2021-11-22 16:28:30 +00:00
|
|
|
use crate::xx::*;
|
|
|
|
use alloc::string::ToString;
|
|
|
|
|
2021-11-27 17:44:21 +00:00
|
|
|
pub fn split_port(name: &str) -> Result<(String, Option<u16>), String> {
|
2021-11-22 16:28:30 +00:00
|
|
|
if let Some(split) = name.rfind(':') {
|
|
|
|
let hoststr = &name[0..split];
|
|
|
|
let portstr = &name[split + 1..];
|
2021-11-27 17:44:21 +00:00
|
|
|
let port: u16 = portstr
|
|
|
|
.parse::<u16>()
|
|
|
|
.map_err(|e| format!("Invalid port: {}", e))?;
|
2021-11-22 16:28:30 +00:00
|
|
|
|
2021-11-27 17:44:21 +00:00
|
|
|
Ok((hoststr.to_string(), Some(port)))
|
2021-11-22 16:28:30 +00:00
|
|
|
} else {
|
2021-11-27 17:44:21 +00:00
|
|
|
Ok((name.to_string(), None))
|
2021-11-22 16:28:30 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn prepend_slash(s: String) -> String {
|
2021-11-27 17:44:21 +00:00
|
|
|
if s.starts_with('/') {
|
2021-11-22 16:28:30 +00:00
|
|
|
return s;
|
|
|
|
}
|
|
|
|
let mut out = "/".to_owned();
|
|
|
|
out.push_str(s.as_str());
|
|
|
|
out
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn timestamp_to_secs(ts: u64) -> f64 {
|
|
|
|
ts as f64 / 1000000.0f64
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn secs_to_timestamp(secs: f64) -> u64 {
|
|
|
|
(secs * 1000000.0f64) as u64
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calculate retry attempt with logarhythmic falloff
|
|
|
|
pub fn retry_falloff_log(
|
|
|
|
last_us: u64,
|
|
|
|
cur_us: u64,
|
|
|
|
interval_start_us: u64,
|
|
|
|
interval_max_us: u64,
|
|
|
|
interval_multiplier_us: f64,
|
|
|
|
) -> bool {
|
|
|
|
//
|
|
|
|
if cur_us < interval_start_us {
|
|
|
|
// Don't require a retry within the first 'interval_start_us' microseconds of the reliable time period
|
|
|
|
false
|
|
|
|
} else if cur_us >= last_us + interval_max_us {
|
|
|
|
// Retry at least every 'interval_max_us' microseconds
|
|
|
|
true
|
|
|
|
} else {
|
|
|
|
// Exponential falloff between 'interval_start_us' and 'interval_max_us' microseconds
|
|
|
|
// Optimal equation here is: y = Sum[Power[b,x],{n,0,x}] --> y = (x+1)b^x
|
|
|
|
// but we're just gonna simplify this to a log curve for speed
|
|
|
|
let last_secs = timestamp_to_secs(last_us);
|
|
|
|
let nth = (last_secs / timestamp_to_secs(interval_start_us))
|
|
|
|
.log(interval_multiplier_us)
|
|
|
|
.floor() as i32;
|
|
|
|
let next_secs = timestamp_to_secs(interval_start_us) * interval_multiplier_us.powi(nth + 1);
|
|
|
|
let next_us = secs_to_timestamp(next_secs);
|
|
|
|
cur_us >= next_us
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn try_at_most_n_things<T, I, C, R>(max: usize, things: I, closure: C) -> Option<R>
|
|
|
|
where
|
|
|
|
I: IntoIterator<Item = T>,
|
|
|
|
C: Fn(T) -> Option<R>,
|
|
|
|
{
|
|
|
|
let mut fails = 0usize;
|
|
|
|
for thing in things.into_iter() {
|
|
|
|
if let Some(r) = closure(thing) {
|
|
|
|
return Some(r);
|
|
|
|
}
|
|
|
|
fails += 1;
|
|
|
|
if fails >= max {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
None
|
|
|
|
}
|
|
|
|
|
|
|
|
pub async fn async_try_at_most_n_things<T, I, C, R, F>(
|
|
|
|
max: usize,
|
|
|
|
things: I,
|
|
|
|
closure: C,
|
|
|
|
) -> Option<R>
|
|
|
|
where
|
|
|
|
I: IntoIterator<Item = T>,
|
|
|
|
C: Fn(T) -> F,
|
|
|
|
F: Future<Output = Option<R>>,
|
|
|
|
{
|
|
|
|
let mut fails = 0usize;
|
|
|
|
for thing in things.into_iter() {
|
|
|
|
if let Some(r) = closure(thing).await {
|
|
|
|
return Some(r);
|
|
|
|
}
|
|
|
|
fails += 1;
|
|
|
|
if fails >= max {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
None
|
|
|
|
}
|
2021-11-26 14:54:38 +00:00
|
|
|
|
|
|
|
pub trait CmpAssign {
|
|
|
|
fn min_assign(&mut self, other: Self);
|
|
|
|
fn max_assign(&mut self, other: Self);
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> CmpAssign for T
|
|
|
|
where
|
|
|
|
T: core::cmp::Ord,
|
|
|
|
{
|
|
|
|
fn min_assign(&mut self, other: Self) {
|
|
|
|
if &other < self {
|
|
|
|
*self = other;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fn max_assign(&mut self, other: Self) {
|
|
|
|
if &other > self {
|
|
|
|
*self = other;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|