[y][x] , iG[y][x]);
bb[y][x] = intp(lp.strbl, bb[y][x] , iB[y][x]);
tmpImage->r(y, x) = rr[y][x];
tmpImage->g(y, x) = gg[y][x];
tmpImage->b(y, x) = bb[y][x];
}
}
rgb2lab(*tmpImage, *tmp1, params->icm.workingProfile);
if (lp.chromet == 0) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
LL[y][x] = intp(lp.strbl, LL[y][x] , iL[y][x]);
tmp1->L[y][x] = LL[y][x];
}
}
}
delete tmpImage;
}
} else if (lp.blurmet == 1 && lp.blmet == 2) {
if (lp.guidb > 0) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
tmp1->L[y][x] = original->L[y][x];
tmp1->a[y][x] = original->a[y][x];
tmp1->b[y][x] = original->b[y][x];
tmp2->L[y][x] = original->L[y][x];
}
}
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(GW, GH);
lab2rgb(*tmp1, *tmpImage, params->icm.workingProfile);
array2D<float> LL(GW, GH);
array2D<float> rr(GW, GH);
array2D<float> gg(GW, GH);
array2D<float> bb(GW, GH);
array2D<float> guide(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
LL[y][x] = tmp1->L[y][x];
float ll = LL[y][x];
guide[y][x] = xlin2log(max(ll, 0.f), 10.f);
rr[y][x] = tmpImage->r(y, x);
gg[y][x] = tmpImage->g(y, x);
bb[y][x] = tmpImage->b(y, x);
}
}
array2D<float> iR(GW, GH, rr, 0);
array2D<float> iG(GW, GH, gg, 0);
array2D<float> iB(GW, GH, bb, 0);
array2D<float> iL(GW, GH, LL, 0);
int r = max(int(lp.guidb / sk), 1);
const float epsil = 0.001f * std::pow(2, - lp.epsb);
if (lp.chromet == 0) {
rtengine::guidedFilterLog(guide, 10.f, LL, r, epsil, multiThread);
} else if (lp.chromet == 1) {
rtengine::guidedFilterLog(guide, 10.f, rr, r, epsil, multiThread);
rtengine::guidedFilterLog(guide, 10.f, bb, r, epsil, multiThread);
} else if (lp.chromet == 2) {
rtengine::guidedFilterLog(10.f, gg, r, epsil, multiThread);
rtengine::guidedFilterLog(10.f, rr, r, epsil, multiThread);
rtengine::guidedFilterLog(10.f, bb, r, epsil, multiThread);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
rr[y][x] = intp(lp.strbl, rr[y][x] , iR[y][x]);
gg[y][x] = intp(lp.strbl, gg[y][x] , iG[y][x]);
bb[y][x] = intp(lp.strbl, bb[y][x] , iB[y][x]);
tmpImage->r(y, x) = rr[y][x];
tmpImage->g(y, x) = gg[y][x];
tmpImage->b(y, x) = bb[y][x];
}
}
rgb2lab(*tmpImage, *tmp1, params->icm.workingProfile);
if (lp.chromet == 0) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
LL[y][x] = intp(lp.strbl, LL[y][x] , iL[y][x]);
tmp1->L[y][x] = LL[y][x];
}
}
}
delete tmpImage;
}
}
if (lp.blurmet == 0) {
float minC = sqrt(SQR(tmp1->a[0][0]) + SQR(tmp1->b[0][0])) - sqrt(SQR(bufgb->a[0][0]) + SQR(bufgb->b[0][0]));
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxC) reduction(min:minC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufchro[ir][jr] = sqrt(SQR(tmp1->a[ir][jr]) + SQR(tmp1->b[ir][jr])) - sqrt(SQR(bufgb->a[ir][jr]) + SQR(bufgb->b[ir][jr]));
minC = rtengine::min(minC, bufchro[ir][jr]);
maxC = rtengine::max(maxC, bufchro[ir][jr]);
}
}
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
if (coefC == 0.f) {
coefC = 1.f;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufchro[y][x] /= coefC;
}
}
} else if (lp.blurmet == 1) {
float minC = sqrt(SQR(tmp1->a[0][0]) + SQR(tmp1->b[0][0])) - sqrt(SQR(bufgbi->a[0][0]) + SQR(bufgbi->b[0][0]));
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxC) reduction(min:minC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < GH; ir++) {
for (int jr = 0; jr < GW; jr++) {
bufchroi[ir][jr] = sqrt(SQR(tmp1->a[ir][jr]) + SQR(tmp1->b[ir][jr])) - sqrt(SQR(bufgbi->a[ir][jr]) + SQR(bufgbi->b[ir][jr]));
minC = rtengine::min(minC, bufchroi[ir][jr]);
maxC = rtengine::max(maxC, bufchroi[ir][jr]);
}
}
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
if (coefC == 0.f) {
coefC = 1.f;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
bufchroi[y][x] /= coefC;
}
}
}
if (lp.blurmet == 0) { //blur and noise (center)
if (tmp1.get()) {
BlurNoise_Local(tmp1.get(), originalmaskbl, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
} else if (lp.blurmet == 1) {
if (tmp1.get()) {
InverseBlurNoise_Local(originalmaskbl, bufchroi, lp, hueref, chromaref, lumaref, original, transformed, tmp1.get(), cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
}
}
}
//local impulse
if ((lp.bilat > 0.f) && lp.denoiena) {
const int bfh = int (lp.ly + lp.lyT) + del; //bfw bfh real size of square zone
const int bfw = int (lp.lx + lp.lxL) + del;
std::unique_ptr<LabImage> bufwv;
if (call == 2) {//simpleprocess
bufwv.reset(new LabImage(bfw, bfh)); //buffer for data in zone limit
const int begy = lp.yc - lp.lyT;
const int begx = lp.xc - lp.lxL;
const int yEn = lp.yc + lp.ly;
const int xEn = lp.xc + lp.lx;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = rtengine::max(0, begy - cy); y < rtengine::min(transformed->H, yEn - cy); y++) {
const int loy = cy + y;
for (int x = rtengine::max(0, begx - cx); x < rtengine::min(transformed->W, xEn - cx); x++) {
const int lox = cx + x;
bufwv->L[loy - begy][lox - begx] = original->L[y][x];
bufwv->a[loy - begy][lox - begx] = original->a[y][x];
bufwv->b[loy - begy][lox - begx] = original->b[y][x];
}
}
} else {//dcrop.cc
bufwv.reset(new LabImage(transformed->W, transformed->H));
bufwv->CopyFrom(original);
} //end dcrop
const double threshold = lp.bilat / 20.0;
if (bfh > 8 && bfw > 8) {
ImProcFunctions::impulse_nr(bufwv.get(), threshold);
}
DeNoise_Local(call, lp, originalmaskbl, levred, huerefblur, lumarefblur, chromarefblur, original, transformed, *(bufwv.get()), cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
//local denoise
float slidL[8] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
float slida[8] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
float slidb[8] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
int aut = 0;
if (lp.denoiena) {
DeNoise(call, del, slidL, slida, slidb, aut, noiscfactiv, lp, originalmaskbl, levred, huerefblur, lumarefblur, chromarefblur, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
if (denoiz || blurz || lp.denoiena || lp.blurena) {
delete originalmaskbl;
}
//begin cbdl
if ((lp.mulloc[0] != 1.f || lp.mulloc[1] != 1.f || lp.mulloc[2] != 1.f || lp.mulloc[3] != 1.f || lp.mulloc[4] != 1.f || lp.mulloc[5] != 1.f || lp.clarityml != 0.f || lp.contresid != 0.f || lp.enacbMask || lp.showmaskcbmet == 2 || lp.showmaskcbmet == 3 || lp.showmaskcbmet == 4) && lp.cbdlena) {
if (call <= 3) { //call from simpleprocess dcrop improcc
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
if (bfw > 65 && bfh > 65) {
array2D<float> bufsh(bfw, bfh);
array2D<float> &buflight = bufsh;
JaggedArray<float> bufchrom(bfw, bfh, true);
std::unique_ptr<LabImage> loctemp(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> origcbdl(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskorigcb;
std::unique_ptr<LabImage> bufmaskblurcb;
std::unique_ptr<LabImage> originalmaskcb;
if (lp.showmaskcbmet == 2 || lp.enacbMask || lp.showmaskcbmet == 3 || lp.showmaskcbmet == 4) {
bufmaskorigcb.reset(new LabImage(bfw, bfh));
bufmaskblurcb.reset(new LabImage(bfw, bfh));
originalmaskcb.reset(new LabImage(bfw, bfh));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
loctemp->L[y][x] = original->L[y + ystart][x + xstart];
}
}
int inv = 0;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskcbmet == 3) {
showmaske = true;
}
if (lp.enacbMask) {
enaMask = true;
}
if (lp.showmaskcbmet == 4) {
deltaE = true;
}
if (lp.showmaskcbmet == 2) {
modmask = true;
}
if (lp.showmaskcbmet == 1) {
modif = true;
}
if (lp.showmaskcbmet == 0) {
zero = true;
}
float chrom = lp.chromacbm;;
float rad = lp.radmacb;
float gamma = lp.gammacb;
float slope = lp.slomacb;
float blendm = lp.blendmacb;
float lap = params->locallab.spots.at(sp).lapmaskcb;
bool pde = params->locallab.spots.at(sp).laplac;
LocwavCurve dummy;
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
int lumask = params->locallab.spots.at(sp).lumask;
int shado = 0;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
bool lmasutilicolwav = false;
float amountcd = 0.f;
float anchorcd = 50.f;
int shortcu = 0; //lp.mergemet; //params->locallab.spots.at(sp).shortc;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, loctemp.get(), bufmaskorigcb.get(), originalmaskcb.get(), original, reserved, inv, lp,
0.f, false,
locccmascbCurve, lcmascbutili, locllmascbCurve, llmascbutili, lochhmascbCurve, lhmascbutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmaskcblocalcurve, localmaskcbutili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskcbmet == 3) {
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, loctemp.get(), transformed, bufmaskorigcb.get(), 0);
return;
}
constexpr float b_l = -5.f;
constexpr float t_l = 25.f;
constexpr float t_r = 120.f;
constexpr float b_r = 170.f;
constexpr double skinprot = 0.;
int choice = 0;
if (lp.showmaskcbmet == 0 || lp.showmaskcbmet == 1 || lp.showmaskcbmet == 2 || lp.showmaskcbmet == 4 || lp.enacbMask) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufsh[y - ystart][x - xstart] = origcbdl->L[y - ystart][x - xstart] = original->L[y][x];
loctemp->a[y - ystart][x - xstart] = origcbdl->a[y - ystart][x - xstart] = original->a[y][x];
loctemp->b[y - ystart][x - xstart] = origcbdl->b[y - ystart][x - xstart] = original->b[y][x];
}
}
if (lp.clarityml != 0.f && lp.mulloc[5] == 1.0) { //enabled last level to retrieve level 5 and residual image in case user not select level 5
lp.mulloc[5] = 1.001f;
}
if (lp.contresid != 0.f && lp.mulloc[5] == 1.0) { //enabled last level to retrieve level 5 and residual image in case user not select level 5
lp.mulloc[5] = 1.001f;
}
ImProcFunctions::cbdl_local_temp(bufsh, loctemp->L, bfw, bfh, lp.mulloc, 1.f, lp.threshol, lp.clarityml, lp.contresid, lp.blurcbdl, skinprot, false, b_l, t_l, t_r, b_r, choice, sk, multiThread);
if (lp.softradiuscb > 0.f) {
softproc(origcbdl.get(), loctemp.get(), lp.softradiuscb, bfh, bfw, 0.0001, 0.00001, 0.1f, sk, multiThread, 1);
}
}
transit_shapedetect(6, loctemp.get(), originalmaskcb.get(), bufchrom, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
bool nochroma = (lp.showmaskcbmet == 2 || lp.showmaskcbmet == 1);
//chroma CBDL begin here
if (lp.chromacb > 0.f && !nochroma) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufsh[ir][jr] = sqrt(SQR(loctemp->a[ir][jr]) + SQR(loctemp->b[ir][jr]));
}
}
float multc[6];
float clarich = 0.5f * lp.clarityml;
if (clarich > 0.f && lp.mulloc[0] == 1.f) { //to enabled in case of user select only clarity
lp.mulloc[0] = 1.01f;
}
if (lp.contresid != 0.f && lp.mulloc[0] == 1.f) { //to enabled in case of user select only clarity
lp.mulloc[0] = 1.01f;
}
for (int lv = 0; lv < 6; lv++) {
multc[lv] = rtengine::max((lp.chromacb * ((float) lp.mulloc[lv] - 1.f)) + 1.f, 0.01f);
}
choice = 1;
ImProcFunctions::cbdl_local_temp(bufsh, loctemp->L, bfw, bfh, multc, rtengine::max(lp.chromacb, 1.f), lp.threshol, clarich, 0.f, lp.blurcbdl, skinprot, false, b_l, t_l, t_r, b_r, choice, sk, multiThread);
float minC = loctemp->L[0][0] - sqrt(SQR(loctemp->a[0][0]) + SQR(loctemp->b[0][0]));
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxC) reduction(min:minC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufchrom[ir][jr] = (loctemp->L[ir][jr] - sqrt(SQR(loctemp->a[ir][jr]) + SQR(loctemp->b[ir][jr])));
minC = rtengine::min(minC, bufchrom[ir][jr]);
maxC = rtengine::max(maxC, bufchrom[ir][jr]);
}
}
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
if (coefC == 0.f) {
coefC = 1.f;
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufchrom[ir][jr] /= coefC;
}
}
transit_shapedetect(7, loctemp.get(), nullptr, bufchrom, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
buflight.free();
bufsh.free();
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
}
}
//end cbdl_Local
//vibrance
if (lp.expvib && (lp.past != 0.f || lp.satur != 0.f || lp.strvib != 0.f || lp.war != 0 || lp.strvibab != 0.f || lp.strvibh != 0.f || lp.showmaskvibmet == 2 || lp.enavibMask || lp.showmaskvibmet == 3 || lp.showmaskvibmet == 4) && lp.vibena) { //interior ellipse renforced lightness and chroma //locallutili
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (bfw >= mSP && bfh >= mSP) {
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskorigvib;
std::unique_ptr<LabImage> bufmaskblurvib;
std::unique_ptr<LabImage> originalmaskvib;
if (lp.showmaskvibmet == 2 || lp.enavibMask || lp.showmaskvibmet == 3 || lp.showmaskvibmet == 4) {
bufmaskorigvib.reset(new LabImage(bfw, bfh));
bufmaskblurvib.reset(new LabImage(bfw, bfh));
originalmaskvib.reset(new LabImage(bfw, bfh));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufexporig->L[y][x] = original->L[y + ystart][x + xstart];
}
}
int inv = 0;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskvibmet == 3) {
showmaske = true;
}
if (lp.enavibMask) {
enaMask = true;
}
if (lp.showmaskvibmet == 4) {
deltaE = true;
}
if (lp.showmaskvibmet == 2) {
modmask = true;
}
if (lp.showmaskvibmet == 1) {
modif = true;
}
if (lp.showmaskvibmet == 0) {
zero = true;
}
float chrom = lp.chromavib;
float rad = lp.radmavib;
float gamma = lp.gammavib;
float slope = lp.slomavib;
float blendm = lp.blendmavib;
float lap = params->locallab.spots.at(sp).lapmaskvib;
bool pde = params->locallab.spots.at(sp).laplac;
LocwavCurve dummy;
bool lmasutilicolwav = false;
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
int shortcu = 0;//lp.mergemet; //params->locallab.spots.at(sp).shortc;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
int shado = 0;
int lumask = params->locallab.spots.at(sp).lumask;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
float amountcd = 0.f;
float anchorcd = 50.f;
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, bufexporig.get(), bufmaskorigvib.get(), originalmaskvib.get(), original, reserved, inv, lp,
0.f, false,
locccmasvibCurve, lcmasvibutili, locllmasvibCurve, llmasvibutili, lochhmasvibCurve, lhmasvibutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmaskviblocalcurve, localmaskvibutili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskvibmet == 3) {
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, bufexporig.get(), transformed, bufmaskorigvib.get(), 0);
return;
}
if (lp.showmaskvibmet == 0 || lp.showmaskvibmet == 1 || lp.showmaskvibmet == 2 || lp.showmaskvibmet == 4 || lp.enavibMask) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
bufexporig->a[y - ystart][x - xstart] = original->a[y][x];
bufexporig->b[y - ystart][x - xstart] = original->b[y][x];
}
}
VibranceParams vibranceParams;
vibranceParams.enabled = params->locallab.spots.at(sp).expvibrance;
vibranceParams.pastels = params->locallab.spots.at(sp).pastels;
vibranceParams.saturated = params->locallab.spots.at(sp).saturated;
vibranceParams.psthreshold = params->locallab.spots.at(sp).psthreshold;
vibranceParams.protectskins = params->locallab.spots.at(sp).protectskins;
vibranceParams.avoidcolorshift = params->locallab.spots.at(sp).avoidcolorshift;
vibranceParams.pastsattog = params->locallab.spots.at(sp).pastsattog;
vibranceParams.skintonescurve = params->locallab.spots.at(sp).skintonescurve;
bufexpfin->CopyFrom(bufexporig.get());
if (lp.strvibh != 0.f) {
struct grad_params gph;
calclocalGradientParams(lp, gph, ystart, xstart, bfw, bfh, 9);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gph, jr, ir);
float aa = bufexpfin->a[ir][jr];
float bb = bufexpfin->b[ir][jr];
float chrm = sqrt(SQR(aa) + SQR(bb));
float HH = xatan2f(bb, aa);
float newhr = 0.f;
float cor = 0.f;
if (factor < 1.f) {
cor = - 2.5f * (1.f - factor);
} else if (factor > 1.f) {
cor = 0.03f * (factor - 1.f);
}
newhr = HH + cor;
if (newhr > rtengine::RT_PI_F) {
newhr -= 2 * rtengine::RT_PI_F;
} else if (newhr < -rtengine::RT_PI_F) {
newhr += 2 * rtengine::RT_PI_F;
}
float2 sincosval = xsincosf(newhr);
bufexpfin->a[ir][jr] = CLIPC(chrm * sincosval.y);
bufexpfin->b[ir][jr] = CLIPC(chrm * sincosval.x);
}
}
if (lp.strvib != 0.f) {
struct grad_params gp;
calclocalGradientParams(lp, gp, ystart, xstart, bfw, bfh, 7);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gp, jr, ir);
bufexpfin->L[ir][jr] *= factor;
