rawTherapee/rtengine/simpleprocess.cc
2017-03-11 22:30:36 +01:00

1319 lines
48 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rtengine.h"
#include "colortemp.h"
#include "imagesource.h"
#include "improcfun.h"
#include "curves.h"
#include "iccstore.h"
#include "clutstore.h"
#include "processingjob.h"
#include <glibmm.h>
#include "../rtgui/options.h"
#include "rawimagesource.h"
#include "../rtgui/multilangmgr.h"
#include "mytime.h"
#undef THREAD_PRIORITY_NORMAL
namespace rtengine
{
extern const Settings* settings;
IImage16* processImage (ProcessingJob* pjob, int& errorCode, ProgressListener* pl, bool tunnelMetaData, bool flush)
{
errorCode = 0;
ProcessingJobImpl* job = static_cast<ProcessingJobImpl*>(pjob);
if (pl) {
pl->setProgressStr ("PROGRESSBAR_PROCESSING");
pl->setProgress (0.0);
}
InitialImage* ii = job->initialImage;
if (!ii) {
ii = InitialImage::load (job->fname, job->isRaw, &errorCode);
if (errorCode) {
delete job;
return nullptr;
}
}
procparams::ProcParams& params = job->pparams;
// acquire image from imagesource
ImageSource* imgsrc = ii->getImageSource ();
int tr = getCoarseBitMask(params.coarse);
int fw, fh;
imgsrc->getFullSize (fw, fh, tr);
// check the crop params
if (params.crop.x > fw || params.crop.y > fh) {
// the crop is completely out of the image, so we disable the crop
params.crop.enabled = false;
// and we set the values to the defaults
params.crop.x = 0;
params.crop.y = 0;
params.crop.w = fw;
params.crop.h = fh;
} else {
if (params.crop.x < 0) {
params.crop.x = 0;
}
if (params.crop.y < 0) {
params.crop.y = 0;
}
if ((params.crop.x + params.crop.w) > fw) {
// crop overflow in the width dimension ; we trim it
params.crop.w = fw - params.crop.x;
}
if ((params.crop.y + params.crop.h) > fh) {
// crop overflow in the height dimension ; we trim it
params.crop.h = fh - params.crop.y;
}
}
// MyTime t1,t2;
// t1.set();
ImProcFunctions ipf (&params, true);
PreviewProps pp (0, 0, fw, fh, 1);
imgsrc->setCurrentFrame(params.raw.bayersensor.imageNum);
imgsrc->preprocess( params.raw, params.lensProf, params.coarse, params.dirpyrDenoise.enabled);
if (params.toneCurve.autoexp) {// this enabled HLRecovery
LUTu histRedRaw(256), histGreenRaw(256), histBlueRaw(256);
imgsrc->getRAWHistogram(histRedRaw, histGreenRaw, histBlueRaw);
if (ToneCurveParams::HLReconstructionNecessary(histRedRaw, histGreenRaw, histBlueRaw) && !params.toneCurve.hrenabled) {
params.toneCurve.hrenabled = true;
// WARNING: Highlight Reconstruction is being forced 'on', should we force a method here too?
}
}
if (pl) {
pl->setProgress (0.20);
}
imgsrc->demosaic( params.raw);
if (pl) {
pl->setProgress (0.30);
}
if(params.retinex.enabled) { //enabled Retinex
LUTf cdcurve (65536, 0);
LUTf mapcurve (65536, 0);
LUTu dummy;
RetinextransmissionCurve dehatransmissionCurve;
RetinexgaintransmissionCurve dehagaintransmissionCurve;
bool dehacontlutili = false;
bool mapcontlutili = false;
bool useHsl = false;
// multi_array2D<float, 3> conversionBuffer(1, 1);
multi_array2D<float, 4> conversionBuffer(1, 1);
imgsrc->retinexPrepareBuffers(params.icm, params.retinex, conversionBuffer, dummy);
imgsrc->retinexPrepareCurves(params.retinex, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, dehacontlutili, mapcontlutili, useHsl, dummy, dummy );
float minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax;
imgsrc->retinex( params.icm, params.retinex, params.toneCurve, cdcurve, mapcurve, dehatransmissionCurve, dehagaintransmissionCurve, conversionBuffer, dehacontlutili, mapcontlutili, useHsl, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, dummy);
}
if (pl) {
pl->setProgress (0.40);
}
imgsrc->HLRecovery_Global( params.toneCurve );
if (pl) {
pl->setProgress (0.45);
}
// set the color temperature
ColorTemp currWB = ColorTemp (params.wb.temperature, params.wb.green, params.wb.equal, params.wb.method);
if (params.wb.method == "Camera") {
currWB = imgsrc->getWB ();
} else if (params.wb.method == "Auto") {
double rm, gm, bm;
imgsrc->getAutoWBMultipliers(rm, gm, bm);
currWB.update(rm, gm, bm, params.wb.equal, params.wb.tempBias);
}
NoiseCurve noiseLCurve;
NoiseCurve noiseCCurve;
Imagefloat *calclum = nullptr ;
params.dirpyrDenoise.getCurves(noiseLCurve, noiseCCurve);
float autoNR = (float) settings->nrauto;//
float autoNRmax = (float) settings->nrautomax;//
int tilesize;
int overlap;
if(settings->leveldnti == 0) {
tilesize = 1024;
overlap = 128;
}
if(settings->leveldnti == 1) {
tilesize = 768;
overlap = 96;
}
// const int tilesize = 768;
// const int overlap = 96;
int numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip;
ipf.Tile_calc (tilesize, overlap, 2, fw, fh, numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip);
int nbtl = numtiles_W * numtiles_H;
if((settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "AUT") || (settings->leveldnautsimpl == 0 && params.dirpyrDenoise.C2method == "AUTO")) {
nbtl = 9;
}
float *ch_M = new float [nbtl];//allocate memory
float *max_r = new float [nbtl];
float *max_b = new float [nbtl];
float *min_b = new float [9];
float *min_r = new float [9];
float *lumL = new float [nbtl];
float *chromC = new float [nbtl];
float *ry = new float [nbtl];
float *sk = new float [nbtl];
float *pcsk = new float [nbtl];
// printf("expert=%d\n",settings->leveldnautsimpl);
if(settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "PON") {
MyTime t1pone, t2pone;
t1pone.set();
int crW, crH;
if(settings->leveldnv == 0) {
crW = 100;
crH = 100;
}
if(settings->leveldnv == 1) {
crW = 250;
crH = 250;
}
if(settings->leveldnv == 2) {
crW = int(tileWskip / 2);
crH = int(tileHskip / 2);
}
// if(settings->leveldnv ==2) {crW=int(tileWskip/2);crH=int(1.15f*(tileWskip/2));}//adapted to scale of preview
if(settings->leveldnv == 3) {
crW = tileWskip - 10;
crH = tileHskip - 10;
}
float lowdenoise = 1.f;
int levaut = settings->leveldnaut;
if(levaut == 1) { //Standard
lowdenoise = 0.7f;
}
// int crW=tileWskip-10;//crop noise width
// int crH=tileHskip-10;//crop noise height
// Imagefloat *origCropPart;//init auto noise
// origCropPart = new Imagefloat (crW, crH);//allocate memory
if (params.dirpyrDenoise.enabled) {//evaluate Noise
LUTf gamcurve(65536, 0);
float gam, gamthresh, gamslope;
ipf.RGB_denoise_infoGamCurve(params.dirpyrDenoise, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope);
#pragma omp parallel
{
Imagefloat *origCropPart;//init auto noise
origCropPart = new Imagefloat (crW, crH);//allocate memory
Imagefloat *provicalc = new Imagefloat ((crW + 1) / 2, (crH + 1) / 2); //for denoise curves
int skipP = 1;
#pragma omp for schedule(dynamic) collapse(2) nowait
for(int wcr = 0; wcr < numtiles_W; wcr++) {
for(int hcr = 0; hcr < numtiles_H; hcr++) {
int beg_tileW = wcr * tileWskip + tileWskip / 2.f - crW / 2.f;
int beg_tileH = hcr * tileHskip + tileHskip / 2.f - crH / 2.f;
PreviewProps ppP (beg_tileW , beg_tileH, crW, crH, skipP);
imgsrc->getImage (currWB, tr, origCropPart, ppP, params.toneCurve, params.icm, params.raw );
// we only need image reduced to 1/4 here
for(int ii = 0; ii < crH; ii += 2) {
for(int jj = 0; jj < crW; jj += 2) {
provicalc->r(ii >> 1, jj >> 1) = origCropPart->r(ii, jj);
provicalc->g(ii >> 1, jj >> 1) = origCropPart->g(ii, jj);
provicalc->b(ii >> 1, jj >> 1) = origCropPart->b(ii, jj);
}
}
imgsrc->convertColorSpace(provicalc, params.icm, currWB);//for denoise luminance curve
float maxr = 0.f;
float maxb = 0.f;
float pondcorrec = 1.0f;
float chaut, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc;
int Nb;
chaut = 0.f;
redaut = 0.f;
blueaut = 0.f;
maxredaut = 0.f;
maxblueaut = 0.f;
chromina = 0.f;
sigma = 0.f;
ipf.RGB_denoise_info(origCropPart, provicalc, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope, params.dirpyrDenoise, imgsrc->getDirPyrDenoiseExpComp(), chaut, Nb, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc);
float multip = 1.f;
float adjustr = 1.f;
if (params.icm.working == "ProPhoto") {
adjustr = 1.f; //
} else if (params.icm.working == "Adobe RGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.working == "sRGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.working == "WideGamut") {
adjustr = 1.f / 1.1f;
} else if (params.icm.working == "Rec2020") {
adjustr = 1.f / 1.1f;
} else if (params.icm.working == "Beta RGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.working == "BestRGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.working == "BruceRGB") {
adjustr = 1.f / 1.2f;
}
if(!imgsrc->isRAW()) {
multip = 2.f; //take into account gamma for TIF / JPG approximate value...not good fot gamma=1
}
float maxmax = max(maxredaut, maxblueaut);
float delta;
int mode = 2;
int lissage = settings->leveldnliss;
ipf.calcautodn_info (chaut, delta, Nb, levaut, maxmax, lumema, chromina, mode, lissage, redyel, skinc, nsknc);
// printf("PROCESS cha=%f red=%f bl=%f redM=%f bluM=%f chrom=%f sigm=%f lum=%f sigL=%f\n",chaut,redaut,blueaut, maxredaut, maxblueaut, chromina, sigma, lumema, sigma_L);
if(maxredaut > maxblueaut) {
maxr = (delta) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
if(minblueaut <= minredaut && minblueaut < chaut) {
