veilid/veilid-core/src/network_manager/tasks.rs

516 lines
22 KiB
Rust
Raw Normal View History

2022-07-22 17:05:28 +00:00
use super::*;
use crate::dht::*;
use crate::xx::*;
2022-08-09 00:42:27 +00:00
use futures_util::FutureExt;
use stop_token::future::FutureExt as StopFutureExt;
2022-07-22 17:05:28 +00:00
impl NetworkManager {
// Bootstrap lookup process
#[instrument(level = "trace", skip(self), ret, err)]
pub(super) async fn resolve_bootstrap(
&self,
bootstrap: Vec<String>,
) -> EyreResult<BootstrapRecordMap> {
// Resolve from bootstrap root to bootstrap hostnames
let mut bsnames = Vec::<String>::new();
for bh in bootstrap {
// Get TXT record for bootstrap (bootstrap.veilid.net, or similar)
let records = intf::txt_lookup(&bh).await?;
for record in records {
// Split the bootstrap name record by commas
for rec in record.split(',') {
let rec = rec.trim();
// If the name specified is fully qualified, go with it
let bsname = if rec.ends_with('.') {
rec.to_string()
}
// If the name is not fully qualified, prepend it to the bootstrap name
else {
format!("{}.{}", rec, bh)
};
// Add to the list of bootstrap name to look up
bsnames.push(bsname);
}
}
}
// Get bootstrap nodes from hostnames concurrently
let mut unord = FuturesUnordered::new();
for bsname in bsnames {
unord.push(async move {
// look up boostrap node txt records
let bsnirecords = match intf::txt_lookup(&bsname).await {
Err(e) => {
warn!("bootstrap node txt lookup failed for {}: {}", bsname, e);
return None;
}
Ok(v) => v,
};
// for each record resolve into key/bootstraprecord pairs
let mut bootstrap_records: Vec<(DHTKey, BootstrapRecord)> = Vec::new();
for bsnirecord in bsnirecords {
// Bootstrap TXT Record Format Version 0:
// txt_version,min_version,max_version,nodeid,hostname,dialinfoshort*
//
// Split bootstrap node record by commas. Example:
// 0,0,0,7lxDEabK_qgjbe38RtBa3IZLrud84P6NhGP-pRTZzdQ,bootstrap-dev-alpha.veilid.net,T5150,U5150,W5150/ws
let records: Vec<String> = bsnirecord
.trim()
.split(',')
.map(|x| x.trim().to_owned())
.collect();
if records.len() < 6 {
warn!("invalid number of fields in bootstrap txt record");
continue;
}
// Bootstrap TXT record version
let txt_version: u8 = match records[0].parse::<u8>() {
Ok(v) => v,
Err(e) => {
warn!(
"invalid txt_version specified in bootstrap node txt record: {}",
e
);
continue;
}
};
if txt_version != BOOTSTRAP_TXT_VERSION {
warn!("unsupported bootstrap txt record version");
continue;
}
// Min/Max wire protocol version
let min_version: u8 = match records[1].parse::<u8>() {
Ok(v) => v,
Err(e) => {
warn!(
"invalid min_version specified in bootstrap node txt record: {}",
e
);
continue;
}
};
let max_version: u8 = match records[2].parse::<u8>() {
Ok(v) => v,
Err(e) => {
warn!(
"invalid max_version specified in bootstrap node txt record: {}",
e
);
continue;
}
};
// Node Id
let node_id_str = &records[3];
let node_id_key = match DHTKey::try_decode(node_id_str) {
Ok(v) => v,
Err(e) => {
warn!(
"Invalid node id in bootstrap node record {}: {}",
node_id_str, e
);
continue;
}
};
// Hostname
let hostname_str = &records[4];
// If this is our own node id, then we skip it for bootstrap, in case we are a bootstrap node
if self.routing_table().node_id() == node_id_key {
continue;
}
// Resolve each record and store in node dial infos list
let mut bootstrap_record = BootstrapRecord {
min_version,
max_version,
dial_info_details: Vec::new(),
};
for rec in &records[5..] {
let rec = rec.trim();
let dial_infos = match DialInfo::try_vec_from_short(rec, hostname_str) {
Ok(dis) => dis,