}
}
if (lp.strvibab != 0.f) {
struct grad_params gpab;
calclocalGradientParams(lp, gpab, ystart, xstart, bfw, bfh, 8);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gpab, jr, ir);
bufexpfin->a[ir][jr] *= factor;
bufexpfin->b[ir][jr] *= factor;
}
}
ImProcFunctions::vibrance(bufexpfin.get(), vibranceParams, params->toneCurve.hrenabled, params->icm.workingProfile);
if (params->locallab.spots.at(sp).warm != 0) {
ImProcFunctions::ciecamloc_02float(sp, bufexpfin.get());
}
transit_shapedetect2(call, 2, bufexporig.get(), bufexpfin.get(), originalmaskvib.get(), hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
}
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
}
//Tone mapping
if ((lp.strengt != 0.f || lp.showmasktmmet == 2 || lp.enatmMask || lp.showmasktmmet == 3 || lp.showmasktmmet == 4) && lp.tonemapena && !params->epd.enabled) {
if (call <= 3) { //simpleprocess dcrop improcc
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (bfw >= mSP && bfh >= mSP) {
array2D<float> buflight(bfw, bfh);
JaggedArray<float> bufchro(bfw, bfh);
std::unique_ptr<LabImage> bufgb(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> tmp1(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufgbm(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> tmp1m(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskorigtm;
std::unique_ptr<LabImage> bufmaskblurtm;
std::unique_ptr<LabImage> originalmasktm;
// if (lp.showmasktmmet == 0 || lp.showmasktmmet == 2 || lp.enatmMask || lp.showmasktmmet == 3 || lp.showmasktmmet == 4) {
if (lp.showmasktmmet == 2 || lp.enatmMask || lp.showmasktmmet == 3 || lp.showmasktmmet == 4) {
bufmaskorigtm.reset(new LabImage(bfw, bfh));
bufmaskblurtm.reset(new LabImage(bfw, bfh));
originalmasktm.reset(new LabImage(bfw, bfh));
}
int itera = 0;
if (call == 1) {
// itera = 5;
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufgb->L[y - ystart][x - xstart] = original->L[y][x];
bufgb->a[y - ystart][x - xstart] = original->a[y][x];
bufgb->b[y - ystart][x - xstart] = original->b[y][x];
bufgbm->L[y - ystart][x - xstart] = original->L[y][x];
bufgbm->a[y - ystart][x - xstart] = original->a[y][x];
bufgbm->b[y - ystart][x - xstart] = original->b[y][x];
}
}
int inv = 0;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmasktmmet == 3) {
showmaske = true;
}
if (lp.enatmMask) {
enaMask = true;
}
if (lp.showmasktmmet == 4) {
deltaE = true;
}
if (lp.showmasktmmet == 2) {
modmask = true;
}
if (lp.showmasktmmet == 1) {
modif = true;
}
if (lp.showmasktmmet == 0) {
zero = true;
}
float chrom = lp.chromatm;;
float rad = lp.radmatm;
float gamma = lp.gammatm;
float slope = lp.slomatm;
float blendm = lp.blendmatm;
float lap = params->locallab.spots.at(sp).lapmasktm;
bool pde = params->locallab.spots.at(sp).laplac;
int shortcu = 0; //lp.mergemet;// params->locallab.spots.at(sp).shortc;
int lumask = params->locallab.spots.at(sp).lumask;
if (!params->locallab.spots.at(sp).enatmMaskaft) {
LocwavCurve dummy;
bool lmasutilicolwav = false;
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
int shado = 0;
float amountcd = 0.f;
float anchorcd = 50.f;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, bufgbm.get(), bufmaskorigtm.get(), originalmasktm.get(), original, reserved, inv, lp,
0.f, false,
locccmastmCurve, lcmastmutili, locllmastmCurve, llmastmutili, lochhmastmCurve, lhmastmutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmasktmlocalcurve, localmasktmutili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmasktmmet == 3) {
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, bufgbm.get(), transformed, bufmaskorigtm.get(), 0);
return;
}
}
if (lp.showmasktmmet == 0 || lp.showmasktmmet == 1 || lp.showmasktmmet == 2 || lp.showmasktmmet == 4 || lp.showmasktmmet == 3 || lp.enatmMask) {
ImProcFunctions::EPDToneMaplocal(sp, bufgb.get(), tmp1.get(), itera, sk);//iterate to 0 calculate with edgstopping, improve result, call=1 dcrop we can put iterate to 5
tmp1m->CopyFrom(tmp1.get());//save current result
bool enatmMasktmap = params->locallab.spots.at(sp).enatmMaskaft;
if (enatmMasktmap) {
//calculate new values for original, originalmasktm, bufmaskorigtm...in function of tmp1
LocwavCurve dummy;
bool lmasutilicolwav = false;
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
int shortcu = 0;//lp.mergemet; //params->locallab.spots.at(sp).shortc;
int lumask = params->locallab.spots.at(sp).lumask;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
int shado = 0;
float amountcd = 0.f;
float anchorcd = 50.f;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, tmp1.get(), bufmaskorigtm.get(), originalmasktm.get(), original, reserved, inv, lp,
0.f, false,
locccmastmCurve, lcmastmutili, locllmastmCurve, llmastmutili, lochhmastmCurve, lhmastmutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmasktmlocalcurve, localmasktmutili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmasktmmet == 3) {//dispaly mask
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, tmp1.get(), transformed, bufmaskorigtm.get(), 0);
return;
}
}
tmp1->CopyFrom(tmp1m.get());//restore current result
float minL = tmp1->L[0][0] - bufgb->L[0][0];
float maxL = minL;
float minC = sqrt(SQR(tmp1->a[0][0]) + SQR(tmp1->b[0][0])) - sqrt(SQR(bufgb->a[0][0]) + SQR(bufgb->b[0][0]));
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxL) reduction(min:minL) reduction(max:maxC) reduction(min:minC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = tmp1->L[ir][jr] - bufgb->L[ir][jr];
minL = rtengine::min(minL, buflight[ir][jr]);
maxL = rtengine::max(maxL, buflight[ir][jr]);
bufchro[ir][jr] = sqrt(SQR(tmp1->a[ir][jr]) + SQR(tmp1->b[ir][jr])) - sqrt(SQR(bufgb->a[ir][jr]) + SQR(bufgb->b[ir][jr]));
minC = rtengine::min(minC, bufchro[ir][jr]);
maxC = rtengine::max(maxC, bufchro[ir][jr]);
}
}
float coef = 0.01f * (max(fabs(minL), fabs(maxL)));
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
if (coef == 0.f) {
coef = 1.f;
}
if (coefC == 0.f) {
coefC = 1.f;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
buflight[y][x] /= coef;
bufchro[y][x] /= coefC;
}
}
// transit_shapedetect_retinex(call, 4, bufgb.get(),bufmaskorigtm.get(), originalmasktm.get(), buflight, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
transit_shapedetect2(call, 8, bufgb.get(), tmp1.get(), originalmasktm.get(), hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
// transit_shapedetect(8, tmp1.get(), originalmasktm.get(), bufchro, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
bufgb.reset();
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
}
}
//end TM
//shadow highlight
bool tonequ = false;
if (lp.mullocsh[0] != 0 || lp.mullocsh[1] != 0 || lp.mullocsh[2] != 0 || lp.mullocsh[3] != 0 || lp.mullocsh[4] != 0) {
tonequ = true;
}
bool tonecurv = false;
if (params->locallab.spots.at(sp).gamSH != 2.4 || params->locallab.spots.at(sp).sloSH != 12.92) {
tonecurv = true;
}
if (! lp.invsh && (lp.highlihs > 0.f || lp.shadowhs > 0.f || tonequ || tonecurv || lp.strSH != 0.f || lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 3 || lp.showmaskSHmet == 4) && call < 3 && lp.hsena) {
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (complexsoft == 2) {
lp.shmeth = 1;
}
if (bfw >= mSP && bfh >= mSP) {
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskorigSH;
std::unique_ptr<LabImage> bufmaskblurSH;
std::unique_ptr<LabImage> originalmaskSH;
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
if (lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 3 || lp.showmaskSHmet == 4) {
bufmaskorigSH.reset(new LabImage(bfw, bfh));
bufmaskblurSH.reset(new LabImage(bfw, bfh));
originalmaskSH.reset(new LabImage(bfw, bfh));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufexporig->L[y][x] = original->L[y + ystart][x + xstart];
}
}
int inv = 0;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskSHmet == 3) {
showmaske = true;
}
if (lp.enaSHMask) {
enaMask = true;
}
if (lp.showmaskSHmet == 4) {
deltaE = true;
}
if (lp.showmaskSHmet == 2) {
modmask = true;
}
if (lp.showmaskSHmet == 1) {
modif = true;
}
if (lp.showmaskSHmet == 0) {
zero = true;
}
float chrom = lp.chromaSH;
float rad = lp.radmaSH;
float gamma = lp.gammaSH;
float slope = lp.slomaSH;
float blendm = lp.blendmaSH;
float lap = params->locallab.spots.at(sp).lapmaskSH;
bool pde = params->locallab.spots.at(sp).laplac;
LocwavCurve dummy;
bool lmasutilicolwav = false;
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
int shortcu = 0;//lp.mergemet; //params->locallab.spots.at(sp).shortc;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
int shado = 0;
float amountcd = params->locallab.spots.at(sp).fatamountSH;
float anchorcd = params->locallab.spots.at(sp).fatanchorSH;
int lumask = params->locallab.spots.at(sp).lumask;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, bufexporig.get(), bufmaskorigSH.get(), originalmaskSH.get(), original, reserved, inv, lp,
0.f, false,
locccmasSHCurve, lcmasSHutili, locllmasSHCurve, llmasSHutili, lochhmasSHCurve, lhmasSHutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmaskSHlocalcurve, localmaskSHutili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskSHmet == 3) {
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, bufexporig.get(), transformed, bufmaskorigSH.get(), 0);
return;
}
if (lp.showmaskSHmet == 0 || lp.showmaskSHmet == 1 || lp.showmaskSHmet == 2 || lp.showmaskSHmet == 4 || lp.enaSHMask) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufexporig->L[y][x] = original->L[y + ystart][x + xstart];
bufexporig->a[y][x] = original->a[y + ystart][x + xstart];
bufexporig->b[y][x] = original->b[y + ystart][x + xstart];
bufexpfin->L[y][x] = original->L[y + ystart][x + xstart];
bufexpfin->a[y][x] = original->a[y + ystart][x + xstart];
bufexpfin->b[y][x] = original->b[y + ystart][x + xstart];
}
}
if (lp.shmeth == 0) {
ImProcFunctions::shadowsHighlights(bufexpfin.get(), lp.hsena, 1, lp.highlihs, lp.shadowhs, lp.radiushs, sk, lp.hltonalhs, lp.shtonalhs);
}
//gradient
struct grad_params gp;
if (lp.strSH != 0.f) {
calclocalGradientParams(lp, gp, ystart, xstart, bfw, bfh, 2);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gp, jr, ir);
bufexpfin->L[ir][jr] *= factor;
}
}
if (lp.shmeth == 1) {
double scal = (double)(sk);
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(bfw, bfh);
lab2rgb(*bufexpfin, *tmpImage, params->icm.workingProfile);
if (tonecurv) { //Tone response curve : does nothing if gamma=2.4 and slope=12.92 ==> gamma sRGB
float gamtone = params->locallab.spots.at(sp).gamSH;
float slotone = params->locallab.spots.at(sp).sloSH;
cmsHTRANSFORM dummy = nullptr;
workingtrc(tmpImage, tmpImage, bfw, bfh, -5, params->icm.workingProfile, 2.4, 12.92310, dummy, true, false, false);
workingtrc(tmpImage, tmpImage, bfw, bfh, 5, params->icm.workingProfile, gamtone, slotone, dummy, false, true, true);
}
if (tonequ) {
tmpImage->normalizeFloatTo1();
array2D<float> Rtemp(bfw, bfh, tmpImage->r.ptrs, ARRAY2D_BYREFERENCE);
array2D<float> Gtemp(bfw, bfh, tmpImage->g.ptrs, ARRAY2D_BYREFERENCE);
array2D<float> Btemp(bfw, bfh, tmpImage->b.ptrs, ARRAY2D_BYREFERENCE);
tone_eq(Rtemp, Gtemp, Btemp, lp, params->icm.workingProfile, scal, multiThread);
tmpImage->normalizeFloatTo65535();
}
rgb2lab(*tmpImage, *bufexpfin, params->icm.workingProfile);
delete tmpImage;
}
}
}
transit_shapedetect2(call, 9, bufexporig.get(), bufexpfin.get(), originalmaskSH.get(), hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
} else if (lp.invsh && (lp.highlihs > 0.f || lp.shadowhs > 0.f || tonequ || tonecurv || lp.showmaskSHmetinv == 1 || lp.enaSHMaskinv) && call < 3 && lp.hsena) {
std::unique_ptr<LabImage> bufmaskblurcol;
std::unique_ptr<LabImage> originalmaskSH;
std::unique_ptr<LabImage> bufcolorig;
int GW = transformed->W;
int GH = transformed->H;
bufcolorig.reset(new LabImage(GW, GH));
if (lp.enaSHMaskinv || lp.showmaskSHmetinv == 1) {
bufmaskblurcol.reset(new LabImage(GW, GH, true));
originalmaskSH.reset(new LabImage(GW, GH));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
bufcolorig->L[y][x] = original->L[y][x];
}
}
int inv = 1;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskSHmetinv == 1) {
showmaske = true;
}
if (lp.enaSHMaskinv) {
enaMask = true;
}
if (lp.showmaskSHmetinv == 0) {
zero = true;
}
float chrom = lp.chromaSH;
float rad = lp.radmaSH;
float gamma = lp.gammaSH;
float slope = lp.slomaSH;
float blendm = lp.blendmaSH;
float lap = params->locallab.spots.at(sp).lapmaskSH;
bool pde = params->locallab.spots.at(sp).laplac;
LocwavCurve dummy;
bool lmasutilicolwav = false;
// bool delt = params->locallab.spots.at(sp).deltae;
bool delt = false;
int sco = params->locallab.spots.at(sp).scopemask;
int shortcu = 0;//lp.mergemet;
params->locallab.spots.at(sp).shortc;
const int limscope = 80;//
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
int shado = 0;
float amountcd = params->locallab.spots.at(sp).fatamountSH;
float anchorcd = params->locallab.spots.at(sp).fatanchorSH;
int lumask = params->locallab.spots.at(sp).lumask;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, GW, GH, 0, 0, sk, cx, cy, bufcolorig.get(), bufmaskblurcol.get(), originalmaskSH.get(), original, reserved, inv, lp,
0.f, false,
locccmasSHCurve, lcmasSHutili, locllmasSHCurve, llmasSHutili, lochhmasSHCurve, lhmasSHutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmaskSHlocalcurve, localmaskSHutili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskSHmetinv == 1) {
showmask(lumask, lp, 0, 0, cx, cy, GW, GH, bufcolorig.get(), transformed, bufmaskblurcol.get(), inv);
return;
}
float adjustr = 2.f;
InverseColorLight_Local(tonequ, tonecurv, sp, 2, lp, originalmaskSH.get(), lightCurveloc, hltonecurveloc, shtonecurveloc, tonecurveloc, exlocalcurve, cclocalcurve, adjustr, localcutili, lllocalcurve, locallutili, original, transformed, cx, cy, hueref, chromaref, lumaref, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
// soft light and retinex_pde
if (lp.strng > 0.f && call <= 3 && lp.sfena) {
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
//variable for fast FFTW
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
if (bfw >= mSP && bfh >= mSP) {
if (lp.softmet == 1) {
optfft(N_fftwsize, bfh, bfw, bfhr, bfwr, reduH, reduW, lp, original->H, original->W, xstart, ystart, xend, yend, cx, cy);
}
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
bufexporig->a[y - ystart][x - xstart] = original->a[y][x];
bufexporig->b[y - ystart][x - xstart] = original->b[y][x];
}
}
bufexpfin->CopyFrom(bufexporig.get());
SoftLightParams softLightParams;
softLightParams.enabled = true;
softLightParams.strength = lp.strng;
if (lp.softmet == 0) {
ImProcFunctions::softLight(bufexpfin.get(), softLightParams);
} else if (lp.softmet == 1) {
MyMutex::MyLock lock(*fftwMutex);
float *datain = new float[bfwr * bfhr];
float *dataout = new float[bfwr * bfhr];
float *dE = new float[bfwr * bfhr];
deltaEforLaplace(dE, lp, bfwr, bfhr, bufexpfin.get(), hueref, chromaref, lumaref);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
datain[y * bfwr + x] = bufexpfin->L[y][x];
}
}
int showorig = lp.showmasksoftmet;
if (lp.showmasksoftmet >= 5) {
showorig = 0;
}
ImProcFunctions::retinex_pde(datain, dataout, bfwr, bfhr, 8.f * lp.strng, 1.f, dE, showorig, 1, 1);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
// bufexpfin->L[y][x] = dataout[y * bfwr + x] + bufexpfin->L[y][x];
bufexpfin->L[y][x] = dataout[y * bfwr + x];
}
}
delete [] datain;
delete [] dataout;
delete [] dE;
}
transit_shapedetect2(call, 3, bufexporig.get(), bufexpfin.get(), nullptr, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
//local contrast
bool wavcurve = false;
if (locwavCurve && locwavutili) {
if (lp.locmet == 1) {
for (int i = 0; i < 500; i++) {
if (locwavCurve[i] != 0.5) {
wavcurve = true;
}
}
}
}
bool wavcurvelev = false;
if (loclevwavCurve && loclevwavutili) {
if (lp.locmet == 1) {
for (int i = 0; i < 500; i++) {
if (loclevwavCurve[i] != 0.) {