maxb = (-chaut + minblueaut) / (autoNRmax * multip * adjustr * lowdenoise);
}
} else {
maxb = (delta) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
if(minredaut <= minblueaut && minredaut < chaut) {
maxr = (-chaut + minredaut) / (autoNRmax * multip * adjustr * lowdenoise);
}
}//maxb mxr - empirical evaluation red / blue
ch_M[hcr * numtiles_W + wcr] = pondcorrec * chaut / (autoNR * multip * adjustr * lowdenoise);
max_r[hcr * numtiles_W + wcr] = pondcorrec * maxr;
max_b[hcr * numtiles_W + wcr] = pondcorrec * maxb;
lumL[hcr * numtiles_W + wcr] = lumema;
chromC[hcr * numtiles_W + wcr] = chromina;
ry[hcr * numtiles_W + wcr] = redyel;
sk[hcr * numtiles_W + wcr] = skinc;
pcsk[hcr * numtiles_W + wcr] = nsknc;
}
}
delete provicalc;
delete origCropPart;
}
int liss = settings->leveldnliss; //smooth result around mean
if(liss == 2 || liss == 3) {
// I smooth only mean and not delta (max)
float nchm = 0.f;
float koef = 0.4f; //between 0.1 to 0.9
if(liss == 3) {
koef = 0.0f; //quasi auto for mean Ch
}
for(int wcr = 0; wcr < numtiles_W; wcr++) {
for(int hcr = 0; hcr < numtiles_H; hcr++) {
nchm += ch_M[hcr * numtiles_W + wcr];
}
}
nchm /= (numtiles_H * numtiles_W);
for(int wcr = 0; wcr < numtiles_W; wcr++) {
for(int hcr = 0; hcr < numtiles_H; hcr++) {
ch_M[hcr * numtiles_W + wcr] = nchm + (ch_M[hcr * numtiles_W + wcr] - nchm) * koef;
}
}
}
if(liss == 3) { //same as auto but with much cells
float MaxR = 0.f;
float MaxB = 0.f;
float MaxRMoy = 0.f;
float MaxBMoy = 0.f;
for(int k = 0; k < nbtl; k++) {
MaxBMoy += max_b[k];
MaxRMoy += max_r[k];
if(max_r[k] > MaxR) {
MaxR = max_r[k];
}
if(max_b[k] > MaxB) {
MaxB = max_b[k];
}
}
MaxBMoy /= nbtl;
MaxRMoy /= nbtl;
for(int k = 0; k < nbtl; k++) {
if(MaxR > MaxB) {
max_r[k] = MaxRMoy + (MaxR - MaxRMoy) * 0.66f; //#std Dev
//max_b[k]=MinB;
max_b[k] = MaxBMoy + (MaxB - MaxBMoy) * 0.66f;
} else {
max_b[k] = MaxBMoy + (MaxB - MaxBMoy) * 0.66f;
//max_r[k]=MinR;
max_r[k] = MaxRMoy + (MaxR - MaxRMoy) * 0.66f;
}
}
}
if (settings->verbose) {
t2pone.set();
printf("Info denoise ponderated performed in %d usec:\n", t2pone.etime(t1pone));
}
}
}
if((settings->leveldnautsimpl == 1 && params.dirpyrDenoise.Cmethod == "AUT") || (settings->leveldnautsimpl == 0 && params.dirpyrDenoise.C2method == "AUTO")) {
MyTime t1aue, t2aue;
t1aue.set();
int crW, crH;
if(settings->leveldnv == 0) {
crW = 100;
crH = 100;
}
if(settings->leveldnv == 1) {
crW = 250;
crH = 250;
}
if(settings->leveldnv == 2) {
crW = int(tileWskip / 2);
crH = int(tileHskip / 2);
}
// if(settings->leveldnv ==2) {crW=int(tileWskip/2);crH=int(1.15f*(tileWskip/2));}//adapted to scale of preview
if(settings->leveldnv == 3) {
crW = tileWskip - 10;
crH = tileHskip - 10;
}
float lowdenoise = 1.f;
int levaut = settings->leveldnaut;
if(levaut == 1) { //Standard
lowdenoise = 0.7f;
}
if (params.dirpyrDenoise.enabled) {//evaluate Noise
LUTf gamcurve(65536, 0);
float gam, gamthresh, gamslope;
ipf.RGB_denoise_infoGamCurve(params.dirpyrDenoise, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope);
int Nb[9];
int coordW[3];//coordonate of part of image to mesure noise
int coordH[3];
int begW = 50;
int begH = 50;
coordW[0] = begW;
coordW[1] = fw / 2 - crW / 2;
coordW[2] = fw - crW - begW;
coordH[0] = begH;
coordH[1] = fh / 2 - crH / 2;
coordH[2] = fh - crH - begH;
#pragma omp parallel
{
Imagefloat *origCropPart;//init auto noise
origCropPart = new Imagefloat (crW, crH);//allocate memory
Imagefloat *provicalc = new Imagefloat ((crW + 1) / 2, (crH + 1) / 2); //for denoise curves
#pragma omp for schedule(dynamic) collapse(2) nowait
for(int wcr = 0; wcr <= 2; wcr++) {
for(int hcr = 0; hcr <= 2; hcr++) {
PreviewProps ppP (coordW[wcr] , coordH[hcr], crW, crH, 1);
imgsrc->getImage (currWB, tr, origCropPart, ppP, params.toneCurve, params.icm, params.raw);
// we only need image reduced to 1/4 here
for(int ii = 0; ii < crH; ii += 2) {
for(int jj = 0; jj < crW; jj += 2) {
provicalc->r(ii >> 1, jj >> 1) = origCropPart->r(ii, jj);
provicalc->g(ii >> 1, jj >> 1) = origCropPart->g(ii, jj);
provicalc->b(ii >> 1, jj >> 1) = origCropPart->b(ii, jj);
}
}
imgsrc->convertColorSpace(provicalc, params.icm, currWB);//for denoise luminance curve
int nb = 0;
float chaut = 0.f, redaut = 0.f, blueaut = 0.f, maxredaut = 0.f, maxblueaut = 0.f, minredaut = 0.f, minblueaut = 0.f, chromina = 0.f, sigma = 0.f, lumema = 0.f, sigma_L = 0.f, redyel = 0.f, skinc = 0.f, nsknc = 0.f;