Err(e) => {
warn!("Couldn't resolve bootstrap node dial info {}: {}", rec, e);
continue;
}
};
for di in dial_infos {
bootstrap_record.dial_info_details.push(DialInfoDetail {
dial_info: di,
class: DialInfoClass::Direct,
});
}
}
bootstrap_records.push((node_id_key, bootstrap_record));
}
Some(bootstrap_records)
});
}
let mut bsmap = BootstrapRecordMap::new();
while let Some(bootstrap_records) = unord.next().await {
if let Some(bootstrap_records) = bootstrap_records {
for (bskey, mut bsrec) in bootstrap_records {
let rec = bsmap.entry(bskey).or_insert_with(|| BootstrapRecord {
min_version: bsrec.min_version,
max_version: bsrec.max_version,
dial_info_details: Vec::new(),
});
rec.dial_info_details.append(&mut bsrec.dial_info_details);
}
}
}
Ok(bsmap)
}
// 'direct' bootstrap task routine for systems incapable of resolving TXT records, such as browser WASM
pub(super) async fn direct_bootstrap_task_routine(
self,
stop_token: StopToken,
bootstrap_dialinfos: Vec<DialInfo>,
) -> EyreResult<()> {
let mut unord = FuturesUnordered::new();
let routing_table = self.routing_table();
for bootstrap_di in bootstrap_dialinfos {
let peer_info = self.boot_request(bootstrap_di).await?;
// Got peer info, let's add it to the routing table
for pi in peer_info {
let k = pi.node_id.key;
// Register the node
if let Some(nr) =
routing_table.register_node_with_signed_node_info(k, pi.signed_node_info)
{
// Add this our futures to process in parallel
let routing_table = routing_table.clone();
unord.push(
// lets ask bootstrap to find ourselves now
async move { routing_table.reverse_find_node(nr, true).await },
);
}
}
}
// Wait for all bootstrap operations to complete before we complete the singlefuture
while let Ok(Some(_)) = unord.next().timeout_at(stop_token.clone()).await {}
Ok(())
}
#[instrument(level = "trace", skip(self), err)]
pub(super) async fn bootstrap_task_routine(self, stop_token: StopToken) -> EyreResult<()> {
let (bootstrap, bootstrap_nodes) = {
let c = self.config.get();
(
c.network.bootstrap.clone(),
c.network.bootstrap_nodes.clone(),
)
};
let routing_table = self.routing_table();
log_net!(debug "--- bootstrap_task");
// See if we are specifying a direct dialinfo for bootstrap, if so use the direct mechanism
if !bootstrap.is_empty() && bootstrap_nodes.is_empty() {
let mut bootstrap_dialinfos = Vec::<DialInfo>::new();
for b in &bootstrap {
if let Ok(bootstrap_di_vec) = DialInfo::try_vec_from_url(&b) {
for bootstrap_di in bootstrap_di_vec {
bootstrap_dialinfos.push(bootstrap_di);
}
}
}
if bootstrap_dialinfos.len() > 0 {
return self
.direct_bootstrap_task_routine(stop_token, bootstrap_dialinfos)
.await;
}
}
// If we aren't specifying a bootstrap node list explicitly, then pull from the bootstrap server(s)
let bsmap: BootstrapRecordMap = if !bootstrap_nodes.is_empty() {
let mut bsmap = BootstrapRecordMap::new();
let mut bootstrap_node_dial_infos = Vec::new();
for b in bootstrap_nodes {
let ndis = NodeDialInfo::from_str(b.as_str())
.wrap_err("Invalid node dial info in bootstrap entry")?;
bootstrap_node_dial_infos.push(ndis);
}
for ndi in bootstrap_node_dial_infos {
let node_id = ndi.node_id.key;
bsmap
.entry(node_id)
.or_insert_with(|| BootstrapRecord {
min_version: MIN_VERSION,
max_version: MAX_VERSION,
dial_info_details: Vec::new(),
})
.dial_info_details
.push(DialInfoDetail {
dial_info: ndi.dial_info,
class: DialInfoClass::Direct, // Bootstraps are always directly reachable
});
}
bsmap
} else {
// Resolve bootstrap servers and recurse their TXT entries
self.resolve_bootstrap(bootstrap).await?