wavcurvelev = true;
}
}
}
}
bool wavcurvecon = false;
if (locconwavCurve && locconwavutili) {
if (lp.locmet == 1) {
for (int i = 0; i < 500; i++) {
if (locconwavCurve[i] != 0.5) {
wavcurvecon = true;
}
}
}
}
bool wavcurvecomp = false;
if (loccompwavCurve && loccompwavutili) {
if (lp.locmet == 1) {
for (int i = 0; i < 500; i++) {
if (loccompwavCurve[i] != 0.) {
wavcurvecomp = true;
}
}
}
}
bool wavcurvecompre = false;
if (loccomprewavCurve && loccomprewavutili) {
if (lp.locmet == 1) {
for (int i = 0; i < 500; i++) {
if (loccomprewavCurve[i] != 0.75) {
wavcurvecompre = true;
}
}
}
}
if ((lp.lcamount > 0.f || wavcurve || lp.showmasklcmet == 2 || lp.enalcMask || lp.showmasklcmet == 3 || lp.showmasklcmet == 4 || lp.strwav != 0.f || wavcurvelev || wavcurvecon || wavcurvecomp || wavcurvecompre || lp.edgwena || params->locallab.spots.at(sp).residblur > 0.f || params->locallab.spots.at(sp).levelblur > 0.f || params->locallab.spots.at(sp).residcont != 0.f || params->locallab.spots.at(sp).clarilres != 0.f || params->locallab.spots.at(sp).claricres != 0.f) && call < 3 && lp.lcena) {
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
// if (bfw >= mSP && bfh >= mSP) {
if (bfw >= mSPwav && bfh >= mSPwav) {//avoid too small spot for wavelet
if (lp.ftwlc) {
optfft(N_fftwsize, bfh, bfw, bfhr, bfwr, reduH, reduW, lp, original->H, original->W, xstart, ystart, xend, yend, cx, cy);
}
std::unique_ptr<LabImage> bufmaskblurlc;
std::unique_ptr<LabImage> originalmasklc;
std::unique_ptr<LabImage> bufmaskoriglc;
if (lp.showmasklcmet == 2 || lp.enalcMask || lp.showmasklcmet == 3 || lp.showmasklcmet == 4) {
bufmaskblurlc.reset(new LabImage(bfw, bfh));
originalmasklc.reset(new LabImage(bfw, bfh));
bufmaskoriglc.reset(new LabImage(bfw, bfh));
}
array2D<float> buflight(bfw, bfh);
JaggedArray<float> bufchro(bfw, bfh);
std::unique_ptr<LabImage> bufgb(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> tmp1(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> tmpresid(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> tmpres(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufgb->L[y - ystart][x - xstart] = original->L[y][x];
bufgb->a[y - ystart][x - xstart] = original->a[y][x];
bufgb->b[y - ystart][x - xstart] = original->b[y][x];
tmp1->L[y - ystart][x - xstart] = original->L[y][x];
tmp1->a[y - ystart][x - xstart] = original->a[y][x];
tmp1->b[y - ystart][x - xstart] = original->b[y][x];
tmpresid->L[y - ystart][x - xstart] = original->L[y][x];
tmpresid->a[y - ystart][x - xstart] = original->a[y][x];
tmpresid->b[y - ystart][x - xstart] = original->b[y][x];
tmpres->L[y - ystart][x - xstart] = original->L[y][x];
tmpres->a[y - ystart][x - xstart] = original->a[y][x];
tmpres->b[y - ystart][x - xstart] = original->b[y][x];
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufgb->L[y][x] = original->L[y + ystart][x + xstart];
}
}
int inv = 0;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmasklcmet == 3) {
showmaske = true;
}
if (lp.enalcMask) {
enaMask = true;
}
if (lp.showmasklcmet == 4) {
deltaE = true;
}
if (lp.showmasklcmet == 2) {
modmask = true;
}
if (lp.showmasklcmet == 1) {
modif = true;
}
if (lp.showmasklcmet == 0) {
zero = true;
}
float chrom = lp.chromalc;
float rad = lp.radmalc;
float blendm = lp.blendmalc;
float gamma = 1.f;
float slope = 0.f;
float lap = 0.f; //params->locallab.spots.at(sp).lapmaskexp;
bool pde = false; //params->locallab.spots.at(sp).laplac;
LocwavCurve dummy;
bool lmasutilicolwav = false;
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
int shado = 0;
int shortcu = 0;//lp.mergemet; //params->locallab.spots.at(sp).shortc;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
float amountcd = 0.f;
float anchorcd = 50.f;
int lumask = params->locallab.spots.at(sp).lumask;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, bufgb.get(), bufmaskoriglc.get(), originalmasklc.get(), original, reserved, inv, lp,
0.f, false,
locccmaslcCurve, lcmaslcutili, locllmaslcCurve, llmaslcutili, lochhmaslcCurve, lhmaslcutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmasklclocalcurve, localmasklcutili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmasklcmet == 3) {
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, bufgb.get(), transformed, bufmaskoriglc.get(), 0);
return;
}
if (lp.showmasklcmet == 0 || lp.showmasklcmet == 1 || lp.showmasklcmet == 2 || lp.showmasklcmet == 4 || lp.enalcMask) {
if (lp.locmet == 0) {
LocalContrastParams localContrastParams;
LocallabParams locallabparams;
localContrastParams.enabled = true;
localContrastParams.radius = params->locallab.spots.at(sp).lcradius;
localContrastParams.amount = params->locallab.spots.at(sp).lcamount;
localContrastParams.darkness = params->locallab.spots.at(sp).lcdarkness;
localContrastParams.lightness = params->locallab.spots.at(sp).lightness;
bool fftwlc = false;
if (!lp.ftwlc) { // || (lp.ftwlc && call != 2)) {
ImProcFunctions::localContrast(tmp1.get(), tmp1->L, localContrastParams, fftwlc, sk);
} else {
std::unique_ptr<LabImage> tmpfftw(new LabImage(bfwr, bfhr));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
tmpfftw->L[y][x] = tmp1->L[y][x];
tmpfftw->a[y][x] = tmp1->a[y][x];
tmpfftw->b[y][x] = tmp1->b[y][x];
}
}
fftwlc = true;
ImProcFunctions::localContrast(tmpfftw.get(), tmpfftw->L, localContrastParams, fftwlc, sk);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
tmp1->L[y][x] = tmpfftw->L[y][x];
tmp1->a[y][x] = tmpfftw->a[y][x];
tmp1->b[y][x] = tmpfftw->b[y][x];
}
}
}
} else if (lp.locmet == 1) { //wavelet && sk ==1
int wavelet_level = 1 + params->locallab.spots.at(sp).csthreshold.getBottomRight();//retriev with +1 maximum wavelet_level
float mL = (float)(params->locallab.spots.at(sp).clarilres / 100.f);
float mC = (float)(params->locallab.spots.at(sp).claricres / 100.f);
float softr = (float)(params->locallab.spots.at(sp).clarisoft);
float mL0 = 0.f;
float mC0 = 0.f;
#ifdef _OPENMP
const int numThreads = omp_get_max_threads();
#else
const int numThreads = 1;
#endif
// adap maximum level wavelet to size of RT-spot
int minwin = min(bfw, bfh);
int maxlevelspot = 10;//maximum possible
// adap maximum level wavelet to size of crop
while ((1 << maxlevelspot) >= (minwin * sk) && maxlevelspot > 1) {
--maxlevelspot ;
}
// printf("minwin=%i maxlevelavant=%i maxlespot=%i\n", minwin, wavelet_level, maxlevelspot);
wavelet_level = min(wavelet_level, maxlevelspot);
// printf("maxlevel=%i\n", wavelet_level);
bool exec = false;
bool origlc = params->locallab.spots.at(sp).origlc;
if (origlc) {//merge only with original
clarimerge(lp, mL, mC, exec, tmpresid.get(), wavelet_level, sk, numThreads);
}
int maxlvl = wavelet_level;
const float contrast = params->locallab.spots.at(sp).residcont;
int level_bl = params->locallab.spots.at(sp).csthreshold.getBottomLeft();
int level_hl = params->locallab.spots.at(sp).csthreshold.getTopLeft();
int level_br = params->locallab.spots.at(sp).csthreshold.getBottomRight();
int level_hr = params->locallab.spots.at(sp).csthreshold.getTopRight();
const float radblur = (params->locallab.spots.at(sp).residblur) / sk;
const bool blurlc = params->locallab.spots.at(sp).blurlc;
const float radlevblur = (params->locallab.spots.at(sp).levelblur) / sk;
const float sigma = params->locallab.spots.at(sp).sigma;
const float offs = params->locallab.spots.at(sp).offset;
const float fatdet = params->locallab.spots.at(sp).fatdet;
const float fatanch = params->locallab.spots.at(sp).fatanch;
const float fatres = params->locallab.spots.at(sp).fatres;
const float chrol = params->locallab.spots.at(sp).chromalev;
const float chrobl = params->locallab.spots.at(sp).chromablu;
const bool blurena = params->locallab.spots.at(sp).wavblur;
const bool levelena = params->locallab.spots.at(sp).wavcont;
const bool comprena = params->locallab.spots.at(sp).wavcomp;
const bool compreena = params->locallab.spots.at(sp).wavcompre;
const float compress = params->locallab.spots.at(sp).residcomp;
const float thres = params->locallab.spots.at(sp).threswav;
wavcontrast4(lp, tmp1->L, tmp1->a, tmp1->b, contrast, fatres, radblur, radlevblur, tmp1->W, tmp1->H, level_bl, level_hl, level_br, level_hr, sk, numThreads, locwavCurve, locwavutili, wavcurve, loclevwavCurve, loclevwavutili, wavcurvelev, locconwavCurve, locconwavutili, wavcurvecon, loccompwavCurve, loccompwavutili, wavcurvecomp, loccomprewavCurve, loccomprewavutili, wavcurvecompre, locedgwavCurve, locedgwavutili, sigma, offs, maxlvl, fatdet, fatanch, chrol, chrobl, blurlc, blurena, levelena, comprena, compreena, compress, thres);
const float satur = params->locallab.spots.at(sp).residchro;
if (satur != 0.f || radblur > 0.f) {//blur residual a and satur
wavelet_decomposition *wdspota = new wavelet_decomposition(tmp1->a[0], tmp1->W, tmp1->H, wavelet_level, 1, sk, numThreads, lp.daubLen);
if (wdspota->memoryAllocationFailed) {
return;
}
float *wav_ab0a = wdspota->coeff0;
// int maxlvla = wdspota->maxlevel();
int W_La = wdspota->level_W(0);
int H_La = wdspota->level_H(0);
if (radblur > 0.f && !blurlc && blurena) {
array2D<float> bufa(W_La, H_La);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_La; y++) {
for (int x = 0; x < W_La; x++) {
bufa[y][x] = wav_ab0a [y * W_La + x];
}
}
#pragma omp parallel
{
gaussianBlur(bufa, bufa, W_La, H_La, radblur);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_La; y++) {
for (int x = 0; x < W_La; x++) {
wav_ab0a[y * W_La + x] = bufa[y][x];
}
}
}
if (satur != 0.f) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < W_La * H_La; i++) {
wav_ab0a[i] *= (1.f + sin(rtengine::RT_PI * (satur / 200.f)));//more progressive than linear
wav_ab0a[i] = CLIPC(wav_ab0a[i]);
}
}
wdspota->reconstruct(tmp1->a[0], 1.f);
delete wdspota;
wavelet_decomposition *wdspotb = new wavelet_decomposition(tmp1->b[0], tmp1->W, tmp1->H, wavelet_level, 1, sk, numThreads, lp.daubLen);
if (wdspotb->memoryAllocationFailed) {
return;
}
float *wav_ab0b = wdspotb->coeff0;
// int maxlvlb = wdspotb->maxlevel();
int W_Lb = wdspotb->level_W(0);
int H_Lb = wdspotb->level_H(0);
if (radblur > 0.f && !blurlc && blurena) {
array2D<float> bufb(W_Lb, H_Lb);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_Lb; y++) {
for (int x = 0; x < W_Lb; x++) {
bufb[y][x] = wav_ab0b [y * W_Lb + x];
}
}
#pragma omp parallel
{
gaussianBlur(bufb, bufb, W_Lb, H_Lb, radblur);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_Lb; y++) {
for (int x = 0; x < W_Lb; x++) {
wav_ab0b[y * W_Lb + x] = bufb[y][x];
}
}
}
if (satur != 0.f) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < W_Lb * H_Lb; i++) {
wav_ab0b[i] *= (1.f + sin(rtengine::RT_PI * (satur / 200.f)));
wav_ab0b[i] = CLIPC(wav_ab0b[i]);
}
}
wdspotb->reconstruct(tmp1->b[0], 1.f);
delete wdspotb;
}
if (!origlc) {//merge all files
exec = false;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
//copy previous calculation in merge possibilities
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
tmpresid->L[y][x] = tmp1->L[y][x];
tmpresid->a[y][x] = tmp1->a[y][x];
tmpresid->b[y][x] = tmp1->b[y][x];
}
}
clarimerge(lp, mL, mC, exec, tmpresid.get(), wavelet_level, sk, numThreads);
}
float thr = 0.001f;
int flag = 0;
if (maxlvl <= 4) {
mL0 = 0.f;
mC0 = 0.f;
mL = -1.5f * mL;//increase only for sharpen
mC = -mC;
thr = 1.f;
flag = 0;
} else if (maxlvl > 4) {
mL0 = mL;
mC0 = mC;
thr = 1.f;
flag = 1;
} else {
mL0 = mL = mC0 = mC = 0.f;
}
if (exec || compreena) {
bool origl = false;
// origlc = false;
LabImage *mergfile = origl ? tmpres.get() : tmp1.get();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int x = 0; x < bfh; x++)
for (int y = 0; y < bfw; y++) {
tmp1->L[x][y] = CLIPLOC((1.f + mL0) * mergfile->L[x][y] - mL * tmpresid->L[x][y]);
tmp1->a[x][y] = CLIPC((1.f + mC0) * mergfile->a[x][y] - mC * tmpresid->a[x][y]);
tmp1->b[x][y] = CLIPC((1.f + mC0) * mergfile->b[x][y] - mC * tmpresid->b[x][y]);
}
if (softr > 0.f && (compreena || fabs(mL) > 0.001f)) {
softproc(tmpres.get(), tmp1.get(), softr, bfh, bfw, 0.0001, 0.00001, thr, sk, multiThread, flag);
}
}
}
transit_shapedetect2(call, 10, bufgb.get(), tmp1.get(), originalmasklc.get(), hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
tmp1.reset();
}
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
if (!lp.invshar && lp.shrad > 0.42 && call < 3 && lp.sharpena && sk == 1) { //interior ellipse for sharpening, call = 1 and 2 only with Dcrop and simpleprocess
int bfh = call == 2 ? int (lp.ly + lp.lyT) + del : original->H; //bfw bfh real size of square zone
int bfw = call == 2 ? int (lp.lx + lp.lxL) + del : original->W;
JaggedArray<float> loctemp(bfw, bfh);
if (call == 2) { //call from simpleprocess
printf("bfw=%i bfh=%i\n", bfw, bfh);
if (bfw < mSPsharp || bfh < mSPsharp) {
printf("too small RT-spot - minimum size 39 * 39\n");
return;
}
JaggedArray<float> bufsh(bfw, bfh, true);
JaggedArray<float> hbuffer(bfw, bfh);
int begy = lp.yc - lp.lyT;
int begx = lp.xc - lp.lxL;
int yEn = lp.yc + lp.ly;
int xEn = lp.xc + lp.lx;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++) {
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int loy = cy + y;
if (lox >= begx && lox < xEn && loy >= begy && loy < yEn) {
bufsh[loy - begy][lox - begx] = original->L[y][x];
}
}
}
//sharpen only square area instaed of all image
ImProcFunctions::deconvsharpeningloc(bufsh, hbuffer, bfw, bfh, loctemp, params->locallab.spots.at(sp).shardamping, (double)params->locallab.spots.at(sp).sharradius, params->locallab.spots.at(sp).shariter, params->locallab.spots.at(sp).sharamount, params->locallab.spots.at(sp).sharcontrast, (double)params->locallab.spots.at(sp).sharblur);
} else { //call from dcrop.cc
ImProcFunctions::deconvsharpeningloc(original->L, shbuffer, bfw, bfh, loctemp, params->locallab.spots.at(sp).shardamping, (double)params->locallab.spots.at(sp).sharradius, params->locallab.spots.at(sp).shariter, params->locallab.spots.at(sp).sharamount, params->locallab.spots.at(sp).sharcontrast, (double)params->locallab.spots.at(sp).sharblur);
}
//sharpen ellipse and transition
Sharp_Local(call, loctemp, 0, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
} else if (lp.invshar && lp.shrad > 0.42 && call < 3 && lp.sharpena && sk == 1) {
int GW = original->W;
int GH = original->H;
JaggedArray<float> loctemp(GW, GH);
ImProcFunctions::deconvsharpeningloc(original->L, shbuffer, GW, GH, loctemp, params->locallab.spots.at(sp).shardamping, (double)params->locallab.spots.at(sp).sharradius, params->locallab.spots.at(sp).shariter, params->locallab.spots.at(sp).sharamount, params->locallab.spots.at(sp).sharcontrast, (double)params->locallab.spots.at(sp).sharblur);
InverseSharp_Local(loctemp, hueref, lumaref, chromaref, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
// }
//&& lp.retiena
if (lp.dehaze != 0 && lp.retiena) {
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
if (bfh >= mSP && bfw >= mSP) {
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh)); //buffer for data in zone limit
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh)); //buffer for data in zone limit
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
bufexporig->a[y - ystart][x - xstart] = original->a[y][x];
bufexporig->b[y - ystart][x - xstart] = original->b[y][x];
}
}
bufexpfin->CopyFrom(bufexporig.get());
//calc dehaze
Imagefloat *tmpImage = nullptr;
if (lp.dehaze != 0) {
DehazeParams dehazeParams;
dehazeParams.enabled = true;
dehazeParams.strength = lp.dehaze;
dehazeParams.showDepthMap = false;
dehazeParams.depth = lp.depth;
dehazeParams.luminance = params->locallab.spots.at(sp).lumonly;
tmpImage = new Imagefloat(bfw, bfh);
lab2rgb(*bufexpfin, *tmpImage, params->icm.workingProfile);
dehazeloc(tmpImage, dehazeParams);
rgb2lab(*tmpImage, *bufexpfin, params->icm.workingProfile);
delete tmpImage;
}
transit_shapedetect2(call, 30, bufexporig.get(), bufexpfin.get(), nullptr, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
lp.invret = false;//always disabled inverse RETI too complex todo !!