ipf.RGB_denoise_info(origCropPart, provicalc, imgsrc->isRAW(), gamcurve, gam, gamthresh, gamslope, params.dirpyrDenoise, imgsrc->getDirPyrDenoiseExpComp(), chaut, nb, redaut, blueaut, maxredaut, maxblueaut, minredaut, minblueaut, chromina, sigma, lumema, sigma_L, redyel, skinc, nsknc);
Nb[hcr * 3 + wcr] = nb;
ch_M[hcr * 3 + wcr] = chaut;
max_r[hcr * 3 + wcr] = maxredaut;
max_b[hcr * 3 + wcr] = maxblueaut;
min_r[hcr * 3 + wcr] = minredaut;
min_b[hcr * 3 + wcr] = minblueaut;
lumL[hcr * 3 + wcr] = lumema;
chromC[hcr * 3 + wcr] = chromina;
ry[hcr * 3 + wcr] = redyel;
sk[hcr * 3 + wcr] = skinc;
pcsk[hcr * 3 + wcr] = nsknc;
}
}
delete provicalc;
delete origCropPart;
}
float chM = 0.f;
float MaxR = 0.f;
float MaxB = 0.f;
float MinR = 100000000.f;
float MinB = 100000000.f;
float maxr = 0.f;
float maxb = 0.f;
float multip = 1.f;
float adjustr = 1.f;
float Max_R[9] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
float Max_B[9] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
float Min_R[9];
float Min_B[9];
float MaxRMoy = 0.f;
float MaxBMoy = 0.f;
float MinRMoy = 0.f;
float MinBMoy = 0.f;
if (params.icm.working == "ProPhoto") {
adjustr = 1.f;
} else if (params.icm.working == "Adobe RGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.working == "sRGB") {
adjustr = 1.f / 1.3f;
} else if (params.icm.working == "WideGamut") {
adjustr = 1.f / 1.1f;
} else if (params.icm.working == "Rec2020") {
adjustr = 1.f / 1.1f;
} else if (params.icm.working == "Beta RGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.working == "BestRGB") {
adjustr = 1.f / 1.2f;
} else if (params.icm.working == "BruceRGB") {
adjustr = 1.f / 1.2f;
}
if(!imgsrc->isRAW()) {
multip = 2.f; //take into account gamma for TIF / JPG approximate value...not good fot gamma=1
}
float delta[9];
int mode = 1;
int lissage = settings->leveldnliss;
for(int k = 0; k < 9; k++) {
float maxmax = max(max_r[k], max_b[k]);
ipf.calcautodn_info (ch_M[k], delta[k], Nb[k], levaut, maxmax, lumL[k], chromC[k], mode, lissage, ry[k], sk[k], pcsk[k] );
// printf("ch_M=%f delta=%f\n",ch_M[k], delta[k]);
}
for(int k = 0; k < 9; k++) {
if(max_r[k] > max_b[k]) {
//printf("R delta=%f koef=%f\n",delta[k],autoNRmax*multip*adjustr*lowdenoise);
Max_R[k] = (delta[k]) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
Min_B[k] = -(ch_M[k] - min_b[k]) / (autoNRmax * multip * adjustr * lowdenoise);
Max_B[k] = 0.f;
Min_R[k] = 0.f;
} else {
//printf("B delta=%f koef=%f\n",delta[k],autoNRmax*multip*adjustr*lowdenoise);
Max_B[k] = (delta[k]) / ((autoNRmax * multip * adjustr * lowdenoise) / 2.f);
Min_R[k] = - (ch_M[k] - min_r[k]) / (autoNRmax * multip * adjustr * lowdenoise);
Min_B[k] = 0.f;
Max_R[k] = 0.f;
}
}
for(int k = 0; k < 9; k++) {
// printf("ch_M= %f Max_R=%f Max_B=%f min_r=%f min_b=%f\n",ch_M[k],Max_R[k], Max_B[k],Min_R[k], Min_B[k]);
chM += ch_M[k];
MaxBMoy += Max_B[k];
MaxRMoy += Max_R[k];
MinRMoy += Min_R[k];
MinBMoy += Min_B[k];
if(Max_R[k] > MaxR) {
MaxR = Max_R[k];
}
if(Max_B[k] > MaxB) {
MaxB = Max_B[k];
}
if(Min_R[k] < MinR) {
MinR = Min_R[k];
}
if(Min_B[k] < MinB) {
MinB = Min_B[k];
}
}
chM /= 9;
MaxBMoy /= 9;
MaxRMoy /= 9;
MinBMoy /= 9;
MinRMoy /= 9;
if(MaxR > MaxB) {
maxr = MaxRMoy + (MaxR - MaxRMoy) * 0.66f; //#std Dev
// maxb=MinB;
maxb = MinBMoy + (MinB - MinBMoy) * 0.66f;
} else {
maxb = MaxBMoy + (MaxB - MaxBMoy) * 0.66f;
// maxr=MinR;
maxr = MinRMoy + (MinR - MinRMoy) * 0.66f;
}
// printf("SIMPL cha=%f red=%f bl=%f \n",chM,maxr,maxb);
params.dirpyrDenoise.chroma = chM / (autoNR * multip * adjustr);
params.dirpyrDenoise.redchro = maxr;
params.dirpyrDenoise.bluechro = maxb;
}
if (settings->verbose) {
t2aue.set();
printf("Info denoise auto performed in %d usec:\n", t2aue.etime(t1aue));
}
//end evaluate noise
}
Imagefloat* baseImg = new Imagefloat (fw, fh);
imgsrc->getImage (currWB, tr, baseImg, pp, params.toneCurve, params.icm, params.raw);
if (pl) {
pl->setProgress (0.50);
}
// LUTf Noisecurve (65536,0);
//!!!// auto exposure!!!
double expcomp = params.toneCurve.expcomp;
int bright = params.toneCurve.brightness;
int contr = params.toneCurve.contrast;
int black = params.toneCurve.black;
int hlcompr = params.toneCurve.hlcompr;
int hlcomprthresh = params.toneCurve.hlcomprthresh;
if (params.toneCurve.autoexp) {
LUTu aehist;
int aehistcompr;
imgsrc->getAutoExpHistogram (aehist, aehistcompr);
ipf.getAutoExp (aehist, aehistcompr, imgsrc->getDefGain(), params.toneCurve.clip, expcomp, bright, contr, black, hlcompr, hlcomprthresh);
}
// at this stage, we can flush the raw data to free up quite an important amount of memory
// commented out because it makes the application crash when batch processing...