};
// Map all bootstrap entries to a single key with multiple dialinfo
// Run all bootstrap operations concurrently
let mut unord = FuturesUnordered::new();
for (k, mut v) in bsmap {
// Sort dial info so we get the preferred order correct
v.dial_info_details.sort();
log_net!("--- bootstrapping {} with {:?}", k.encode(), &v);
// Make invalid signed node info (no signature)
if let Some(nr) = routing_table.register_node_with_signed_node_info(
k,
SignedNodeInfo::with_no_signature(NodeInfo {
network_class: NetworkClass::InboundCapable, // Bootstraps are always inbound capable
2022-08-02 01:06:31 +00:00
outbound_protocols: ProtocolTypeSet::only(ProtocolType::UDP), // Bootstraps do not participate in relaying and will not make outbound requests, but will have UDP enabled
address_types: AddressTypeSet::all(), // Bootstraps are always IPV4 and IPV6 capable
2022-07-22 17:05:28 +00:00
min_version: v.min_version, // Minimum protocol version specified in txt record
max_version: v.max_version, // Maximum protocol version specified in txt record
dial_info_detail_list: v.dial_info_details, // Dial info is as specified in the bootstrap list
relay_peer_info: None, // Bootstraps never require a relay themselves
}),
) {
// Add this our futures to process in parallel
let routing_table = routing_table.clone();
2022-07-22 18:08:46 +00:00
unord.push(async move {
2022-07-22 17:05:28 +00:00
// Need VALID signed peer info, so ask bootstrap to find_node of itself
// which will ensure it has the bootstrap's signed peer info as part of the response
let _ = routing_table.find_target(nr.clone()).await;
// Ensure we got the signed peer info
if !nr.operate(|e| e.has_valid_signed_node_info()) {
log_net!(warn
"bootstrap at {:?} did not return valid signed node info",
nr
);
// If this node info is invalid, it will time out after being unpingable
} else {
// otherwise this bootstrap is valid, lets ask it to find ourselves now
routing_table.reverse_find_node(nr, true).await
}
2022-07-22 18:08:46 +00:00
});
2022-07-22 17:05:28 +00:00
}
}
// Wait for all bootstrap operations to complete before we complete the singlefuture
while let Ok(Some(_)) = unord.next().timeout_at(stop_token.clone()).await {}
Ok(())
}
// Ping each node in the routing table if they need to be pinged
// to determine their reliability
#[instrument(level = "trace", skip(self), err)]
pub(super) async fn ping_validator_task_routine(
self,
stop_token: StopToken,
_last_ts: u64,
cur_ts: u64,
) -> EyreResult<()> {
let rpc = self.rpc_processor();
let routing_table = self.routing_table();
let relay_node_id = self.relay_node().map(|nr| nr.node_id());
2022-08-09 00:42:27 +00:00
let dids = routing_table.all_filtered_dial_info_details(
Some(RoutingDomain::PublicInternet),
&DialInfoFilter::global(),
);
2022-07-22 17:05:28 +00:00
let mut unord = FuturesUnordered::new();
let node_refs = routing_table.get_nodes_needing_ping(cur_ts, relay_node_id);
for nr in node_refs {
let rpc = rpc.clone();
2022-08-09 00:42:27 +00:00
if Some(nr.node_id()) == relay_node_id {
// Relay nodes get pinged over all protocols we have inbound dialinfo for
// This is so we can preserve the inbound NAT mappings at our router
for did in &dids {
let rpc = rpc.clone();
let dif = did.dial_info.make_filter(true);
let nr_filtered = nr.filtered_clone(dif);
unord.push(async move { rpc.rpc_call_status(nr_filtered).await }.boxed());
}
} else {
// Just do a single ping with the best protocol for all the other nodes
unord.push(async move { rpc.rpc_call_status(nr).await }.boxed());
}
2022-07-22 17:05:28 +00:00
}
// Wait for futures to complete
while let Ok(Some(_)) = unord.next().timeout_at(stop_token.clone()).await {}
Ok(())
}
// Ask our remaining peers to give us more peers before we go
// back to the bootstrap servers to keep us from bothering them too much
#[instrument(level = "trace", skip(self), err)]
pub(super) async fn peer_minimum_refresh_task_routine(
self,
stop_token: StopToken,
) -> EyreResult<()> {
let routing_table = self.routing_table();
let cur_ts = intf::get_timestamp();
// get list of all peers we know about, even the unreliable ones, and ask them to find nodes close to our node too
let noderefs = routing_table.get_all_nodes(cur_ts);
// do peer minimum search concurrently
let mut unord = FuturesUnordered::new();
for nr in noderefs {
log_net!("--- peer minimum search with {:?}", nr);
let routing_table = routing_table.clone();
2022-07-22 18:08:46 +00:00
unord.push(async move { routing_table.reverse_find_node(nr, false).await });
2022-07-22 17:05:28 +00:00
}
while let Ok(Some(_)) = unord.next().timeout_at(stop_token.clone()).await {}
Ok(())
}
// Keep relays assigned and accessible
#[instrument(level = "trace", skip(self), err)]
pub(super) async fn relay_management_task_routine(
self,
2022-07-22 18:08:46 +00:00
_stop_token: StopToken,
2022-07-22 17:05:28 +00:00
_last_ts: u64,
cur_ts: u64,
) -> EyreResult<()> {
// Get our node's current node info and network class and do the right thing
let routing_table = self.routing_table();
let node_info = routing_table.get_own_node_info();
let network_class = self.get_network_class();
let mut node_info_changed = false;
// Do we know our network class yet?