if (lp.str >= 0.2f && lp.retiena && call != 2) {
int GW = transformed->W;
int GH = transformed->H;
LabImage *bufreti = nullptr;
LabImage *bufmask = nullptr;
LabImage *buforig = nullptr;
LabImage *buforigmas = nullptr;
if (GW >= mSP && GH >= mSP)
{
array2D<float> buflight(GW, GH);
JaggedArray<float> bufchro(GW, GH);
int Hd, Wd;
Hd = GH;
Wd = GW;
if (!lp.invret && call != 2) {
Hd = GH;
Wd = GW;
bufreti = new LabImage(GW, GH);
bufmask = new LabImage(GW, GH);
if (!lp.enaretiMasktmap && lp.enaretiMask) {
buforig = new LabImage(GW, GH);
buforigmas = new LabImage(GW, GH);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < GH; ir++) //fill with 0
for (int jr = 0; jr < GW; jr++) {
bufreti->L[ir][jr] = 0.f;
bufreti->a[ir][jr] = 0.f;
bufreti->b[ir][jr] = 0.f;
buflight[ir][jr] = 0.f;
bufchro[ir][jr] = 0.f;
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++) //{
for (int x = 0; x < transformed->W; x++) {
bufreti->L[y][x] = original->L[y][x];
bufreti->a[y][x] = original->a[y][x];
bufreti->b[y][x] = original->b[y][x];
bufmask->L[y][x] = original->L[y][x];
bufmask->a[y][x] = original->a[y][x];
bufmask->b[y][x] = original->b[y][x];
if (!lp.enaretiMasktmap && lp.enaretiMask) {
buforig->L[y][x] = original->L[y][x];
buforig->a[y][x] = original->a[y][x];
buforig->b[y][x] = original->b[y][x];
}
}
}
float raddE = params->locallab.spots.at(sp).softradiusret;
//calc dE and reduction to use in MSR to reduce artifacts
const int limscope = 80;
const float mindE = 4.f + MINSCOPE * lp.sensh * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensh * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
std::unique_ptr<JaggedArray<float>> reducDEBuffer(new JaggedArray<float>(Wd, Hd));
float** reducDE = *(reducDEBuffer.get());
float ade = 0.01f * raddE;
float bde = 100.f - raddE;
float sensibefore = ade * lp.sensh + bde;//we can change sensitivity 0.1 90 or 0.3 70 or 0.4 60
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++)
for (int x = 0; x < transformed->W; x++) {
float dE = sqrt(SQR(refa - bufreti->a[y][x] / 327.68f) + SQR(refb - bufreti->b[y][x] / 327.68f) + SQR(lumaref - bufreti->b[y][x] / 327.68f));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sensibefore, reducdE);
reducDE[y][x] = CLIPdE(reducdE);
}
std::unique_ptr<JaggedArray<float>> origBuffer(new JaggedArray<float>(Wd, Hd));
float** orig = *(origBuffer.get());
std::unique_ptr<JaggedArray<float>> origBuffer1(new JaggedArray<float>(Wd, Hd));
float** orig1 = *(origBuffer1.get());
LabImage *tmpl = nullptr;
if (!lp.invret && call != 2) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = bufreti->L[ir][jr];
orig1[ir][jr] = bufreti->L[ir][jr];
}
tmpl = new LabImage(Wd, Hd);
} else {
//
}
// float minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax;
bool fftw = lp.ftwreti;
//fftw = false;
//for Retinex Mask are incorporated in MSR
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
float lumask = params->locallab.spots.at(sp).lumask;
const int limscope2 = 80;
const float mindE2 = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE2 = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim2 = 2.f + MINSCOPE * limscope2 * lp.thr;
const float maxdElim2 = 5.f + MAXSCOPE * limscope2 * (1 + 0.1f * lp.thr);
ImProcFunctions::MSRLocal(call, sp, fftw, 1, reducDE, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1,
Wd, Hd, Wd, Hd, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 0, 4, 1.f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask,
lmaskretilocalcurve, localmaskretiutili,
transformed, lp.enaretiMasktmap, lp.enaretiMask,
delt, hueref, chromaref, lumaref,
maxdE2, mindE2, maxdElim2, mindElim2, lp.iterat, limscope2, sco, lp.balance, lp.balanceh, lumask);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
tmpl->L[ir][jr] = orig[ir][jr];
}
if (lp.equret) { //equilibrate luminance before / after MSR
float *datain = new float[Hd * Wd];
float *data = new float[Hd * Wd];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
datain[ir * Wd + jr] = orig1[ir][jr];
data[ir * Wd + jr] = orig[ir][jr];
}
normalize_mean_dt(data, datain, Hd * Wd, 1.f, 1.f);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
tmpl->L[ir][jr] = data[ir * Wd + jr];
}
delete [] datain;
delete [] data;
}
if (!lp.invret) {
float minL = tmpl->L[0][0] - bufreti->L[0][0];
float maxL = minL;
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minL) reduction(max:maxL) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
buflight[ir][jr] = tmpl->L[ir][jr] - bufreti->L[ir][jr];
minL = rtengine::min(minL, buflight[ir][jr]);
maxL = rtengine::max(maxL, buflight[ir][jr]);
}
}
float coef = 0.01f * (max(fabs(minL), fabs(maxL)));
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
buflight[ir][jr] /= coef;
}
}
transit_shapedetect_retinex(call, 4, bufreti, bufmask, buforigmas, buflight, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
} else {
//
}
if (params->locallab.spots.at(sp).chrrt > 0) {
if (!lp.invret && call == 1) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = sqrt(SQR(bufreti->a[ir][jr]) + SQR(bufreti->b[ir][jr]));
orig1[ir][jr] = sqrt(SQR(bufreti->a[ir][jr]) + SQR(bufreti->b[ir][jr]));
}
} else {
}
float maxChro = orig1[0][0];
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxChro) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
maxChro = rtengine::max(maxChro, orig1[ir][jr]);
}
}
float divchro = maxChro;
//first step change saturation whithout Retinex ==> gain of time and memory
float satreal = lp.str * params->locallab.spots.at(sp).chrrt / 100.f;
if (params->locallab.spots.at(sp).chrrt <= 0.2f) {
satreal /= 10.f;
}
DiagonalCurve reti_satur({
DCT_NURBS,
0, 0,
0.2, 0.2 + satreal / 250.0,
0.6, min(1.0, 0.6 + satreal / 250.0),
1, 1
});
if (!lp.invret && call == 1) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
const float Chprov = orig1[ir][jr];
float2 sincosval;
sincosval.y = Chprov == 0.0f ? 1.f : bufreti->a[ir][jr] / Chprov;
sincosval.x = Chprov == 0.0f ? 0.f : bufreti->b[ir][jr] / Chprov;
if (params->locallab.spots.at(sp).chrrt <= 100.f) { //first step
float buf = LIM01(orig[ir][jr] / divchro);
buf = reti_satur.getVal(buf);
buf *= divchro;
orig[ir][jr] = buf;
}
tmpl->a[ir][jr] = orig[ir][jr] * sincosval.y;
tmpl->b[ir][jr] = orig[ir][jr] * sincosval.x;
}
float minC = sqrt(SQR(tmpl->a[0][0]) + SQR(tmpl->b[0][0])) - orig1[0][0];
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minC) reduction(max:maxC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
bufchro[ir][jr] = sqrt(SQR(tmpl->a[ir][jr]) + SQR(tmpl->b[ir][jr])) - orig1[ir][jr];
minC = rtengine::min(minC, bufchro[ir][jr]);
maxC = rtengine::max(maxC, bufchro[ir][jr]);
}
}
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
if (coefC == 0.f) {
coefC = 1.f;
}
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
bufchro[ir][jr] /= coefC;
}
}
} else {
//
}
if (!lp.invret) {
transit_shapedetect_retinex(call, 5, tmpl, bufmask, buforigmas, buflight, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
} else {
//
}
}
delete tmpl;
reducDEBuffer.reset();
origBuffer.reset();
origBuffer1.reset();
if (bufmask) {
delete bufmask;
}
if (!lp.enaretiMasktmap && lp.enaretiMask) {
if (buforig) {
delete buforig;
}
if (buforigmas) {
delete buforigmas;
}
}
if (bufreti) {
delete bufreti;
}
}
}
if (lp.str >= 0.2f && lp.retiena && call == 2) {
int GW = transformed->W;
int GH = transformed->H;
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
LabImage *bufreti = nullptr;
LabImage *bufmask = nullptr;
LabImage *buforig = nullptr;
LabImage *buforigmas = nullptr;
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
if (bfw >= mSP && bfh > mSP) {
if (lp.ftwreti) {
optfft(N_fftwsize, bfh, bfw, bfhr, bfwr, reduH, reduW, lp, original->H, original->W, xstart, ystart, xend, yend, cx, cy);
}
array2D<float> buflight(bfw, bfh);
JaggedArray<float> bufchro(bfw, bfh);
int Hd, Wd;
Hd = GH;
Wd = GW;
if (!lp.invret && call == 2) {
Hd = bfh;
Wd = bfw;
bufreti = new LabImage(bfw, bfh);
bufmask = new LabImage(bfw, bfh);
if (!lp.enaretiMasktmap && lp.enaretiMask) {
buforig = new LabImage(bfw, bfh);
buforigmas = new LabImage(bfw, bfh);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++) //fill with 0
for (int jr = 0; jr < bfw; jr++) {
bufreti->L[ir][jr] = 0.f;
bufreti->a[ir][jr] = 0.f;
bufreti->b[ir][jr] = 0.f;
buflight[ir][jr] = 0.f;
bufchro[ir][jr] = 0.f;
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufreti->L[y - ystart][x - xstart] = original->L[y][x];
bufreti->a[y - ystart][x - xstart] = original->a[y][x];
bufreti->b[y - ystart][x - xstart] = original->b[y][x];
bufmask->L[y - ystart][x - xstart] = original->L[y][x];
bufmask->a[y - ystart][x - xstart] = original->a[y][x];
bufmask->b[y - ystart][x - xstart] = original->b[y][x];
if (!lp.enaretiMasktmap && lp.enaretiMask) {
buforig->L[y - ystart][x - xstart] = original->L[y][x];
buforig->a[y - ystart][x - xstart] = original->a[y][x];
buforig->b[y - ystart][x - xstart] = original->b[y][x];
}
}
}
}
float raddE = params->locallab.spots.at(sp).softradiusret;
//calc dE and reduction to use in MSR to reduce artifacts
const int limscope = 80;
const float mindE = 4.f + MINSCOPE * lp.sensh * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensh * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
std::unique_ptr<JaggedArray<float>> reducDEBuffer(new JaggedArray<float>(Wd, Hd));
float** reducDE = *(reducDEBuffer.get());
float ade = 0.01f * raddE;
float bde = 100.f - raddE;
float sensibefore = ade * lp.sensh + bde;//we can change sensitivity 0.1 90 or 0.3 70 or 0.4 60
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++)
for (int x = xstart; x < xend; x++) {
float dE = sqrt(SQR(refa - bufreti->a[y - ystart][x - xstart] / 327.68f) + SQR(refb - bufreti->b[y - ystart][x - xstart] / 327.68f) + SQR(lumaref - bufreti->b[y - ystart][x - xstart] / 327.68f));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sensibefore, reducdE);
reducDE[y - ystart][x - xstart] = CLIPdE(reducdE);
}
std::unique_ptr<JaggedArray<float>> origBuffer(new JaggedArray<float>(Wd, Hd));
float** orig = *(origBuffer.get());
std::unique_ptr<JaggedArray<float>> origBuffer1(new JaggedArray<float>(Wd, Hd));
float** orig1 = *(origBuffer1.get());
LabImage *tmpl = nullptr;
if (!lp.invret && call == 2) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = bufreti->L[ir][jr];
orig1[ir][jr] = bufreti->L[ir][jr];
}
tmpl = new LabImage(Wd, Hd);
} else {
//
}
// float minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax;
bool fftw = lp.ftwreti;
//for Retinex Mask are incorporated in MSR
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
float lumask = params->locallab.spots.at(sp).lumask;
const int limscope2 = 80;
const float mindE2 = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE2 = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim2 = 2.f + MINSCOPE * limscope2 * lp.thr;
const float maxdElim2 = 5.f + MAXSCOPE * limscope2 * (1 + 0.1f * lp.thr);
ImProcFunctions::MSRLocal(call, sp, fftw, 1, reducDE, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1,
Wd, Hd, bfwr, bfhr, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 0, 4, 1.f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask,
lmaskretilocalcurve, localmaskretiutili,
transformed, lp.enaretiMasktmap, lp.enaretiMask,
delt, hueref, chromaref, lumaref,
maxdE2, mindE2, maxdElim2, mindElim2, lp.iterat, limscope2, sco, lp.balance, lp.balanceh, lumask);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
tmpl->L[ir][jr] = orig[ir][jr];
}
if (lp.equret) { //equilibrate luminance before / after MSR
float *datain = new float[Hd * Wd];
float *data = new float[Hd * Wd];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
datain[ir * Wd + jr] = orig1[ir][jr];
data[ir * Wd + jr] = orig[ir][jr];
}
normalize_mean_dt(data, datain, Hd * Wd, 1.f, 1.f);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
tmpl->L[ir][jr] = data[ir * Wd + jr];
}
delete [] datain;
delete [] data;
}
if (!lp.invret) {
float minL = tmpl->L[0][0] - bufreti->L[0][0];
float maxL = minL;
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minL) reduction(max:maxL) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
buflight[ir][jr] = tmpl->L[ir][jr] - bufreti->L[ir][jr];
minL = rtengine::min(minL, buflight[ir][jr]);
maxL = rtengine::max(maxL, buflight[ir][jr]);
}
}
float coef = 0.01f * (max(fabs(minL), fabs(maxL)));
if (coef == 0.f) {
coef = 1.f;
}
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
buflight[ir][jr] /= coef;
}
}
transit_shapedetect_retinex(call, 4, bufreti, bufmask, buforigmas, buflight, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
} else {
//
}
if (params->locallab.spots.at(sp).chrrt > 0) {
if (!lp.invret && call == 2) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = sqrt(SQR(bufreti->a[ir][jr]) + SQR(bufreti->b[ir][jr]));
orig1[ir][jr] = sqrt(SQR(bufreti->a[ir][jr]) + SQR(bufreti->b[ir][jr]));
}
} else {
//
}
float maxChro = orig1[0][0];
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxChro) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
maxChro = rtengine::max(maxChro, orig1[ir][jr]);
}
}
float divchro = maxChro;
//first step change saturation whithout Retinex ==> gain of time and memory
float satreal = lp.str * params->locallab.spots.at(sp).chrrt / 100.f;
if (params->locallab.spots.at(sp).chrrt <= 0.2f) {
satreal /= 10.f;
}
DiagonalCurve reti_satur({
DCT_NURBS,
0, 0,
0.2, 0.2 + satreal / 250.0,
0.6, min(1.0, 0.6 + satreal / 250.0),
1, 1
});
if (!lp.invret && call == 2) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
const float Chprov = orig1[ir][jr];
float2 sincosval;
sincosval.y = Chprov == 0.0f ? 1.f : bufreti->a[ir][jr] / Chprov;
sincosval.x = Chprov == 0.0f ? 0.f : bufreti->b[ir][jr] / Chprov;
if (params->locallab.spots.at(sp).chrrt <= 40.f) { //first step
float buf = LIM01(orig[ir][jr] / divchro);
buf = reti_satur.getVal(buf);
buf *= divchro;
orig[ir][jr] = buf;
}
tmpl->a[ir][jr] = orig[ir][jr] * sincosval.y;
tmpl->b[ir][jr] = orig[ir][jr] * sincosval.x;
}
float minC = sqrt(SQR(tmpl->a[0][0]) + SQR(tmpl->b[0][0])) - orig1[0][0];
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minC) reduction(max:maxC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
bufchro[ir][jr] = sqrt(SQR(tmpl->a[ir][jr]) + SQR(tmpl->b[ir][jr])) - orig1[ir][jr];
minC = rtengine::min(minC, bufchro[ir][jr]);
maxC = rtengine::max(maxC, bufchro[ir][jr]);
}
}
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
if (coefC == 0.f) {
coefC = 1.f;
}
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
bufchro[ir][jr] /= coefC;
}
}
} else {
//
}
if (!lp.invret) {
transit_shapedetect_retinex(call, 5, tmpl, bufmask, buforigmas, buflight, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
} else {
//
}
}
delete tmpl;
origBuffer.reset();
origBuffer1.reset();
reducDEBuffer.reset();
if (bufmask) {
delete bufmask;
}
if (!lp.enaretiMasktmap && lp.enaretiMask) {
if (buforig) {
delete buforig;
}
if (buforigmas) {
delete buforigmas;
}
}
if (bufreti) {
delete bufreti;
}
}
}
bool enablefat = false;
if (params->locallab.spots.at(sp).fatamount > 1.f) {
enablefat = true;;
}
bool execex = (lp.exposena && (lp.expcomp != 0.f || lp.blac != 0 || lp.laplacexp > 0.1f || lp.strexp != 0.f || enablefat || lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 3 || lp.showmaskexpmet == 4 || lp.showmaskexpmet == 5 || (exlocalcurve && localexutili)));
if (!lp.invex && execex) {
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
//variable for fast FFTW
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
if (complexsoft == 2) {
lp.expmet = 1;
lp.laplacexp = 0.f;
}
if (bfw >= mSP && bfh >= mSP) {
if (lp.expmet == 1) {