// TODO: find a better place to flush rawData and rawRGB
if(flush) {
imgsrc->flushRawData();
imgsrc->flushRGB();
}
// perform luma/chroma denoise
// CieImage *cieView;
// NoisCurve noiseLCurve;
// bool lldenoiseutili=false;
// Imagefloat *calclum ;
// params.dirpyrDenoise.getCurves(noiseLCurve, lldenoiseutili);
// if (params.dirpyrDenoise.enabled && lldenoiseutili) {
DirPyrDenoiseParams denoiseParams = params.dirpyrDenoise; // make a copy because we cheat here
if(denoiseParams.Lmethod == "CUR") {
if(noiseLCurve) {
denoiseParams.luma = 0.5f;
} else {
denoiseParams.luma = 0.0f;
}
} else if(denoiseParams.Lmethod == "SLI") {
noiseLCurve.Reset();
}
if (denoiseParams.enabled && (noiseLCurve || noiseCCurve )) {
// we only need image reduced to 1/4 here
calclum = new Imagefloat ((fw + 1) / 2, (fh + 1) / 2); //for luminance denoise curve
#pragma omp parallel for
for(int ii = 0; ii < fh; ii += 2) {
for(int jj = 0; jj < fw; jj += 2) {
calclum->r(ii >> 1, jj >> 1) = baseImg->r(ii, jj);
calclum->g(ii >> 1, jj >> 1) = baseImg->g(ii, jj);
calclum->b(ii >> 1, jj >> 1) = baseImg->b(ii, jj);
}
}
imgsrc->convertColorSpace(calclum, params.icm, currWB);
}
if (denoiseParams.enabled) {
// CurveFactory::denoiseLL(lldenoiseutili, denoiseParams.lcurve, Noisecurve,1);
//denoiseParams.getCurves(noiseLCurve);
// ipf.RGB_denoise(baseImg, baseImg, calclum, imgsrc->isRAW(), denoiseParams, params.defringe, imgsrc->getDirPyrDenoiseExpComp(), noiseLCurve, lldenoiseutili);
float chaut, redaut, blueaut, maxredaut, maxblueaut, nresi, highresi;
int kall = 2;
ipf.RGB_denoise(kall, baseImg, baseImg, calclum, ch_M, max_r, max_b, imgsrc->isRAW(), denoiseParams, imgsrc->getDirPyrDenoiseExpComp(), noiseLCurve, noiseCCurve, chaut, redaut, blueaut, maxredaut, maxblueaut, nresi, highresi);
}
// delete calclum;
delete [] ch_M;
delete [] max_r;
delete [] max_b;
delete [] min_r;
delete [] min_b;
delete [] lumL;
delete [] chromC;
delete [] ry;
delete [] sk;
delete [] pcsk;
imgsrc->convertColorSpace(baseImg, params.icm, currWB);
// perform first analysis
LUTu hist16 (65536);
ipf.firstAnalysis (baseImg, params, hist16);
// perform transform (excepted resizing)
if (ipf.needsTransform()) {
Imagefloat* trImg = new Imagefloat (fw, fh);
ipf.transform (baseImg, trImg, 0, 0, 0, 0, fw, fh, fw, fh, imgsrc->getMetaData()->getFocalLen(), imgsrc->getMetaData()->getFocalLen35mm(),
imgsrc->getMetaData()->getFocusDist(), imgsrc->getRotateDegree(), true);
delete baseImg;
baseImg = trImg;
}
if (params.dirpyrequalizer.cbdlMethod == "bef" && params.dirpyrequalizer.enabled && !params.colorappearance.enabled) {
const int W = baseImg->getWidth();
const int H = baseImg->getHeight();
LabImage labcbdl(W, H);
ipf.rgb2lab(*baseImg, labcbdl, params.icm.working);
ipf.dirpyrequalizer (&labcbdl, 1);
ipf.lab2rgb(labcbdl, *baseImg, params.icm.working);
}
// update blurmap
SHMap* shmap = nullptr;
if (params.sh.enabled) {
shmap = new SHMap (fw, fh, true);
double radius = sqrt (double(fw * fw + fh * fh)) / 2.0;
double shradius = params.sh.radius;
if (!params.sh.hq) {
shradius *= radius / 1800.0;
}
shmap->update (baseImg, shradius, ipf.lumimul, params.sh.hq, 1);
}
// RGB processing
LUTf curve1 (65536);
LUTf curve2 (65536);
LUTf curve (65536, 0);
LUTf satcurve (65536, 0);
LUTf lhskcurve (65536, 0);
LUTf lumacurve(32770, 0); // lumacurve[32768] and lumacurve[32769] will be set to 32768 and 32769 later to allow linear interpolation
LUTf clcurve (65536, 0);
LUTf clToningcurve;
LUTf cl2Toningcurve;
LUTf wavclCurve (65536, 0);
LUTf rCurve;
LUTf gCurve;
LUTf bCurve;
LUTu dummy;
ToneCurve customToneCurve1, customToneCurve2;
ColorGradientCurve ctColorCurve;
OpacityCurve ctOpacityCurve;
ColorAppearance customColCurve1, customColCurve2, customColCurve3 ;
ToneCurve customToneCurvebw1;
ToneCurve customToneCurvebw2;
//if(params.blackwhite.enabled) params.toneCurve.hrenabled=false;