if let Some(network_class) = network_class {
// If we already have a relay, see if it is dead, or if we don't need it any more
let has_relay = {
let mut inner = self.inner.lock();
if let Some(relay_node) = inner.relay_node.clone() {
let state = relay_node.operate(|e| e.state(cur_ts));
// Relay node is dead or no longer needed
if matches!(state, BucketEntryState::Dead) {
info!("Relay node died, dropping relay {}", relay_node);
inner.relay_node = None;
node_info_changed = true;
false
} else if !node_info.requires_relay() {
info!(
"Relay node no longer required, dropping relay {}",
relay_node
);
inner.relay_node = None;
node_info_changed = true;
false
} else {
true
}
} else {
false
}
};
// Do we need a relay?
if !has_relay && node_info.requires_relay() {
// Do we need an outbound relay?
if network_class.outbound_wants_relay() {
// The outbound relay is the host of the PWA
if let Some(outbound_relay_peerinfo) = intf::get_outbound_relay_peer().await {
let mut inner = self.inner.lock();
// Register new outbound relay
if let Some(nr) = routing_table.register_node_with_signed_node_info(
outbound_relay_peerinfo.node_id.key,
outbound_relay_peerinfo.signed_node_info,
) {
info!("Outbound relay node selected: {}", nr);
inner.relay_node = Some(nr);
node_info_changed = true;
}
}
// Otherwise we must need an inbound relay
} else {
// Find a node in our routing table that is an acceptable inbound relay
if let Some(nr) = routing_table.find_inbound_relay(cur_ts) {
let mut inner = self.inner.lock();
info!("Inbound relay node selected: {}", nr);
inner.relay_node = Some(nr);
node_info_changed = true;
}
}
}
}
// Re-send our node info if we selected a relay
if node_info_changed {
self.send_node_info_updates(true).await;
}
Ok(())
}
// Compute transfer statistics for the low level network
#[instrument(level = "trace", skip(self), err)]
pub(super) async fn rolling_transfers_task_routine(
self,
2022-07-22 18:08:46 +00:00
_stop_token: StopToken,
2022-07-22 17:05:28 +00:00
last_ts: u64,
cur_ts: u64,
) -> EyreResult<()> {
// log_net!("--- network manager rolling_transfers task");
{
let inner = &mut *self.inner.lock();
// Roll the low level network transfer stats for our address
inner
.stats
.self_stats
.transfer_stats_accounting
.roll_transfers(last_ts, cur_ts, &mut inner.stats.self_stats.transfer_stats);
// Roll all per-address transfers
let mut dead_addrs: HashSet<PerAddressStatsKey> = HashSet::new();
for (addr, stats) in &mut inner.stats.per_address_stats {
stats.transfer_stats_accounting.roll_transfers(
last_ts,
cur_ts,
&mut stats.transfer_stats,
);
// While we're here, lets see if this address has timed out
if cur_ts - stats.last_seen_ts >= IPADDR_MAX_INACTIVE_DURATION_US {
// it's dead, put it in the dead list
dead_addrs.insert(*addr);
}
}
// Remove the dead addresses from our tables
for da in &dead_addrs {
inner.stats.per_address_stats.remove(da);
}
}
// Send update
self.send_network_update();
Ok(())
}
}