optfft(N_fftwsize, bfh, bfw, bfhr, bfwr, reduH, reduW, lp, original->H, original->W, xstart, ystart, xend, yend, cx, cy);
}
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskblurexp;
std::unique_ptr<LabImage> originalmaskexp;
array2D<float> blend2;
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
float meansob = 0.f;
if (lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 3 || lp.showmaskexpmet == 5) {
bufmaskblurexp.reset(new LabImage(bfw, bfh));
originalmaskexp.reset(new LabImage(bfw, bfh));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
}
}
const int spotSi = rtengine::max(1 + 2 * max(1, lp.cir / sk), 5);
if (bfw > 2 * spotSi && bfh > 2 * spotSi && lp.struexp > 0.f) {
blend2(bfw, bfh);
ImProcFunctions::blendstruc(bfw, bfh, bufexporig.get(), 3.f / (sk * 1.4f), 0.5f * lp.struexp, blend2, sk, multiThread);
if (lp.showmaskexpmet == 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++) {
for (int x = xstart; x < xend; x++) {
const int lox = cx + x;
const int loy = cy + y;
int zone = 0;
float localFactor = 1.f;
const float achm = lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {
transformed->L[y][x] = CLIP(blend2[y - ystart][x - xstart]);
transformed->a[y][x] = 0.f;
transformed->b[y][x] = 0.f;
}
}
}
return;
}
}
float meanorig = 0.f;
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
meanorig += bufexporig->L[ir][jr];
}
meanorig /= (bfh * bfw);
int inv = 0;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskexpmet == 3) {
showmaske = true;
}
if (lp.enaExpMask) {
enaMask = true;
}
if (lp.showmaskexpmet == 5) {
deltaE = true;
}
if (lp.showmaskexpmet == 2) {
modmask = true;
}
if (lp.showmaskexpmet == 1) {
modif = true;
}
if (lp.showmaskexpmet == 0) {
zero = true;
}
float chrom = lp.chromaexp;
float rad = lp.radmaexp;
float gamma = lp.gammaexp;
float slope = lp.slomaexp;
float blendm = lp.blendmaexp;
float lap = params->locallab.spots.at(sp).lapmaskexp;
bool pde = params->locallab.spots.at(sp).laplac;
LocwavCurve dummy;
bool lmasutilicolwav = false;
bool delt = params->locallab.spots.at(sp).deltae;
int sco = params->locallab.spots.at(sp).scopemask;
int shado = 0;
int shortcu = 0;//lp.mergemet; //params->locallab.spots.at(sp).shortc;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
float amountcd = 0.f;
float anchorcd = 50.f;
int lumask = params->locallab.spots.at(sp).lumask;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, bufexporig.get(), bufmaskblurexp.get(), originalmaskexp.get(), original, reserved, inv, lp,
0.f, false,
locccmasexpCurve, lcmasexputili, locllmasexpCurve, llmasexputili, lochhmasexpCurve, lhmasexputili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmaskexplocalcurve, localmaskexputili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskexpmet == 3) {
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, bufexporig.get(), transformed, bufmaskblurexp.get(), 0);
return;
}
if (lp.showmaskexpmet == 4) {
return;
}
if (lp.showmaskexpmet == 0 || lp.showmaskexpmet == 1 || lp.showmaskexpmet == 2 || lp.showmaskexpmet == 5 || lp.enaExpMask) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufexpfin->L[y][x] = original->L[y + ystart][x + xstart];
bufexpfin->a[y][x] = original->a[y + ystart][x + xstart];
bufexpfin->b[y][x] = original->b[y + ystart][x + xstart];
}
}
if (exlocalcurve && localexutili) {// L=f(L) curve enhanced
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
bufexpfin->L[ir][jr] = 0.5f * exlocalcurve[2.f * bufexporig->L[ir][jr]];
}
if (lp.expcomp == 0.f) {
lp.expcomp = 0.011f; // to enabled
}
ImProcFunctions::exlabLocal(lp, bfh, bfw, bufexpfin.get(), bufexpfin.get(), hltonecurveloc, shtonecurveloc, tonecurveloc, meanorig);
} else {
ImProcFunctions::exlabLocal(lp, bfh, bfw, bufexporig.get(), bufexpfin.get(), hltonecurveloc, shtonecurveloc, tonecurveloc, meanorig);
}
//gradient
struct grad_params gp;
if (lp.strexp != 0.f) {
calclocalGradientParams(lp, gp, ystart, xstart, bfw, bfh, 1);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gp, jr, ir);
bufexpfin->L[ir][jr] *= factor;
}
}
//exposure_pde
if (lp.expmet == 1) {
Imagefloat *tmpImagefat = nullptr;
if (enablefat) {
float *datain = new float[bfwr * bfhr];
float *dataout = new float[bfwr * bfhr];
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
float L = bufexpfin->L[y][x];
datain[y * bfwr + x] = L;
}
}
FattalToneMappingParams fatParams;
fatParams.enabled = true;
fatParams.threshold = params->locallab.spots.at(sp).fatdetail;
fatParams.amount = params->locallab.spots.at(sp).fatamount;
fatParams.anchor = 50.f; //params->locallab.spots.at(sp).fatanchor;
float sigm = params->locallab.spots.at(sp).fatlevel;
float mean = params->locallab.spots.at(sp).fatanchor;
tmpImagefat = new Imagefloat(bfwr, bfhr);
lab2rgb(*bufexpfin, *tmpImagefat, params->icm.workingProfile);
ToneMapFattal02(tmpImagefat, fatParams, 3, 0, nullptr, 0, 0, 1);//last parameter = 1 ==>ART algorithm
rgb2lab(*tmpImagefat, *bufexpfin, params->icm.workingProfile);
delete tmpImagefat;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
float L = bufexpfin->L[y][x];
dataout[y * bfwr + x] = L;
}
}
normalize_mean_dt(dataout, datain, bfwr * bfhr, mean, sigm);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
bufexpfin->L[y][x] = dataout[y * bfwr + x];
}
}
delete [] datain;
delete [] dataout;
}
if (lp.laplacexp > 0.1f) {
MyMutex::MyLock lock(*fftwMutex);
float *datain = new float[bfwr * bfhr];
float *dataout = new float[bfwr * bfhr];
float *dataor = new float[bfwr * bfhr];
float gam = params->locallab.spots.at(sp).gamm;
float igam = 1.f / gam;
if (params->locallab.spots.at(sp).exnoiseMethod == "med" || params->locallab.spots.at(sp).exnoiseMethod == "medhi") {
if (lp.blac < -100.f && lp.linear > 0.01f) {
Median med = Median:: TYPE_3X3_SOFT;
float evnoise = lp.blac - lp.linear * 2000.f;
if (params->locallab.spots.at(sp).exnoiseMethod == "med") {
evnoise *= 0.4f;
}
//soft denoise, user must use Local Denoise to best result
if (evnoise < - 18000.f) {
med = Median::TYPE_5X5_STRONG;
} else if (evnoise < - 15000.f) {
med = Median::TYPE_5X5_SOFT;
} else if (evnoise < - 10000.f) {
med = Median::TYPE_3X3_STRONG;
} else {
med = Median:: TYPE_3X3_SOFT;
}
Median_Denoise(bufexpfin->L, bufexpfin->L, bfwr, bfhr, med, 1, multiThread);
Median_Denoise(bufexpfin->a, bufexpfin->a, bfwr, bfhr, Median::TYPE_3X3_SOFT, 1, multiThread);
Median_Denoise(bufexpfin->b, bufexpfin->b, bfwr, bfhr, Median::TYPE_3X3_SOFT, 1, multiThread);
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
float L = LIM01(bufexpfin->L[y][x] / 32768.f);//change gamma for Laplacian
L = pow(L, gam);
L *= 32768.f;
datain[y * bfwr + x] = L;
dataor[y * bfwr + x] = L;
}
}
//call PDE equation - with Laplacian threshold
ImProcFunctions::exposure_pde(dataor, datain, dataout, bfwr, bfhr, 12.f * lp.laplacexp, lp.balanexp);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
float Y = dataout[y * bfwr + x] / 32768.f;//inverse Laplacian gamma
Y = pow(Y, igam);
Y *= 32768.f;
bufexpfin->L[y][x] = Y;
}
}
delete [] datain;
delete [] dataout;
delete [] dataor;
}
}
//shadows with ipshadowshighlight
if ((lp.expcomp != 0.f && lp.expcomp != 0.01f) || (exlocalcurve && localexutili)) {
if (lp.shadex > 0) {
ImProcFunctions::shadowsHighlights(bufexpfin.get(), true, 1, 0, lp.shadex, 40, sk, 0, lp.shcomp);
}
}
/*
//cat02
if (params->locallab.spots.at(sp).warm != 0) {
ImProcFunctions::ciecamloc_02float(sp, bufexpfin.get());
}
*/
/*
constexpr float ampli = 70.f;
float ch = 0.f;
float chprosl = 0.f;
if ((lp.expcomp != 0.f && lp.expcomp != 0.01f) || (exlocalcurve && localexutili)) {
ch = (1.f + 0.02f * lp.expchroma);
chprosl = ch <= 1.f ? 99.f * ch - 99.f : CLIPCHRO(ampli * ch - ampli);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
const float epsi = bufexporig->L[ir][jr] == 0.f ? 0.001f : 0.f;
const float rapexp = bufexpfin->L[ir][jr] / (bufexporig->L[ir][jr] + epsi);
if (rapexp >= 1.f) {
bufl_ab[ir][jr] = chprosl * rapexp;
} else {
bufl_ab[ir][jr] = chprosl * rapexp;
}
}
}
*/
if (lp.softradiusexp > 0.f && lp.expmet == 0) {
softproc(bufexporig.get(), bufexpfin.get(), lp.softradiusexp, bfh, bfw, 0.0001, 0.00001, 0.1f, sk, multiThread, 1);
}
transit_shapedetect2(call, 1, bufexporig.get(), bufexpfin.get(), originalmaskexp.get(), hueref, chromaref, lumaref, sobelref, meansob, blend2, lp, original, transformed, cx, cy, sk);
}
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
}
//inverse
else if (lp.invex && (lp.expcomp != 0.0 || lp.laplacexp > 0.1f || params->locallab.spots.at(sp).fatamount > 1.f || (exlocalcurve && localexutili) || lp.enaExpMaskinv || lp.showmaskexpmetinv == 1) && lp.exposena) {
float adjustr = 2.f;
std::unique_ptr<LabImage> bufmaskblurexp;
std::unique_ptr<LabImage> originalmaskexp;
std::unique_ptr<LabImage> bufexporig;
int GW = transformed->W;
int GH = transformed->H;
bufexporig.reset(new LabImage(GW, GH));
if (lp.enaExpMaskinv || lp.showmaskexpmetinv == 1) {
bufmaskblurexp.reset(new LabImage(GW, GH, true));
originalmaskexp.reset(new LabImage(GW, GH));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
bufexporig->L[y][x] = original->L[y][x];
}
}
int inv = 1;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskexpmetinv == 1) {
showmaske = true;
}
if (lp.enaExpMaskinv) {
enaMask = true;
}
if (lp.showmaskexpmetinv == 0) {
zero = true;
}
float chrom = lp.chromaexp;
float rad = lp.radmaexp;
float gamma = lp.gammaexp;
float slope = lp.slomaexp;
float blendm = lp.blendmaexp;
float lap = params->locallab.spots.at(sp).lapmaskexp;
bool pde = params->locallab.spots.at(sp).laplac;
LocwavCurve dummy;
bool lmasutilicolwav = false;
// bool delt = params->locallab.spots.at(sp).deltae;
bool delt = false;
int sco = params->locallab.spots.at(sp).scopemask;
int shado = 0;
int shortcu = 0;//lp.mergemet; //params->locallab.spots.at(sp).shortc;
int lumask = params->locallab.spots.at(sp).lumask;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
float amountcd = 0.f;
float anchorcd = 50.f;
LocHHmaskCurve lochhhmasCurve;
bool lhhmasutili = false;
maskcalccol(call, false, pde, GW, GH, 0, 0, sk, cx, cy, bufexporig.get(), bufmaskblurexp.get(), originalmaskexp.get(), original, reserved, inv, lp,
0.f, false,
locccmasexpCurve, lcmasexputili, locllmasexpCurve, llmasexputili, lochhmasexpCurve, lhmasexputili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmaskexplocalcurve, localmaskexputili, dummy, lmasutilicolwav, 1, 1, 5, 5,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskexpmetinv == 1) {
showmask(lumask, lp, 0, 0, cx, cy, GW, GH, bufexporig.get(), transformed, bufmaskblurexp.get(), inv);
return;
}
InverseColorLight_Local(false, false, sp, 1, lp, originalmaskexp.get(), lightCurveloc, hltonecurveloc, shtonecurveloc, tonecurveloc, exlocalcurve, cclocalcurve, adjustr, localcutili, lllocalcurve, locallutili, original, transformed, cx, cy, hueref, chromaref, lumaref, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
//local color and light
const float factor = LocallabParams::LABGRIDL_CORR_MAX * 3.276f;
const float scaling = LocallabParams::LABGRIDL_CORR_SCALE;
const float scaledirect = LocallabParams::LABGRIDL_DIRECT_SCALE;
float a_scale = (lp.highA - lp.lowA) / factor / scaling;
float a_base = lp.lowA / scaling;
float b_scale = (lp.highB - lp.lowB) / factor / scaling;
float b_base = lp.lowB / scaling;
bool ctoning = (a_scale != 0.f || b_scale != 0.f || a_base != 0.f || b_base != 0.f);
float a_scalemerg = (lp.highAmerg - lp.lowAmerg) / factor / scaling;
float a_basemerg = lp.lowAmerg / scaling;
float b_scalemerg = (lp.highBmerg - lp.lowBmerg) / factor / scaling;
float b_basemerg = lp.lowBmerg / scaling;
bool ctoningmerg = (a_scalemerg != 0.f || b_scalemerg != 0.f || a_basemerg != 0.f || b_basemerg != 0.f);
bool nottransit = false;
if (!lp.inv && (lp.chro != 0 || lp.ligh != 0.f || lp.cont != 0 || ctoning || lp.mergemet > 0 || lp.strcol != 0.f || lp.strcolab != 0.f || lp.qualcurvemet != 0 || lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 3 || lp.showmaskcolmet == 4 || lp.showmaskcolmet == 5) && lp.colorena) { // || lllocalcurve)) { //interior ellipse renforced lightness and chroma //locallutili
/*
//test for fftw blur with tiles fftw_tile_blur....not good we can see tiles - very long time
int GW = original->W;
int GH = original->H;
MyMutex::MyLock lock (*fftwMutex);
double radius = 100.f;
int tilssize = 64;
#ifdef _OPENMP
const int numThreads = omp_get_max_threads();
#else
const int numThreads = 1;
#endif
int max_numblox_W = ceil((static_cast<float>(GW)) / (offset2)) + 2 * blkrad;
// calculate min size of numblox_W.
int min_numblox_W = ceil((static_cast<float>(GW)) / (offset2)) + 2 * blkrad;
fftw_tile_blur(GW, GH, tilssize , max_numblox_W, min_numblox_W, original->L, numThreads, radius);
*/
//test for fftw blur with fftw_convol_blur: good result speedup moderate , but less used of memory than gaussianblur
//with FFTW curious results ex with playraw23_hombre.pef - size 4942*3276
// with size 4942*3276 time for tIF 3200ms
// with size 4941*3275 time for TIF 950ms...no differences in TIF and with 4928*3250 (2^6 * 7 * 11) * (2 * 5^3 * 13) = 520ms
// "step" to reproduce about 6 pixels
//another strange with DSCF1337.RAF 4012*6018 time 1318ms
// with 4004*6016 time 1091ms
//with 4004*6013 time 4057ms...steps seem also about 6 or 8
//NEF D200 best with 3888 * 2607 instead of 3892 2608
//D700 4275*2835 instead 4276*2836
//PANA LX100 4120*3095 instead of 4120*3096
//I have compared many things with FFTF COS -0.5 2*n -0.5, prime factor decomposition....nothing found
//I have read doc...nothing about that
//doc says optimum is with size 2^a * 3^b * 5^c * 7^d * 11^e * 13^f with e+f = 0 or 1
//we must found a number below of size as this
//combinaison
//see above fftw_size
/*
int GW = 4928/SQR(sk); //original->W-lp.ligh;//for test change size W
int GH = 3250/SQR(sk);//original->H- lp.cont;//test for chnage size H
printf("Gw=%i Gh=%i\n", GW, GH);
MyMutex::MyLock lock (*fftwMutex);
float *datain = nullptr; //new float[GW*GH];
datain = (float*) fftwf_malloc(sizeof(float) * (GW * GH));//allocate real datas for FFT
float *dataout = new float[GW*GH];
float radius = 500.f;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
datain[y * GW + x] =original->L[y][x];
}
}
fftw_convol_blur(datain, dataout, GW, GH, radius, 0);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
original->L[y][x] = dataout[y * GW + x];
}
}
delete [] dataout;
fftwf_free(datain);
*/
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
bool HHcurve = false;
bool usergb = false;
bool spez = params->locallab.spots.at(sp).special;
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
// printf("bfw=%i bfh=%i lpx=%f lpy=%f lpxL=%f lpYT=%f\n", bfw, bfh, lp.lx, lp.ly, lp.lxL, lp.lyT);
if (bfw >= mSP && bfh >= mSP) {
if (lp.blurcolmask >= 0.25f && lp.fftColorMask && call == 2) {
optfft(N_fftwsize, bfh, bfw, bfhr, bfwr, reduH, reduW, lp, original->H, original->W, xstart, ystart, xend, yend, cx, cy);
}
//printf("bfwred=%i bfhred=%i lpx=%f lpy=%f lpxL=%f lpYT=%f\n", bfwr, bfhr, lp.lx, lp.ly, lp.lxL, lp.lyT);
bfh = bfhr;
bfw = bfwr;
std::unique_ptr<LabImage> bufcolorig;
std::unique_ptr<LabImage> bufcolfin;
std::unique_ptr<LabImage> bufmaskblurcol;
std::unique_ptr<LabImage> originalmaskcol;
std::unique_ptr<LabImage> bufcolreserv;
std::unique_ptr<LabImage> buftemp;
// array2D<float> buflight(bfw, bfh, true);
// JaggedArray<float> bufchro(bfw, bfh, true);
// JaggedArray<float> bufhh(bfw, bfh, true);
array2D<float> blend2;
// JaggedArray<float> buf_a(bfw, bfh, true);
// JaggedArray<float> buf_b(bfw, bfh, true);
float adjustr = 1.0f;
//adapt chroma to working profile
if (params->icm.workingProfile == "ProPhoto") {
adjustr = 1.2f; // 1.2 instead 1.0 because it's very rare to have C>170..