CurveFactory::complexCurve (expcomp, black / 65535.0, hlcompr, hlcomprthresh, params.toneCurve.shcompr, bright, contr,
params.toneCurve.curveMode, params.toneCurve.curve, params.toneCurve.curveMode2, params.toneCurve.curve2,
hist16, curve1, curve2, curve, dummy, customToneCurve1, customToneCurve2 );
CurveFactory::RGBCurve (params.rgbCurves.rcurve, rCurve, 1);
CurveFactory::RGBCurve (params.rgbCurves.gcurve, gCurve, 1);
CurveFactory::RGBCurve (params.rgbCurves.bcurve, bCurve, 1);
bool opautili = false;
if(params.colorToning.enabled) {
TMatrix wprof = iccStore->workingSpaceMatrix (params.icm.working);
double wp[3][3] = {
{wprof[0][0], wprof[0][1], wprof[0][2]},
{wprof[1][0], wprof[1][1], wprof[1][2]},
{wprof[2][0], wprof[2][1], wprof[2][2]}
};
TMatrix wiprof = iccStore->workingSpaceInverseMatrix (params.icm.working);
double wip[3][3] = {
{wiprof[0][0], wiprof[0][1], wiprof[0][2]},
{wiprof[1][0], wiprof[1][1], wiprof[1][2]},
{wiprof[2][0], wiprof[2][1], wiprof[2][2]}
};
params.colorToning.getCurves(ctColorCurve, ctOpacityCurve, wp, wip, opautili);
clToningcurve (65536, 0);
CurveFactory::curveToning(params.colorToning.clcurve, clToningcurve, 1);
cl2Toningcurve (65536, 0);
CurveFactory::curveToning(params.colorToning.cl2curve, cl2Toningcurve, 1);
}
LabImage* labView = new LabImage (fw, fh);
if(params.blackwhite.enabled) {
CurveFactory::curveBW (params.blackwhite.beforeCurve, params.blackwhite.afterCurve, hist16, dummy, customToneCurvebw1, customToneCurvebw2, 1);
}
double rrm, ggm, bbm;
float autor, autog, autob;
float satLimit = float(params.colorToning.satProtectionThreshold) / 100.f * 0.7f + 0.3f;
float satLimitOpacity = 1.f - (float(params.colorToning.saturatedOpacity) / 100.f);
if(params.colorToning.enabled && params.colorToning.autosat) { //for colortoning evaluation of saturation settings
float moyS = 0.f;
float eqty = 0.f;
ipf.moyeqt (baseImg, moyS, eqty);//return image : mean saturation and standard dev of saturation
float satp = ((moyS + 1.5f * eqty) - 0.3f) / 0.7f; //1.5 sigma ==> 93% pixels with high saturation -0.3 / 0.7 convert to Hombre scale
if(satp >= 0.92f) {
satp = 0.92f; //avoid values too high (out of gamut)
}
if(satp <= 0.15f) {
satp = 0.15f; //avoid too low values
}
satLimit = 100.f * satp;
satLimitOpacity = 100.f * (moyS - 0.85f * eqty); //-0.85 sigma==>20% pixels with low saturation
}
autor = -9000.f; // This will ask to compute the "auto" values for the B&W tool (have to be inferior to -5000)
DCPProfile::ApplyState as;
DCPProfile *dcpProf = imgsrc->getDCP(params.icm, currWB, as);
LUTu histToneCurve;
ipf.rgbProc (baseImg, labView, nullptr, curve1, curve2, curve, shmap, params.toneCurve.saturation, rCurve, gCurve, bCurve, satLimit , satLimitOpacity, ctColorCurve, ctOpacityCurve, opautili, clToningcurve, cl2Toningcurve, customToneCurve1, customToneCurve2, customToneCurvebw1, customToneCurvebw2, rrm, ggm, bbm, autor, autog, autob, expcomp, hlcompr, hlcomprthresh, dcpProf, as, histToneCurve);
if (settings->verbose) {
printf("Output image / Auto B&W coefs: R=%.2f G=%.2f B=%.2f\n", autor, autog, autob);
}
// if clut was used and size of clut cache == 1 we free the memory used by the clutstore (default clut cache size = 1 for 32 bit OS)
if ( params.filmSimulation.enabled && !params.filmSimulation.clutFilename.empty() && options.clutCacheSize == 1) {
CLUTStore::getInstance().clearCache();
}
// freeing up some memory
customToneCurve1.Reset();
customToneCurve2.Reset();
ctColorCurve.Reset();
ctOpacityCurve.Reset();
noiseLCurve.Reset();
noiseCCurve.Reset();
customToneCurvebw1.Reset();
customToneCurvebw2.Reset();
// Freeing baseImg because not used anymore
delete baseImg;
baseImg = nullptr;
if (shmap) {
delete shmap;
}
shmap = nullptr;
if (pl) {
pl->setProgress (0.55);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// start tile processing...???