} else if (params->icm.workingProfile == "Adobe RGB") {
adjustr = 1.8f;
} else if (params->icm.workingProfile == "sRGB") {
adjustr = 2.0f;
} else if (params->icm.workingProfile == "WideGamut") {
adjustr = 1.2f;
} else if (params->icm.workingProfile == "Beta RGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BestRGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BruceRGB") {
adjustr = 1.8f;
}
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
float meansob = 0.f;
bufcolorig.reset(new LabImage(bfw, bfh));
bufcolfin.reset(new LabImage(bfw, bfh));
buftemp.reset(new LabImage(bfw, bfh));
if (lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 3 || lp.showmaskcolmet == 5) {
bufmaskblurcol.reset(new LabImage(bfw, bfh, true));
originalmaskcol.reset(new LabImage(bfw, bfh));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufcolorig->L[y][x] = original->L[y + ystart][x + xstart];
bufcolorig->a[y][x] = original->a[y + ystart][x + xstart];
bufcolorig->b[y][x] = original->b[y + ystart][x + xstart];
bufcolfin->L[y][x] = original->L[y + ystart][x + xstart];
bufcolfin->a[y][x] = original->a[y + ystart][x + xstart];
bufcolfin->b[y][x] = original->b[y + ystart][x + xstart];
buftemp->L[y][x] = original->L[y + ystart][x + xstart];
buftemp->a[y][x] = original->a[y + ystart][x + xstart];
buftemp->b[y][x] = original->b[y + ystart][x + xstart];
}
}
const int spotSi = std::max(1 + 2 * max(1, lp.cir / sk), 5);
const bool blends = bfw > 2 * spotSi && bfh > 2 * spotSi && lp.struco > 0.f;
if (blends) {
blend2(bfw, bfh);
ImProcFunctions::blendstruc(bfw, bfh, bufcolorig.get(), 3.f / (sk * 1.4f), 0.5f * lp.struco, blend2, sk, multiThread);
if (lp.showmaskcolmet == 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++) {
for (int x = xstart; x < xend; x++) {
const int lox = cx + x;
const int loy = cy + y;
int zone = 0;
float localFactor = 1.f;
const float achm = lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {
transformed->L[y][x] = CLIP(blend2[y - ystart][x - xstart]);
transformed->a[y][x] = 0.f;
transformed->b[y][x] = 0.f;
}
}
}
return;
}
}
int inv = 0;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskcolmet == 3) {
showmaske = true;
}
if (lp.enaColorMask) {
enaMask = true;
}
if (lp.showmaskcolmet == 5) {
deltaE = true;
}
if (lp.showmaskcolmet == 2) {
modmask = true;
}
if (lp.showmaskcolmet == 1) {
modif = true;
}
if (lp.showmaskcolmet == 0) {
zero = true;
}
float chrom = lp.chromacol;
float rad = lp.radmacol;
float gamma = lp.gammacol;
float slope = lp.slomacol;
float blendm = lp.blendmacol;
float lap = params->locallab.spots.at(sp).lapmaskcol;
bool pde = params->locallab.spots.at(sp).laplac;
int shado = params->locallab.spots.at(sp).shadmaskcol;
bool delt = params->locallab.spots.at(sp).deltae;
bool astool = params->locallab.spots.at(sp).toolcol;
int sco = params->locallab.spots.at(sp).scopemask;
int level_bl = params->locallab.spots.at(sp).csthresholdcol.getBottomLeft();
int level_hl = params->locallab.spots.at(sp).csthresholdcol.getTopLeft();
int level_br = params->locallab.spots.at(sp).csthresholdcol.getBottomRight();
int level_hr = params->locallab.spots.at(sp).csthresholdcol.getTopRight();
int shortcu = lp.mergemet; //params->locallab.spots.at(sp).shortc;
int lumask = params->locallab.spots.at(sp).lumask;
float strumask = 0.02f * (float) params->locallab.spots.at(sp).strumaskcol;
float conthr = 0.01f * params->locallab.spots.at(sp).conthrcol;
int tonemod = 0;
float mercol = params->locallab.spots.at(sp).mercol;
float merlucol = params->locallab.spots.at(sp).merlucol;
if (params->locallab.spots.at(sp).toneMethod == "one") {
tonemod = 0;
} else if (params->locallab.spots.at(sp).toneMethod == "two") {
tonemod = 1;
} else if (params->locallab.spots.at(sp).toneMethod == "thr") {
tonemod = 2;
} else if (params->locallab.spots.at(sp).toneMethod == "fou") {
tonemod = 3;
}
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
float amountcd = 0.f;
float anchorcd = 50.f;
// if (lp.mergemet != 2) {
maskcalccol(call, false, pde, bfw, bfh, xstart, ystart, sk, cx, cy, bufcolorig.get(), bufmaskblurcol.get(), originalmaskcol.get(), original, reserved, inv, lp,
strumask, astool,
locccmasCurve, lcmasutili, locllmasCurve, llmasutili, lochhmasCurve, lhmasutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmasklocalcurve, localmaskutili, loclmasCurvecolwav, lmasutilicolwav,
level_bl, level_hl, level_br, level_hr,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskcolmet == 3) {
showmask(lumask, lp, xstart, ystart, cx, cy, bfw, bfh, bufcolorig.get(), transformed, bufmaskblurcol.get(), 0);
return;
}
// }
if (lp.showmaskcolmet == 4) {
return;
}
if (lp.showmaskcolmet == 0 || lp.showmaskcolmet == 1 || lp.showmaskcolmet == 2 || lp.showmaskcolmet == 5 || lp.enaColorMask) {
//RGB Curves
if (rgblocalcurve && localrgbutili && lp.qualcurvemet != 0) {
usergb = true;
Imagefloat *tmpImage = nullptr;
tmpImage = new Imagefloat(bfw, bfh);
float *rtemp = new float[bfw * bfh];
float *gtemp = new float[bfw * bfh];
float *btemp = new float[bfw * bfh];
lab2rgb(*buftemp, *tmpImage, params->icm.workingProfile);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++)
for (int x = 0; x < bfw; x++) {
rtemp[y * bfw + x] = tmpImage->r(y, x);
gtemp[y * bfw + x] = tmpImage->g(y, x);
btemp[y * bfw + x] = tmpImage->b(y, x);
assert(rgblocalcurve);
//std
if (tonemod == 0) {
curves::setLutVal(rgblocalcurve, rtemp[y * bfw + x], gtemp[y * bfw + x], btemp[y * bfw + x]);
} else {
float r = CLIP(rtemp[y * bfw + x]);
float g = CLIP(gtemp[y * bfw + x]);
float b = CLIP(btemp[y * bfw + x]);
//weightstd
if (tonemod == 1) {
float r1 = rgblocalcurve[r];
float g1 = triangle(r, r1, g);
float b1 = triangle(r, r1, b);
float g2 = rgblocalcurve[g];
float r2 = triangle(g, g2, r);
float b2 = triangle(g, g2, b);
float b3 = rgblocalcurve[b];
float r3 = triangle(b, b3, r);
float g3 = triangle(b, b3, g);
r = CLIP<float>(r1 * 0.50f + r2 * 0.25f + r3 * 0.25f);
g = CLIP<float> (g1 * 0.25f + g2 * 0.50f + g3 * 0.25f);
b = CLIP<float> (b1 * 0.25f + b2 * 0.25f + b3 * 0.50f);
}
//Luminance
if (tonemod == 2) {
float currLuminance = r * 0.2126729f + g * 0.7151521f + b * 0.0721750f;
const float newLuminance = rgblocalcurve[currLuminance];
currLuminance = currLuminance == 0.f ? 0.00001f : currLuminance;
const float coef = newLuminance / currLuminance;
r = LIM<float> (r * coef, 0.f, 65535.f);
g = LIM<float> (g * coef, 0.f, 65535.f);
b = LIM<float> (b * coef, 0.f, 65535.f);
}
//Film like Adobe
if (tonemod == 3) {
if (r >= g) {
if (g > b) {
rgbtone(r, g, b, rgblocalcurve); // Case 1: r >= g > b
} else if (b > r) {
rgbtone(b, r, g, rgblocalcurve); // Case 2: b > r >= g
} else if (b > g) {
rgbtone(r, b, g, rgblocalcurve); // Case 3: r >= b > g
} else { // Case 4: r == g == b
r = rgblocalcurve[r];
g = rgblocalcurve[g];
b = g;
}
} else {
if (r >= b) {
rgbtone(g, r, b, rgblocalcurve); // Case 5: g > r >= b
} else if (b > g) {
rgbtone(b, g, r, rgblocalcurve); // Case 6: b > g > r
} else {
rgbtone(g, b, r, rgblocalcurve); // Case 7: g >= b > r
}
}
}
setUnlessOOG(rtemp[y * bfw + x], gtemp[y * bfw + x], btemp[y * bfw + x], r, g, b);
}
tmpImage->r(y, x) = rtemp[y * bfw + x];
tmpImage->g(y, x) = gtemp[y * bfw + x];
tmpImage->b(y, x) = btemp[y * bfw + x];
}
rgb2lab(*tmpImage, *buftemp, params->icm.workingProfile);
delete tmpImage;
delete [] rtemp;
delete [] gtemp;
delete [] btemp;
// end rgb curves
}
if (usergb && spez) {//special use of rgb curves ex : negative
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
const int loy = y + ystart + cy;
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {
transformed->L[y + ystart][x + xstart] = buftemp->L[y][x] * localFactor + (1.f - localFactor) * original->L[y + ystart][x + xstart];
transformed->a[y + ystart][x + xstart] = buftemp->a[y][x] * localFactor + (1.f - localFactor) * original->a[y + ystart][x + xstart];
transformed->b[y + ystart][x + xstart] = buftemp->b[y][x] * localFactor + (1.f - localFactor) * original->b[y + ystart][x + xstart];
}
}
}
}
//others curves
const LabImage *origptr = usergb ? buftemp.get() : bufcolorig.get();
bool execcolor = false;
if (localcutili || HHutili || locallutili || lp.ligh != 0.f || lp.cont != 0 || lp.chro != 0 || LHutili || ctoning) {
execcolor = true;
}
if (lochhCurve && HHutili) {
for (int i = 0; i < 500; i++) {
if (lochhCurve[i] != 0.5) {
HHcurve = true;
}
}
}
float kd = 1.f;//correction to ctoning
kd = 10.f * 0.01f * lp.strengrid;
//chroma slider with curve instead of linear
float satreal = lp.chro;
DiagonalCurve color_satur({
DCT_NURBS,
0, 0,
0.2, 0.2 + satreal / 250.0,
0.6, min(1.0, 0.6 + satreal / 250.0),
1, 1
});
DiagonalCurve color_saturmoins({
DCT_NURBS,
0, 0,
0.1 - satreal / 150., 0.1,
min(1.0, 0.7 - satreal / 300.), 0.7,
1, 1
});
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float bufcolcalca = origptr->a[ir][jr];
float bufcolcalcb = origptr->b[ir][jr];
float bufcolcalcL = origptr->L[ir][jr];
if (lp.chro != 0.f) {//slider chroma with curve DCT_NURBS
const float Chprov = sqrt(SQR(bufcolcalca) + SQR(bufcolcalcb));
float chp = Chprov;
float2 sincosval;
sincosval.y = Chprov == 0.0f ? 1.f : bufcolcalca / Chprov;
sincosval.x = Chprov == 0.0f ? 0.f : bufcolcalcb / Chprov;
if (lp.chro > 0.f) {
float buf = LIM01(chp / 35000.f);//35000 must be globaly good, more than 32768...anf les than !! to avoid calculation min max
buf = color_satur.getVal(buf);
buf *= 35000.f;
chp = buf;
} else {
float buf = LIM01(chp / 35000.f);
buf = color_saturmoins.getVal(buf);
buf *= 35000.f;
chp = buf;
}
if (lp.chro == -100.f) {
chp = 0.f;
}
bufcolcalca = chp * sincosval.y;
bufcolcalcb = chp * sincosval.x;
// const float ch = (1.f + 0.01f * lp.chro) ;//whithout curve
// bufcolcalca *= ch;
// bufcolcalcb *= ch;
}
if (cclocalcurve && lp.qualcurvemet != 0 && localcutili) { // C=f(C) curve
const float chromat = sqrt(SQR(bufcolcalca) + SQR(bufcolcalcb));
const float ch = cclocalcurve[chromat * adjustr] / ((chromat + 0.00001f) * adjustr); //ch between 0 and 0 50 or more
bufcolcalca *= ch;
bufcolcalcb *= ch;
}
if (cllocalcurve && lp.qualcurvemet != 0 && localclutili) { // C=f(L) curve
float chromaCfactor = (cllocalcurve[bufcolcalcL * 2.f]) / (bufcolcalcL * 2.f);
bufcolcalca *= chromaCfactor;
bufcolcalcb *= chromaCfactor;
}
if (lclocalcurve && lp.qualcurvemet != 0 && locallcutili) { // L=f(C) curve
const float chromat = sqrt(SQR(bufcolcalca) + SQR(bufcolcalcb));
float Lc = lclocalcurve[chromat * adjustr] / ((chromat + 0.00001f) * adjustr);
if (Lc > 1.f) {
Lc = (Lc - 1.0f) * 0.1f + 1.0f; //reduct action
} else {
Lc = (Lc - 1.0f) * 0.3f + 1.0f;
}
bufcolcalcL *= Lc;
}
if (lochhCurve && HHcurve && lp.qualcurvemet != 0 && !ctoning) { // H=f(H)
const float chromat = sqrt(SQR(bufcolcalca) + SQR(bufcolcalcb));
const float hhforcurv = xatan2f(bufcolcalcb, bufcolcalca);
const float valparam = float ((lochhCurve[500.f * Color::huelab_to_huehsv2(hhforcurv)] - 0.5f)); //get H=f(H)
float2 sincosval = xsincosf(valparam);
bufcolcalca = chromat * sincosval.y;
bufcolcalcb = chromat * sincosval.x;
}
if (lp.ligh != 0.f || lp.cont != 0) {//slider luminance or slider contrast with curve
calclight(bufcolcalcL, lp.ligh, bufcolcalcL, lightCurveloc);
}
if (lllocalcurve && locallutili && lp.qualcurvemet != 0) {// L=f(L) curve
bufcolcalcL = 0.5f * lllocalcurve[bufcolcalcL * 2.f];
}
if (loclhCurve && LHutili && lp.qualcurvemet != 0) {//L=f(H) curve
const float rhue = xatan2f(bufcolcalcb, bufcolcalca);
float l_r = bufcolcalcL / 32768.f; //Luminance Lab in 0..1
const float valparam = loclhCurve[500.f * Color::huelab_to_huehsv2(rhue)] - 0.5f; //get l_r=f(H)
if (valparam > 0.f) {
l_r = (1.f - valparam) * l_r + valparam * (1.f - SQR(((SQR(1.f - min(l_r, 1.0f))))));
} else {
constexpr float khu = 1.9f; //in reserve in case of!
//for negative
l_r *= (1.f + khu * valparam);
}
bufcolcalcL = l_r * 32768.f;
}
if (ctoning) {//color toning and direct change color
if (lp.gridmet == 0) {
bufcolcalca += kd * bufcolcalcL * a_scale + a_base;
bufcolcalcb += kd * bufcolcalcL * b_scale + b_base;
} else if (lp.gridmet == 1) {
bufcolcalca += kd * scaledirect * a_scale;
bufcolcalcb += kd * scaledirect * b_scale;
}
bufcolcalca = CLIPC(bufcolcalca);
bufcolcalcb = CLIPC(bufcolcalcb);
}
bufcolfin->L[ir][jr] = bufcolcalcL;
bufcolfin->a[ir][jr] = bufcolcalca;
bufcolfin->b[ir][jr] = bufcolcalcb;
}
if (HHcurve && ctoning) {//not use ctoning and H(H) simultaneous but priority to ctoning
HHcurve = false;
}
if (!execcolor) {//if we don't use color and light sliders, curves except RGB
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
bufcolfin->L[ir][jr] = origptr->L[ir][jr];
bufcolfin->a[ir][jr] = origptr->a[ir][jr];
bufcolfin->b[ir][jr] = origptr->b[ir][jr];
}
}
if (lp.mergemet >= 2) { //merge result with original
nottransit = true;
bufcolreserv.reset(new LabImage(bfw, bfh));
JaggedArray<float> lumreserv(bfw, bfh);
std::unique_ptr<LabImage> bufreser;
bufreser.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
lumreserv[y][x] = 32768.f - reserved->L[y + ystart][x + xstart];
bufreser->L[y][x] = reserved->L[y + ystart][x + xstart];
bufreser->a[y][x] = reserved->a[y + ystart][x + xstart];
bufreser->b[y][x] = reserved->b[y + ystart][x + xstart];
if (lp.mergemet == 2) {
bufcolreserv->L[y][x] = reserved->L[y + ystart][x + xstart];
bufcolreserv->a[y][x] = reserved->a[y + ystart][x + xstart];
bufcolreserv->b[y][x] = reserved->b[y + ystart][x + xstart];
} else if (lp.mergemet == 3) {
bufcolreserv->L[y][x] = lastorig->L[y + ystart][x + xstart];
bufcolreserv->a[y][x] = lastorig->a[y + ystart][x + xstart];
bufcolreserv->b[y][x] = lastorig->b[y + ystart][x + xstart];
} else if (lp.mergemet == 4) {
if (ctoningmerg) {
bufcolreserv->L[y][x] = merlucol * 327.68f;
bufcolreserv->a[y][x] = 9.f * scaledirect * a_scalemerg;
bufcolreserv->b[y][x] = 9.f * scaledirect * b_scalemerg;
}
}
}
}
// test for write text with Cairo November 2019
/*
//test for write text , it compile... but does nothing
// why ?? is arial or Purisa found (I tried others) or I missed something or poke ?? or tmImageorig or ??
locImage = Cairo::ImageSurface::create(Cairo::FORMAT_ARGB32, bfw, bfh);
Cairo::RefPtr<Cairo::Context> cr = Cairo::Context::create(locImage);
cr->set_source_rgb(0.9, 0.9, 0.9);//white
cr->paint();
cr->select_font_face("Purisa", Cairo::FontSlant::FONT_SLANT_NORMAL, Cairo::FontWeight::FONT_WEIGHT_BOLD);
cr->set_font_size(50);
cr->set_source_rgb(0.3, 0.3, 0.3);//grey
cr->move_to(0, 0);
cr->show_text("Coucou");
Imagefloat *tmpImageorig = nullptr;
tmpImageorig = new Imagefloat(bfw, bfh);
lab2rgb(*bufcolreserv, *tmpImageorig, params->icm.workingProfile);
// tmpImageorig->normalizeFloatTo1();
locImage->flush();
unsigned char *locData = locImage->get_data();
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
unsigned char *dst = locData + (y * bfw + x) * 4;//why 4 ?