if(params.labCurve.contrast != 0) { //only use hist16 for contrast
hist16.clear();
#ifdef _OPENMP
#pragma omp parallel
#endif
{
LUTu hist16thr (hist16.getSize()); // one temporary lookup table per thread
hist16thr.clear();
#ifdef _OPENMP
#pragma omp for schedule(static) nowait
#endif
for (int i = 0; i < fh; i++)
for (int j = 0; j < fw; j++) {
hist16thr[(int)((labView->L[i][j]))]++;
}
#pragma omp critical
{
hist16 += hist16thr;
}
}
}
bool utili;
CurveFactory::complexLCurve (params.labCurve.brightness, params.labCurve.contrast, params.labCurve.lcurve, hist16, lumacurve, dummy, 1, utili);
bool clcutili;
CurveFactory::curveCL(clcutili, params.labCurve.clcurve, clcurve, 1);
bool autili, butili, ccutili, cclutili;
CurveFactory::complexsgnCurve (autili, butili, ccutili, cclutili, params.labCurve.acurve, params.labCurve.bcurve, params.labCurve.cccurve,
params.labCurve.lccurve, curve1, curve2, satcurve, lhskcurve, 1);
ipf.chromiLuminanceCurve (nullptr, 1, labView, labView, curve1, curve2, satcurve, lhskcurve, clcurve, lumacurve, utili, autili, butili, ccutili, cclutili, clcutili, dummy, dummy);
if((params.colorappearance.enabled && !params.colorappearance.tonecie) || (!params.colorappearance.enabled)) {
ipf.EPDToneMap(labView, 5, 1);
}
ipf.vibrance(labView);
if((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) {
ipf.impulsedenoise (labView);
}
// for all treatments Defringe, Sharpening, Contrast detail ,Microcontrast they are activated if "CIECAM" function are disabled
if((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) {
ipf.defringe (labView);
}
if (params.sharpenEdge.enabled) {
ipf.MLsharpen(labView);
}
if (params.sharpenMicro.enabled) {
if((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) {
ipf.MLmicrocontrast (labView); //!params.colorappearance.sharpcie
}
}
if(((params.colorappearance.enabled && !settings->autocielab) || (!params.colorappearance.enabled)) && params.sharpening.enabled) {
float **buffer = new float*[fh];
for (int i = 0; i < fh; i++) {
buffer[i] = new float[fw];
}
ipf.sharpening (labView, (float**)buffer, params.sharpening);
for (int i = 0; i < fh; i++) {
delete [] buffer[i];
}
delete [] buffer;
}
WaveletParams WaveParams = params.wavelet;
WavCurve wavCLVCurve;
WavOpacityCurveRG waOpacityCurveRG;
WavOpacityCurveBY waOpacityCurveBY;
WavOpacityCurveW waOpacityCurveW;
WavOpacityCurveWL waOpacityCurveWL;
params.wavelet.getCurves(wavCLVCurve, waOpacityCurveRG, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL );
// directional pyramid wavelet
if(params.dirpyrequalizer.cbdlMethod == "aft") {
if((params.colorappearance.enabled && !settings->autocielab) || !params.colorappearance.enabled) {
ipf.dirpyrequalizer (labView, 1); //TODO: this is the luminance tonecurve, not the RGB one
}
}
bool wavcontlutili = false;
CurveFactory::curveWavContL(wavcontlutili, params.wavelet.wavclCurve, wavclCurve,/* hist16C, dummy,*/ 1);
if(params.wavelet.enabled) {
ipf.ip_wavelet(labView, labView, 2, WaveParams, wavCLVCurve, waOpacityCurveRG, waOpacityCurveBY, waOpacityCurveW, waOpacityCurveWL, wavclCurve, wavcontlutili, 1);
}
wavCLVCurve.Reset();
//Colorappearance and tone-mapping associated
int f_w = 1, f_h = 1;
int begh = 0, endh = fh;
if(params.colorappearance.tonecie || params.colorappearance.enabled) {
f_w = fw;
f_h = fh;
}
CieImage *cieView = new CieImage (f_w, (f_h));
begh = 0;
endh = fh;
CurveFactory::curveLightBrightColor (
params.colorappearance.curve,
params.colorappearance.curve2,
params.colorappearance.curve3,
hist16, dummy,
dummy, dummy,
customColCurve1,
customColCurve2,
customColCurve3,
1);
if(params.colorappearance.enabled) {
double adap;
float fnum = imgsrc->getMetaData()->getFNumber ();// F number
float fiso = imgsrc->getMetaData()->getISOSpeed () ;// ISO
float fspeed = imgsrc->getMetaData()->getShutterSpeed () ;//speed
float fcomp = imgsrc->getMetaData()->getExpComp ();//compensation + -
if(fnum < 0.3f || fiso < 5.f || fspeed < 0.00001f) {
adap = 2000.;
}//if no exif data or wrong
else {
float E_V = fcomp + log2 ((fnum * fnum) / fspeed / (fiso / 100.f));
E_V += params.toneCurve.expcomp;// exposure compensation in tonecurve ==> direct EV
E_V += log2(params.raw.expos);// exposure raw white point ; log2 ==> linear to EV
adap = powf(2.f, E_V - 3.f); //cd / m2
}
LUTf CAMBrightCurveJ;
LUTf CAMBrightCurveQ;
float CAMMean = NAN;
if (params.sharpening.enabled) {
if(settings->ciecamfloat) {
float d;
ipf.ciecam_02float (cieView, float(adap), begh, endh, 1, 2, labView, &params, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 5, 1, true, d, 1, 1);
} else {
double dd;
ipf.ciecam_02 (cieView, adap, begh, endh, 1, 2, labView, &params, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 5, 1, true, dd, 1, 1);
}
} else {
if(settings->ciecamfloat) {
float d;
ipf.ciecam_02float (cieView, float(adap), begh, endh, 1, 2, labView, &params, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 5, 1, true, d, 1, 1);
} else {
double dd;
ipf.ciecam_02 (cieView, adap, begh, endh, 1, 2, labView, &params, customColCurve1, customColCurve2, customColCurve3, dummy, dummy, CAMBrightCurveJ, CAMBrightCurveQ, CAMMean, 5, 1, true, dd, 1, 1);
}
}
}
delete cieView;
cieView = nullptr;
// end tile processing...???