// printf("dst=%d ", *dst);
double r = tmpImageorig->r(y, x);
double g = tmpImageorig->g(y, x);
double b = tmpImageorig->b(y, x);
//perhaps that or whithout 255 or ??
*(dst++) = (unsigned char)(r);
tmpImageorig->r(y, x) = 255.f * *dst;
*(dst++) = (unsigned char)(g);
tmpImageorig->g(y, x) = 255.f * *dst;
*(dst++) = (unsigned char)(b);
tmpImageorig->b(y, x) = 255.f * *dst;
//perhaps ??
// rtengine::poke01_d(dst, r, g, b);
// tmpImageorig->r(y, x) = *(dst++);
// tmpImageorig->g(y, x) = *(dst++);
// tmpImageorig->b(y, x) = *(dst++);
}
}
locImage->mark_dirty();
// tmpImageorig->normalizeFloatTo65535();
rgb2lab(*tmpImageorig, *bufcolreserv, params->icm.workingProfile);
delete tmpImageorig;
*/
if (lp.strcol != 0.f) {
struct grad_params gp;
calclocalGradientParams(lp, gp, ystart, xstart, bfw, bfh, 3);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gp, jr, ir);
bufcolfin->L[ir][jr] *= factor;
}
}
if (lp.strcolab != 0.f) {
struct grad_params gpab;
calclocalGradientParams(lp, gpab, ystart, xstart, bfw, bfh, 4);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gpab, jr, ir);
bufcolfin->a[ir][jr] *= factor;
bufcolfin->b[ir][jr] *= factor;
}
}
if (lp.strcolh != 0.f) {
struct grad_params gph;
calclocalGradientParams(lp, gph, ystart, xstart, bfw, bfh, 6);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gph, jr, ir);
float aa = bufcolfin->a[ir][jr];
float bb = bufcolfin->b[ir][jr];
float chrm = sqrt(SQR(aa) + SQR(bb));
float HH = xatan2f(bb, aa);
float newhr = 0.f;
float cor = 0.f;
if (factor < 1.f) {
cor = - 2.5f * (1.f - factor);
} else if (factor > 1.f) {
cor = 0.03f * (factor - 1.f);
}
newhr = HH + cor;
if (newhr > rtengine::RT_PI_F) {
newhr -= 2 * rtengine::RT_PI_F;
} else if (newhr < -rtengine::RT_PI_F) {
newhr += 2 * rtengine::RT_PI_F;
}
float2 sincosval = xsincosf(newhr);
bufcolfin->a[ir][jr] = CLIPC(chrm * sincosval.y);
bufcolfin->b[ir][jr] = CLIPC(chrm * sincosval.x);
}
}
JaggedArray<float> blend(bfw, bfh);
buildBlendMask(lumreserv, blend, bfw, bfh, conthr);
float rm = 20.f / sk;
if (rm > 0) {
float **mb = blend;
gaussianBlur(mb, mb, bfw, bfh, rm);
}
std::unique_ptr<JaggedArray<float>> rdEBuffer(new JaggedArray<float>(bfw, bfh));
float** rdE = *(rdEBuffer.get());
deltaEforMask(rdE, bfw, bfh, bufreser.get(), hueref, chromaref, lumaref, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, mercol, lp.balance, lp.balanceh);
if (lp.mergecolMethod == 0) { //normal
if (lp.mergemet == 4) {
bufprov.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
rdE[y][x] *= SQR(rdE[y][x]);
bufprov->L[y][x] = (1.f - rdE[y][x]) * bufcolfin->L[y][x] + (rdE[y][x]) * bufcolreserv->L[y][x];
bufprov->a[y][x] = (1.f - rdE[y][x]) * bufcolfin->a[y][x] + (rdE[y][x]) * bufcolreserv->a[y][x];
bufprov->b[y][x] = (1.f - rdE[y][x]) * bufcolfin->b[y][x] + (rdE[y][x]) * bufcolreserv->b[y][x];
bufcolfin->L[y][x] = (1.f - lp.opacol) * bufcolfin->L[y][x] + (lp.opacol) * bufprov->L[y][x];
bufcolfin->a[y][x] = (1.f - lp.opacol) * bufcolfin->a[y][x] + (lp.opacol) * bufprov->a[y][x];
bufcolfin->b[y][x] = (1.f - lp.opacol) * bufcolfin->b[y][x] + (lp.opacol) * bufprov->b[y][x];
}
}
} else {
bufprov.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufprov->L[y][x] = (rdE[y][x]) * bufcolfin->L[y][x] + (1.f - rdE[y][x]) * bufcolreserv->L[y][x];
bufprov->a[y][x] = (rdE[y][x]) * bufcolfin->a[y][x] + (1.f - rdE[y][x]) * bufcolreserv->a[y][x];
bufprov->b[y][x] = (rdE[y][x]) * bufcolfin->b[y][x] + (1.f - rdE[y][x]) * bufcolreserv->b[y][x];
bufcolfin->L[y][x] = (lp.opacol) * bufprov->L[y][x] + (1.f - lp.opacol) * bufcolreserv->L[y][x];
bufcolfin->a[y][x] = (lp.opacol) * bufprov->a[y][x] + (1.f - lp.opacol) * bufcolreserv->a[y][x];
bufcolfin->b[y][x] = (lp.opacol) * bufprov->b[y][x] + (1.f - lp.opacol) * bufcolreserv->b[y][x];
}
}
}
if (conthr > 0.f && lp.mergemet != 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufcolfin->L[y][x] = intp((blend[y][x]), bufcolfin->L[y][x], bufreser->L[y][x]);
bufcolfin->a[y][x] = intp((blend[y][x]), bufcolfin->a[y][x], bufreser->a[y][x]);
bufcolfin->b[y][x] = intp((blend[y][x]), bufcolfin->b[y][x], bufreser->b[y][x]);
}
}
}
}
if (lp.mergecolMethod > 16) { //hue sat chroma luma
std::unique_ptr<LabImage> buftemp;
buftemp.reset(new LabImage(bfw, bfh));
bufprov.reset(new LabImage(bfw, bfh));
if (lp.mergemet == 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
rdE[y][x] *= SQR(rdE[y][x]);
bufprov->L[y][x] = (1.f - rdE[y][x]) * bufcolfin->L[y][x] + (rdE[y][x]) * bufcolreserv->L[y][x];
bufprov->a[y][x] = (1.f - rdE[y][x]) * bufcolfin->a[y][x] + (rdE[y][x]) * bufcolreserv->a[y][x];
bufprov->b[y][x] = (1.f - rdE[y][x]) * bufcolfin->b[y][x] + (rdE[y][x]) * bufcolreserv->b[y][x];
}
}
} else {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufprov->L[y][x] = (rdE[y][x]) * bufcolfin->L[y][x] + (1.f - rdE[y][x]) * bufcolreserv->L[y][x];
bufprov->a[y][x] = (rdE[y][x]) * bufcolfin->a[y][x] + (1.f - rdE[y][x]) * bufcolreserv->a[y][x];
bufprov->b[y][x] = (rdE[y][x]) * bufcolfin->b[y][x] + (1.f - rdE[y][x]) * bufcolreserv->b[y][x];
}
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float huefin = xatan2f(bufprov->b[y][x], bufprov->a[y][x]);
float hueres = xatan2f(bufcolreserv->b[y][x], bufcolreserv->a[y][x]);
float chrofin = sqrt(SQR(bufprov->a[y][x]) + SQR(bufprov->b[y][x]));
float chrores = sqrt(SQR(bufcolreserv->a[y][x]) + SQR(bufcolreserv->b[y][x]));
float lumfin = bufprov->L[y][x];
float lumres = bufcolreserv->L[y][x];
if (lp.mergecolMethod == 17) {
float2 sincosval1 = xsincosf(huefin);
buftemp->a[y][x] = chrores * sincosval1.y;
buftemp->b[y][x] = chrores * sincosval1.x;
buftemp->L[y][x] = lumres;
} else if (lp.mergecolMethod == 18) {
float2 sincosval2 = xsincosf(hueres);
buftemp->a[y][x] = chrofin * sincosval2.y;
buftemp->b[y][x] = chrofin * sincosval2.x;
buftemp->L[y][x] = lumres;
} else if (lp.mergecolMethod == 19) {
float2 sincosval3 = xsincosf(huefin);
buftemp->a[y][x] = chrofin * sincosval3.y;
buftemp->b[y][x] = chrofin * sincosval3.x;
buftemp->L[y][x] = lumres;
} else if (lp.mergecolMethod == 20) {
float2 sincosval4 = xsincosf(hueres);
buftemp->a[y][x] = chrores * sincosval4.y;
buftemp->b[y][x] = chrores * sincosval4.x;
buftemp->L[y][x] = lumfin;
}
if (lp.mergemet == 4) {
bufcolfin->L[y][x] = (1.f - lp.opacol) * bufcolfin->L[y][x] + (lp.opacol) * bufprov->L[y][x];
bufcolfin->a[y][x] = (1.f - lp.opacol) * bufcolfin->a[y][x] + (lp.opacol) * bufprov->a[y][x];
bufcolfin->b[y][x] = (1.f - lp.opacol) * bufcolfin->b[y][x] + (lp.opacol) * bufprov->b[y][x];
} else {
bufcolfin->L[y][x] = (lp.opacol) * bufprov->L[y][x] + (1.f - lp.opacol) * bufcolreserv->L[y][x];
bufcolfin->a[y][x] = (lp.opacol) * bufprov->a[y][x] + (1.f - lp.opacol) * bufcolreserv->a[y][x];
bufcolfin->b[y][x] = (lp.opacol) * bufprov->b[y][x] + (1.f - lp.opacol) * bufcolreserv->b[y][x];
}
}
}
if (conthr > 0.f && lp.mergemet != 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufcolfin->L[y][x] = intp(blend[y][x], bufcolfin->L[y][x], bufcolreserv->L[y][x]);
bufcolfin->a[y][x] = intp(blend[y][x], bufcolfin->a[y][x], bufcolreserv->a[y][x]);
bufcolfin->b[y][x] = intp(blend[y][x], bufcolfin->b[y][x], bufcolreserv->b[y][x]);
}
}
}
}
if (lp.mergecolMethod > 0 && lp.mergecolMethod <= 16) {
//first deltaE
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufcolfin->L[y][x] = (rdE[y][x]) * bufcolfin->L[y][x] + (1.f - rdE[y][x]) * bufcolreserv->L[y][x];
bufcolfin->a[y][x] = (rdE[y][x]) * bufcolfin->a[y][x] + (1.f - rdE[y][x]) * bufcolreserv->a[y][x];
bufcolfin->b[y][x] = (rdE[y][x]) * bufcolfin->b[y][x] + (1.f - rdE[y][x]) * bufcolreserv->b[y][x];
}
}
//prepare RGB values in 0 1(or more)for current image and reserved
Imagefloat *tmpImageorig = nullptr;
tmpImageorig = new Imagefloat(bfw, bfh);
lab2rgb(*bufcolfin, *tmpImageorig, params->icm.workingProfile);
tmpImageorig->normalizeFloatTo1();
Imagefloat *tmpImagereserv = nullptr;
tmpImagereserv = new Imagefloat(bfw, bfh);
lab2rgb(*bufcolreserv, *tmpImagereserv, params->icm.workingProfile);
tmpImagereserv->normalizeFloatTo1();
float minR = tmpImagereserv->r(0, 0);
float maxR = minR;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxR) reduction(min:minR) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
minR = rtengine::min(minR, tmpImagereserv->r(ir, jr));
maxR = rtengine::max(maxR, tmpImagereserv->r(ir, jr));
}
}
float minG = tmpImagereserv->g(0, 0);
float maxG = minG;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxG) reduction(min:minG) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
minG = rtengine::min(minG, tmpImagereserv->g(ir, jr));
maxG = rtengine::max(maxG, tmpImagereserv->g(ir, jr));
}
}
float minB = tmpImagereserv->b(0, 0);
float maxB = minB;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxB) reduction(min:minB) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
minB = rtengine::min(minB, tmpImagereserv->b(ir, jr));
maxB = rtengine::max(maxB, tmpImagereserv->b(ir, jr));
}
}
//various combinaison substrct, multiply, difference, etc
if (lp.mergecolMethod == 1) { //substract
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {//LIM(x 0 2) 2 arbitral value but limit...
for (int x = 0; x < bfw; x++) {
tmpImageorig->r(y, x) = lp.opacol * ((tmpImageorig->r(y, x) - tmpImagereserv->r(y, x))) + (1.f - lp.opacol) * tmpImageorig->r(y, x);
tmpImageorig->g(y, x) = lp.opacol * ((tmpImageorig->g(y, x) - tmpImagereserv->g(y, x))) + (1.f - lp.opacol) * tmpImageorig->g(y, x);
tmpImageorig->b(y, x) = lp.opacol * ((tmpImageorig->b(y, x) - tmpImagereserv->b(y, x))) + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 2) { //difference
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
tmpImageorig->r(y, x) = lp.opacol * (fabs(tmpImageorig->r(y, x) - tmpImagereserv->r(y, x))) + (1.f - lp.opacol) * tmpImageorig->r(y, x);
tmpImageorig->g(y, x) = lp.opacol * (fabs(tmpImageorig->g(y, x) - tmpImagereserv->g(y, x))) + (1.f - lp.opacol) * tmpImageorig->g(y, x);
tmpImageorig->b(y, x) = lp.opacol * (fabs(tmpImageorig->b(y, x) - tmpImagereserv->b(y, x))) + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 3) { //multiply
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
tmpImageorig->r(y, x) = lp.opacol * tmpImageorig->r(y, x) * tmpImagereserv->r(y, x) + (1.f - lp.opacol) * tmpImageorig->r(y, x);
tmpImageorig->g(y, x) = lp.opacol * tmpImageorig->g(y, x) * tmpImagereserv->g(y, x) + (1.f - lp.opacol) * tmpImageorig->g(y, x);
tmpImageorig->b(y, x) = lp.opacol * tmpImageorig->b(y, x) * tmpImagereserv->b(y, x) + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 4) { //addition
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
tmpImageorig->r(y, x) = lp.opacol * (tmpImageorig->r(y, x) + tmpImagereserv->r(y, x)) + (1.f - lp.opacol) * tmpImageorig->r(y, x);
tmpImageorig->g(y, x) = lp.opacol * (tmpImageorig->g(y, x) + tmpImagereserv->g(y, x)) + (1.f - lp.opacol) * tmpImageorig->g(y, x);
tmpImageorig->b(y, x) = lp.opacol * (tmpImageorig->b(y, x) + tmpImagereserv->b(y, x)) + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 5) { //divide
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
tmpImageorig->r(y, x) = lp.opacol * (tmpImageorig->r(y, x) / (tmpImagereserv->r(y, x) + 0.00001f)) + (1.f - lp.opacol) * tmpImageorig->r(y, x);
tmpImageorig->g(y, x) = lp.opacol * (tmpImageorig->g(y, x) / (tmpImagereserv->g(y, x) + 0.00001f)) + (1.f - lp.opacol) * tmpImageorig->g(y, x);
tmpImageorig->b(y, x) = lp.opacol * (tmpImageorig->b(y, x) / (tmpImagereserv->b(y, x) + 0.00001f)) + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 6) { //soft light as Photoshop
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = tmpImageorig->r(y, x);
float b = tmpImagereserv->r(y, x);
softlig(a, b, minR, maxR);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = tmpImageorig->g(y, x);
b = tmpImagereserv->g(y, x);
softlig(a, b, minG, maxG);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = tmpImageorig->b(y, x);
b = tmpImagereserv->b(y, x);
softlig(a, b, minB, maxB);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 7) { //soft light as illusions.hu
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = LIM01(tmpImageorig->r(y, x));
float b = tmpImagereserv->r(y, x);
softlig2(a, b);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = LIM01(tmpImageorig->g(y, x));
b = tmpImagereserv->g(y, x);
softlig2(a, b);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = LIM01(tmpImageorig->b(y, x));
b = tmpImagereserv->b(y, x);
softlig2(a, b);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 8) { //soft light as W3C
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = LIM01(tmpImageorig->r(y, x));
float b = tmpImagereserv->r(y, x);
softlig3(a, b);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = LIM01(tmpImageorig->g(y, x));
b = tmpImagereserv->g(y, x);
softlig3(a, b);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = LIM01(tmpImageorig->b(y, x));
b = tmpImagereserv->b(y, x);
softlig3(a, b);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 9) { //hard light overlay (float &b, float &a)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = tmpImageorig->r(y, x);
float b = tmpImagereserv->r(y, x);
overlay(b, a, minR, maxR);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = tmpImageorig->g(y, x);
b = tmpImagereserv->g(y, x);
overlay(b, a, minG, maxG);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = tmpImageorig->b(y, x);
b = tmpImagereserv->b(y, x);
overlay(b, a, minB, maxB);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 10) { //overlay overlay(float &a, float &b)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = tmpImageorig->r(y, x);
float b = tmpImagereserv->r(y, x);
overlay(a, b, minR, maxR);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = tmpImageorig->g(y, x);
b = tmpImagereserv->g(y, x);
overlay(a, b, minG, maxG);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = tmpImageorig->b(y, x);
b = tmpImagereserv->b(y, x);
overlay(a, b, minB, maxB);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 11) { //screen screen (float &a, float &b)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = tmpImageorig->r(y, x);
float b = tmpImagereserv->r(y, x);
screen(a, b, maxR);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = tmpImageorig->g(y, x);
b = tmpImagereserv->g(y, x);
screen(a, b, maxG);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = tmpImageorig->b(y, x);
b = tmpImagereserv->b(y, x);
screen(a, b, maxB);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 12) { //darken only
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
tmpImageorig->r(y, x) = lp.opacol * std::min(tmpImageorig->r(y, x), tmpImagereserv->r(y, x)) + (1.f - lp.opacol) * tmpImageorig->r(y, x);
tmpImageorig->g(y, x) = lp.opacol * std::min(tmpImageorig->g(y, x), tmpImagereserv->g(y, x)) + (1.f - lp.opacol) * tmpImageorig->g(y, x);
tmpImageorig->b(y, x) = lp.opacol * std::min(tmpImageorig->b(y, x), tmpImagereserv->b(y, x)) + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 13) { //lighten only
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
tmpImageorig->r(y, x) = lp.opacol * std::max(tmpImageorig->r(y, x), tmpImagereserv->r(y, x)) + (1.f - lp.opacol) * tmpImageorig->r(y, x);
tmpImageorig->g(y, x) = lp.opacol * std::max(tmpImageorig->g(y, x), tmpImagereserv->g(y, x)) + (1.f - lp.opacol) * tmpImageorig->g(y, x);
tmpImageorig->b(y, x) = lp.opacol * std::max(tmpImageorig->b(y, x), tmpImagereserv->b(y, x)) + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 14) { //exclusion exclusion (float &a, float &b)
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = tmpImageorig->r(y, x);
float b = tmpImagereserv->r(y, x);
exclusion(a, b);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = tmpImageorig->g(y, x);
b = tmpImagereserv->g(y, x);
exclusion(a, b);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = tmpImageorig->b(y, x);
b = tmpImagereserv->b(y, x);
exclusion(a, b);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 15) { //Color burn
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = LIM01(tmpImageorig->r(y, x));
float b = LIM01(tmpImagereserv->r(y, x));
colburn(a, b);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = LIM01(tmpImageorig->g(y, x));
b = LIM01(tmpImagereserv->g(y, x));
colburn(a, b);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = LIM01(tmpImageorig->b(y, x));
b = LIM01(tmpImagereserv->b(y, x));
colburn(a, b);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
} else if (lp.mergecolMethod == 16) { //Color dodge
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
float a = LIM01(tmpImageorig->r(y, x));
float b = LIM01(tmpImagereserv->r(y, x));
coldodge(a, b);
tmpImageorig->r(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->r(y, x);
a = LIM01(tmpImageorig->g(y, x));
b = LIM01(tmpImagereserv->g(y, x));
coldodge(a, b);
tmpImageorig->g(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->g(y, x);
a = LIM01(tmpImageorig->b(y, x));
b = LIM01(tmpImagereserv->b(y, x));
coldodge(a, b);
tmpImageorig->b(y, x) = lp.opacol * a + (1.f - lp.opacol) * tmpImageorig->b(y, x);
}
}
}
tmpImageorig->normalizeFloatTo65535();
rgb2lab(*tmpImageorig, *bufcolfin, params->icm.workingProfile);
delete tmpImageorig;
delete tmpImagereserv;
if (conthr > 0.f && lp.mergemet != 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufcolfin->L[y][x] = intp(blend[y][x], bufcolfin->L[y][x], bufcolreserv->L[y][x]);
bufcolfin->a[y][x] = intp(blend[y][x], bufcolfin->a[y][x], bufcolreserv->a[y][x]);
bufcolfin->b[y][x] = intp(blend[y][x], bufcolfin->b[y][x], bufcolreserv->b[y][x]);
}
}
}
bool fordiff = false;
if (lp.mergecolMethod == 2 && fordiff) {//display differences whithout deltaE...in case of generally disabled
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
const int loy = y + ystart + cy;
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {//normal
transformed->L[y + ystart][x + xstart] = bufcolfin->L[y][x];
transformed->a[y + ystart][x + xstart] = bufcolfin->a[y][x];
transformed->b[y + ystart][x + xstart] = bufcolfin->b[y][x];
}
}
}
return;
}
}
if (lp.softradiuscol > 0.f) {
softproc(bufcolreserv.get(), bufcolfin.get(), lp.softradiuscol, bfh, bfw, 0.0001, 0.00001, 0.1f, sk, multiThread, 1);
}
if (nottransit) {
//new 9 december 2019
transit_shapedetect2(call, 0, bufcolreserv.get(), bufcolfin.get(), originalmaskcol.get(), hueref, chromaref, lumaref, sobelref, meansob, blend2, lp, original, transformed, cx, cy, sk);
/*
Befor 12 2019
//special only transition
//may be we can add preview...