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (pl) {
pl->setProgress (0.60);
}
int imw, imh;
double tmpScale = ipf.resizeScale(&params, fw, fh, imw, imh);
bool labResize = params.resize.enabled && params.resize.method != "Nearest" && tmpScale != 1.0;
LabImage *tmplab;
// crop and convert to rgb16
int cx = 0, cy = 0, cw = labView->W, ch = labView->H;
if (params.crop.enabled) {
cx = params.crop.x;
cy = params.crop.y;
cw = params.crop.w;
ch = params.crop.h;
if(labResize) { // crop lab data
tmplab = new LabImage(cw, ch);
for(int row = 0; row < ch; row++) {
for(int col = 0; col < cw; col++) {
tmplab->L[row][col] = labView->L[row + cy][col + cx];
tmplab->a[row][col] = labView->a[row + cy][col + cx];
tmplab->b[row][col] = labView->b[row + cy][col + cx];
}
}
delete labView;
labView = tmplab;
cx = 0;
cy = 0;
}
}
if (labResize) { // resize lab data
// resize image
tmplab = new LabImage(imw, imh);
ipf.Lanczos (labView, tmplab, tmpScale);
delete labView;
labView = tmplab;
cw = labView->W;
ch = labView->H;
if(params.prsharpening.enabled) {
for(int i = 0; i < ch; i++)
for(int j = 0; j < cw; j++) {
labView->L[i][j] = labView->L[i][j] < 0.f ? 0.f : labView->L[i][j];
}
float **buffer = new float*[ch];
for (int i = 0; i < ch; i++) {
buffer[i] = new float[cw];
}
ipf.sharpening (labView, (float**)buffer, params.prsharpening);
for (int i = 0; i < ch; i++) {
delete [] buffer[i];
}
delete [] buffer;
}
}
Image16* readyImg = nullptr;
cmsHPROFILE jprof = nullptr;
bool customGamma = false;
bool useLCMS = false;
bool bwonly = params.blackwhite.enabled && !params.colorToning.enabled && !autili && !butili ;
if(params.icm.gamma != "default" || params.icm.freegamma) { // if select gamma output between BT709, sRGB, linear, low, high, 2.2 , 1.8
GammaValues ga;
// if(params.blackwhite.enabled) params.toneCurve.hrenabled=false;
readyImg = ipf.lab2rgb16 (labView, cx, cy, cw, ch, params.icm, bwonly, &ga);
customGamma = true;
//or selected Free gamma
useLCMS = false;
if ((jprof = iccStore->createCustomGammaOutputProfile (params.icm, ga)) == nullptr) {
useLCMS = true;
}
} else {
// if Default gamma mode: we use the profile selected in the "Output profile" combobox;
// gamma come from the selected profile, otherwise it comes from "Free gamma" tool
readyImg = ipf.lab2rgb16 (labView, cx, cy, cw, ch, params.icm, bwonly);
if (settings->verbose) {
printf("Output profile_: \"%s\"\n", params.icm.output.c_str());
}
}
delete labView;
labView = nullptr;
if(bwonly) { //force BW r=g=b
if (settings->verbose) {
printf("Force BW\n");
}
for (int ccw = 0; ccw < cw; ccw++) {
for (int cch = 0; cch < ch; cch++) {
readyImg->r(cch, ccw) = readyImg->g(cch, ccw);
readyImg->b(cch, ccw) = readyImg->g(cch, ccw);
}
}
}
if (pl) {
pl->setProgress (0.70);
}
if (tmpScale != 1.0 && params.resize.method == "Nearest") { // resize rgb data (gamma applied)
Image16* tempImage = new Image16 (imw, imh);
ipf.resize (readyImg, tempImage, tmpScale);
delete readyImg;
readyImg = tempImage;
}
if (tunnelMetaData) {
readyImg->setMetadata (ii->getMetaData()->getExifData ());
} else {
readyImg->setMetadata (ii->getMetaData()->getExifData (), params.exif, params.iptc);
}
// Setting the output curve to readyImg
if (customGamma) {
if (!useLCMS) {
// use corrected sRGB profile in order to apply a good TRC if present, otherwise use LCMS2 profile generated by lab2rgb16 w/ gamma
ProfileContent pc(jprof);
readyImg->setOutputProfile (pc.data, pc.length);
}
} else {
// use the selected output profile if present, otherwise use LCMS2 profile generate by lab2rgb16 w/ gamma
if (params.icm.output != "" && params.icm.output != ColorManagementParams::NoICMString) {
// if iccStore->getProfile send back an object, then iccStore->getContent will do too
cmsHPROFILE jprof = iccStore->getProfile(params.icm.output); //get outProfile
if (jprof == nullptr) {
if (settings->verbose) {
printf("\"%s\" ICC output profile not found!\n - use LCMS2 substitution\n", params.icm.output.c_str());
}
} else {
if (settings->verbose) {
printf("Using \"%s\" output profile\n", params.icm.output.c_str());
}
ProfileContent pc = iccStore->getContent (params.icm.output);
readyImg->setOutputProfile (pc.data, pc.length);
}
} else {
// No ICM
readyImg->setOutputProfile (nullptr, 0);
}
}
// t2.set();
// if( settings->verbose )
// printf("Total:- %d usec\n", t2.etime(t1));
if (!job->initialImage) {
ii->decreaseRef ();
}
delete job;
if (pl) {
pl->setProgress (0.75);
}
/* curve1.reset();curve2.reset();
curve.reset();
satcurve.reset();
lhskcurve.reset();
rCurve.reset();
gCurve.reset();
bCurve.reset();
hist16.reset();
hist16C.reset();
*/
return readyImg;
}
void batchProcessingThread (ProcessingJob* job, BatchProcessingListener* bpl, bool tunnelMetaData)
{
ProcessingJob* currentJob = job;
while (currentJob) {
int errorCode;
IImage16* img = processImage (currentJob, errorCode, bpl, tunnelMetaData, true);
if (errorCode) {
bpl->error (M("MAIN_MSG_CANNOTLOAD"));
currentJob = nullptr;
} else {
try {
currentJob = bpl->imageReady (img);
} catch (Glib::Exception& ex) {
bpl->error (ex.what());
currentJob = nullptr;
}
}
}
}
void startBatchProcessing (ProcessingJob* job, BatchProcessingListener* bpl, bool tunnelMetaData)
{
if (bpl)
#if __GNUC__ == 4 && __GNUC_MINOR__ == 8 && defined( WIN32 ) && defined(__x86_64__)
// See Issue 2384 "Very bad response time on win7/64 using gcc 4.8 when queue is running"
Glib::Thread::create(sigc::bind(sigc::ptr_fun(batchProcessingThread), job, bpl, tunnelMetaData), 0, true, true, Glib::THREAD_PRIORITY_NORMAL);
#else
Glib::Thread::create(sigc::bind(sigc::ptr_fun(batchProcessingThread), job, bpl, tunnelMetaData), 0, true, true, Glib::THREAD_PRIORITY_LOW);
#endif
}
}