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
const int loy = y + ystart + cy;
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {
transformed->L[y + ystart][x + xstart] = bufcolfin->L[y][x] * localFactor + (1.f - localFactor) * reserved->L[y + ystart][x + xstart];
transformed->a[y + ystart][x + xstart] = bufcolfin->a[y][x] * localFactor + (1.f - localFactor) * reserved->a[y + ystart][x + xstart];
transformed->b[y + ystart][x + xstart] = bufcolfin->b[y][x] * localFactor + (1.f - localFactor) * reserved->b[y + ystart][x + xstart];
}
}
}
*/
}
}
if (!nottransit) {
//gradient
if (lp.strcol != 0.f) {
struct grad_params gp;
calclocalGradientParams(lp, gp, ystart, xstart, bfw, bfh, 3);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gp, jr, ir);
bufcolfin->L[ir][jr] *= factor;
}
}
if (lp.strcolab != 0.f) {
struct grad_params gpab;
calclocalGradientParams(lp, gpab, ystart, xstart, bfw, bfh, 5);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gpab, jr, ir);
bufcolfin->a[ir][jr] *= factor;
bufcolfin->b[ir][jr] *= factor;
}
}
if (lp.strcolh != 0.f) {
struct grad_params gph;
calclocalGradientParams(lp, gph, ystart, xstart, bfw, bfh, 6);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
double factor = 1.0;
factor = ImProcFunctions::calcGradientFactor(gph, jr, ir);
float aa = bufcolfin->a[ir][jr];
float bb = bufcolfin->b[ir][jr];
float chrm = sqrt(SQR(aa) + SQR(bb));
float HH = xatan2f(bb, aa);
float newhr = 0.f;
float cor = 0.f;
if (factor < 1.f) {
cor = - 2.5f * (1.f - factor);
} else if (factor > 1.f) {
cor = 0.03f * (factor - 1.f);
}
newhr = HH + cor;
if (newhr > rtengine::RT_PI_F) {
newhr -= 2 * rtengine::RT_PI_F;
} else if (newhr < -rtengine::RT_PI_F) {
newhr += 2 * rtengine::RT_PI_F;
}
float2 sincosval = xsincosf(newhr);
bufcolfin->a[ir][jr] = CLIPC(chrm * sincosval.y);
bufcolfin->b[ir][jr] = CLIPC(chrm * sincosval.x);
}
}
if (lp.softradiuscol > 0.f) {
softproc(bufcolorig.get(), bufcolfin.get(), lp.softradiuscol, bfh, bfw, 0.0001, 0.00001, 0.1f, sk, multiThread, 1);
}
transit_shapedetect2(call, 0, bufcolorig.get(), bufcolfin.get(), originalmaskcol.get(), hueref, chromaref, lumaref, sobelref, meansob, blend2, lp, original, transformed, cx, cy, sk);
}
}
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
}
//inverse
else if (lp.inv && (lp.chro != 0 || lp.ligh != 0 || exlocalcurve || lp.showmaskcolmetinv == 0 || lp.enaColorMaskinv) && lp.colorena) {
float adjustr = 1.0f;
//adapt chroma to working profile
if (params->icm.workingProfile == "ProPhoto") {
adjustr = 1.2f; // 1.2 instead 1.0 because it's very rare to have C>170..
} else if (params->icm.workingProfile == "Adobe RGB") {
adjustr = 1.8f;
} else if (params->icm.workingProfile == "sRGB") {
adjustr = 2.0f;
} else if (params->icm.workingProfile == "WideGamut") {
adjustr = 1.2f;
} else if (params->icm.workingProfile == "Beta RGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BestRGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BruceRGB") {
adjustr = 1.8f;
}
std::unique_ptr<LabImage> bufmaskblurcol;
std::unique_ptr<LabImage> originalmaskcol;
std::unique_ptr<LabImage> bufcolorig;
int GW = transformed->W;
int GH = transformed->H;
bufcolorig.reset(new LabImage(GW, GH));
if (lp.enaColorMaskinv || lp.showmaskcolmetinv == 1) {
bufmaskblurcol.reset(new LabImage(GW, GH, true));
originalmaskcol.reset(new LabImage(GW, GH));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH ; y++) {
for (int x = 0; x < GW; x++) {
bufcolorig->L[y][x] = original->L[y][x];
}
}
int inv = 1;
bool showmaske = false;
bool enaMask = false;
bool deltaE = false;
bool modmask = false;
bool zero = false;
bool modif = false;
if (lp.showmaskcolmetinv == 1) {
showmaske = true;
}
if (lp.enaColorMaskinv) {
enaMask = true;
}
if (lp.showmaskcolmetinv == 0) {
zero = true;
}
float chrom = lp.chromacol;
float rad = lp.radmacol;
float gamma = lp.gammacol;
float slope = lp.slomacol;
float blendm = lp.blendmacol;
float lap = params->locallab.spots.at(sp).lapmaskcol;
bool pde = params->locallab.spots.at(sp).laplac;
int shado = params->locallab.spots.at(sp).shadmaskcol;
int level_bl = params->locallab.spots.at(sp).csthresholdcol.getBottomLeft();
int level_hl = params->locallab.spots.at(sp).csthresholdcol.getTopLeft();
int level_br = params->locallab.spots.at(sp).csthresholdcol.getBottomRight();
int level_hr = params->locallab.spots.at(sp).csthresholdcol.getTopRight();
// bool delt = params->locallab.spots.at(sp).deltae;
bool delt = false;
bool astool = params->locallab.spots.at(sp).toolcol;
int sco = params->locallab.spots.at(sp).scopemask;
int shortcu = lp.mergemet; //params->locallab.spots.at(sp).shortc;
int lumask = params->locallab.spots.at(sp).lumask;
float strumask = 0.02f * (float) params->locallab.spots.at(sp).strumaskcol;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * sco * lp.thr;
const float maxdE = 5.f + MAXSCOPE * sco * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
float amountcd = 0.f;
float anchorcd = 50.f;
maskcalccol(call, false, pde, GW, GH, 0, 0, sk, cx, cy, bufcolorig.get(), bufmaskblurcol.get(), originalmaskcol.get(), original, reserved, inv, lp,
strumask, astool,
locccmasCurve, lcmasutili, locllmasCurve, llmasutili, lochhmasCurve, lhmasutili, lochhhmasCurve, lhhmasutili, multiThread,
enaMask, showmaske, deltaE, modmask, zero, modif, chrom, rad, lap, gamma, slope, blendm, shado, amountcd, anchorcd, lmasklocalcurve, localmaskutili, loclmasCurvecolwav, lmasutilicolwav,
level_bl, level_hl, level_br, level_hr,
shortcu, delt, hueref, chromaref, lumaref,
maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sco
);
if (lp.showmaskcolmetinv == 1) {
showmask(lumask, lp, 0, 0, cx, cy, GW, GH, bufcolorig.get(), transformed, bufmaskblurcol.get(), inv);
return;
}
if (lp.showmaskcolmetinv == 0 || lp.enaColorMaskinv) {
InverseColorLight_Local(false, false, sp, 0, lp, originalmaskcol.get(), lightCurveloc, hltonecurveloc, shtonecurveloc, tonecurveloc, exlocalcurve, cclocalcurve, adjustr, localcutili, lllocalcurve, locallutili, original, transformed, cx, cy, hueref, chromaref, lumaref, sk);
if (params->locallab.spots.at(sp).recurs) {
original->CopyFrom(transformed);
float avge;
calc_ref(sp, original, transformed, 0, 0, original->W, original->H, sk, huerefblur, chromarefblur, lumarefblur, hueref, chromaref, lumaref, sobelref, avge, locwavCurveden, locwavdenutili);
}
}
}
// Gamut and Munsell control - very important do not desactivated to avoid crash
if (params->locallab.spots.at(sp).avoid) {
const float ach = (float)lp.trans / 100.f;
TMatrix wiprof = ICCStore::getInstance()->workingSpaceInverseMatrix(params->icm.workingProfile);
const float wip[3][3] = {
{static_cast<float>(wiprof[0][0]), static_cast<float>(wiprof[0][1]), static_cast<float>(wiprof[0][2])},
{static_cast<float>(wiprof[1][0]), static_cast<float>(wiprof[1][1]), static_cast<float>(wiprof[1][2])},
{static_cast<float>(wiprof[2][0]), static_cast<float>(wiprof[2][1]), static_cast<float>(wiprof[2][2])}
};
const bool highlight = params->toneCurve.hrenabled;
const bool needHH = (lp.chro != 0.f);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
float atan2Buffer[transformed->W] ALIGNED16;
float sqrtBuffer[transformed->W] ALIGNED16;
float sincosyBuffer[transformed->W] ALIGNED16;
float sincosxBuffer[transformed->W] ALIGNED16;
vfloat c327d68v = F2V(327.68f);
vfloat onev = F2V(1.f);
#endif
#ifdef _OPENMP
#ifdef _DEBUG
#pragma omp for schedule(dynamic,16) firstprivate(MunsDebugInfo)
#else
#pragma omp for schedule(dynamic,16)
#endif
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
#ifdef __SSE2__
int i = 0;
for (; i < transformed->W - 3; i += 4) {
vfloat av = LVFU(transformed->a[y][i]);
vfloat bv = LVFU(transformed->b[y][i]);
if (needHH) { // only do expensive atan2 calculation if needed
STVF(atan2Buffer[i], xatan2f(bv, av));
}
vfloat Chprov1v = vsqrtf(SQRV(bv) + SQRV(av));
STVF(sqrtBuffer[i], Chprov1v / c327d68v);
vfloat sincosyv = av / Chprov1v;
vfloat sincosxv = bv / Chprov1v;
vmask selmask = vmaskf_eq(Chprov1v, ZEROV);
sincosyv = vself(selmask, onev, sincosyv);
sincosxv = vselfnotzero(selmask, sincosxv);
STVF(sincosyBuffer[i], sincosyv);
STVF(sincosxBuffer[i], sincosxv);
}
for (; i < transformed->W; i++) {
float aa = transformed->a[y][i];
float bb = transformed->b[y][i];
if (needHH) { // only do expensive atan2 calculation if needed
atan2Buffer[i] = xatan2f(bb, aa);
}
float Chprov1 = sqrtf(SQR(bb) + SQR(aa));
sqrtBuffer[i] = Chprov1 / 327.68f;
if (Chprov1 == 0.0f) {
sincosyBuffer[i] = 1.f;
sincosxBuffer[i] = 0.0f;
} else {
sincosyBuffer[i] = aa / Chprov1;
sincosxBuffer[i] = bb / Chprov1;
}
}
#endif
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float Lprov1 = transformed->L[y][x] / 327.68f;
float2 sincosval;
#ifdef __SSE2__
float HH = atan2Buffer[x]; // reading HH from line buffer even if line buffer is not filled is faster than branching
float Chprov1 = sqrtBuffer[x];
sincosval.y = sincosyBuffer[x];
sincosval.x = sincosxBuffer[x];
float chr = 0.f;
#else
float aa = transformed->a[y][x];
float bb = transformed->b[y][x];
float HH = 0.f, chr = 0.f;
if (needHH) { // only do expensive atan2 calculation if needed
HH = xatan2f(bb, aa);
}
float Chprov1 = sqrtf(SQR(aa) + SQR(bb)) / 327.68f;
if (Chprov1 == 0.0f) {
sincosval.y = 1.f;
sincosval.x = 0.0f;
} else {
sincosval.y = aa / (Chprov1 * 327.68f);
sincosval.x = bb / (Chprov1 * 327.68f);
}
#endif
#ifdef _DEBUG
bool neg = false;
bool more_rgb = false;
Chprov1 = min(Chprov1, chr);
Color::gamutLchonly(sincosval, Lprov1, Chprov1, wip, highlight, 0.15f, 0.92f, neg, more_rgb);
#else
Color::pregamutlab(Lprov1, HH, chr);
Chprov1 = min(Chprov1, chr);
Color::gamutLchonly(sincosval, Lprov1, Chprov1, wip, highlight, 0.15f, 0.92f);
#endif
transformed->L[y][x] = Lprov1 * 327.68f;
transformed->a[y][x] = 327.68f * Chprov1 * sincosval.y;
transformed->b[y][x] = 327.68f * Chprov1 * sincosval.x;
if (needHH) {
float Lprov2 = original->L[y][x] / 327.68f;
float correctionHue = 0.f; // Munsell's correction
float correctlum = 0.f;
float memChprov = sqrtf(SQR(original->a[y][x]) + SQR(original->b[y][x])) / 327.68f;
float Chprov = sqrtf(SQR(transformed->a[y][x]) + SQR(transformed->b[y][x])) / 327.68f;
#ifdef _DEBUG
Color::AllMunsellLch(true, Lprov1, Lprov2, HH, Chprov, memChprov, correctionHue, correctlum, MunsDebugInfo);
#else
Color::AllMunsellLch(true, Lprov1, Lprov2, HH, Chprov, memChprov, correctionHue, correctlum);
#endif
if (fabs(correctionHue) < 0.015f) {
HH += correctlum; // correct only if correct Munsell chroma very little.
}
sincosval = xsincosf(HH + correctionHue);
transformed->a[y][x] = 327.68f * Chprov * sincosval.y; // apply Munsell
transformed->b[y][x] = 327.68f * Chprov * sincosval.x;
}
}
}
}
}
#ifdef _DEBUG
delete MunsDebugInfo;
#endif
}
}
}