mod coders; mod debug; mod private_route; pub use debug::*; pub use private_route::*; use crate::dht::*; use crate::intf::*; use crate::xx::*; use capnp::message::ReaderSegments; use coders::*; use futures_util::StreamExt; use network_manager::*; use receipt_manager::*; use routing_table::*; use stop_token::future::FutureExt; use super::*; ///////////////////////////////////////////////////////////////////// type OperationId = u64; #[derive(Debug, Clone)] pub enum Destination { Direct(NodeRef), // Send to node (target noderef) Relay(NodeRef, DHTKey), // Send to node for relay purposes (relay noderef, target nodeid) PrivateRoute(PrivateRoute), // Send to private route (privateroute) } impl fmt::Display for Destination { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { Destination::Direct(nr) => { write!(f, "{:?}", nr) } Destination::Relay(nr, key) => { write!(f, "{:?}@{:?}", key.encode(), nr) } Destination::PrivateRoute(pr) => { write!(f, "{}", pr) } } } } #[derive(Debug, Clone)] pub enum RespondTo { None, Sender(Option), PrivateRoute(PrivateRoute), } impl RespondTo { pub fn encode( &self, builder: &mut veilid_capnp::operation::respond_to::Builder, ) -> Result<(), RPCError> { match self { Self::None => { builder.set_none(()); } Self::Sender(Some(sni)) => { let mut sni_builder = builder.reborrow().init_sender_with_info(); encode_signed_node_info(sni, &mut sni_builder)?; } Self::Sender(None) => { builder.reborrow().set_sender(()); } Self::PrivateRoute(pr) => { let mut pr_builder = builder.reborrow().init_private_route(); encode_private_route(pr, &mut pr_builder)?; } }; Ok(()) } } #[derive(Debug, Clone)] struct RPCMessageHeader { timestamp: u64, // time the message was received, not sent envelope: Envelope, body_len: u64, peer_noderef: NodeRef, // ensures node doesn't get evicted from routing table until we're done with it } #[derive(Debug, Clone)] struct RPCMessageData { contents: Vec, // rpc messages must be a canonicalized single segment } impl ReaderSegments for RPCMessageData { fn get_segment(&self, idx: u32) -> Option<&[u8]> { if idx > 0 { None } else { Some(self.contents.as_slice()) } } } #[derive(Debug)] struct RPCMessage { header: RPCMessageHeader, data: RPCMessageData, } struct RPCMessageReader { header: RPCMessageHeader, reader: capnp::message::Reader, opt_sender_nr: Option, } fn builder_to_vec<'a, T>(builder: capnp::message::Builder) -> Result, RPCError> where T: capnp::message::Allocator + 'a, { let wordvec = builder .into_reader() .canonicalize() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; Ok(capnp::Word::words_to_bytes(wordvec.as_slice()).to_vec()) } fn reader_to_vec<'a, T>(reader: &capnp::message::Reader) -> Result, RPCError> where T: capnp::message::ReaderSegments + 'a, { let wordvec = reader .canonicalize() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; Ok(capnp::Word::words_to_bytes(wordvec.as_slice()).to_vec()) } #[derive(Debug)] struct WaitableReply { op_id: OperationId, eventual: EventualValue, timeout: u64, node_ref: NodeRef, send_ts: u64, send_data_kind: SendDataKind, } ///////////////////////////////////////////////////////////////////// #[derive(Clone, Debug, Default)] pub struct StatusAnswer { pub latency: u64, pub node_status: NodeStatus, pub sender_info: SenderInfo, } #[derive(Clone, Debug, Default)] pub struct FindNodeAnswer { pub latency: u64, // how long it took to get this answer pub peers: Vec, // the list of closer peers } ///////////////////////////////////////////////////////////////////// pub struct RPCProcessorInner { network_manager: NetworkManager, routing_table: RoutingTable, node_id: DHTKey, node_id_secret: DHTKeySecret, send_channel: Option>, timeout: u64, max_route_hop_count: usize, waiting_rpc_table: BTreeMap>, stop_source: Option, worker_join_handles: Vec>, } #[derive(Clone)] pub struct RPCProcessor { crypto: Crypto, config: VeilidConfig, enable_local_peer_scope: bool, inner: Arc>, } impl RPCProcessor { fn new_inner(network_manager: NetworkManager) -> RPCProcessorInner { RPCProcessorInner { network_manager: network_manager.clone(), routing_table: network_manager.routing_table(), node_id: DHTKey::default(), node_id_secret: DHTKeySecret::default(), send_channel: None, timeout: 10000000, max_route_hop_count: 7, waiting_rpc_table: BTreeMap::new(), stop_source: None, worker_join_handles: Vec::new(), } } pub fn new(network_manager: NetworkManager) -> Self { Self { crypto: network_manager.crypto(), config: network_manager.config(), enable_local_peer_scope: network_manager .config() .get() .network .enable_local_peer_scope, inner: Arc::new(Mutex::new(Self::new_inner(network_manager))), } } pub fn network_manager(&self) -> NetworkManager { self.inner.lock().network_manager.clone() } pub fn routing_table(&self) -> RoutingTable { self.inner.lock().routing_table.clone() } pub fn node_id(&self) -> DHTKey { self.inner.lock().node_id } pub fn node_id_secret(&self) -> DHTKeySecret { self.inner.lock().node_id_secret } ////////////////////////////////////////////////////////////////////// fn get_next_op_id(&self) -> OperationId { get_random_u64() } fn filter_peer_scope(&self, node_info: &NodeInfo) -> bool { // if local peer scope is enabled, then don't reject any peer info if self.enable_local_peer_scope { return true; } // reject attempts to include non-public addresses in results for did in &node_info.dial_info_detail_list { if !did.dial_info.is_global() { // non-public address causes rejection return false; } } if let Some(rpi) = &node_info.relay_peer_info { for did in &rpi.signed_node_info.node_info.dial_info_detail_list { if !did.dial_info.is_global() { // non-public address causes rejection return false; } } } true } ////////////////////////////////////////////////////////////////////// // Search the DHT for a single node closest to a key and add it to the routing table and return the node reference pub async fn search_dht_single_key( &self, node_id: DHTKey, _count: u32, _fanout: u32, _timeout: Option, ) -> Result { let routing_table = self.routing_table(); // xxx find node but stop if we find the exact node we want // xxx return whatever node is closest after the timeout Err(rpc_error_unimplemented("search_dht_single_key")).map_err(logthru_rpc!(error)) } // Search the DHT for the 'count' closest nodes to a key, adding them all to the routing table if they are not there and returning their node references pub async fn search_dht_multi_key( &self, _node_id: DHTKey, _count: u32, _fanout: u32, _timeout: Option, ) -> Result, RPCError> { // xxx return closest nodes after the timeout Err(rpc_error_unimplemented("search_dht_multi_key")).map_err(logthru_rpc!(error)) } // Search the DHT for a specific node corresponding to a key unless we have that node in our routing table already, and return the node reference // Note: This routine can possible be recursive, hence the SystemPinBoxFuture async form pub fn resolve_node( &self, node_id: DHTKey, ) -> SystemPinBoxFuture> { let this = self.clone(); Box::pin(async move { let routing_table = this.routing_table(); // First see if we have the node in our routing table already if let Some(nr) = routing_table.lookup_node_ref(node_id) { // ensure we have some dial info for the entry already, // if not, we should do the find_node anyway if nr.has_any_dial_info() { return Ok(nr); } } // If nobody knows where this node is, ask the DHT for it let (count, fanout, timeout) = { let c = this.config.get(); ( c.network.dht.resolve_node_count, c.network.dht.resolve_node_fanout, c.network.dht.resolve_node_timeout_ms.map(ms_to_us), ) }; let nr = this .search_dht_single_key(node_id, count, fanout, timeout) .await?; if nr.node_id() != node_id { // found a close node, but not exact within our configured resolve_node timeout return Err(RPCError::Timeout).map_err(logthru_rpc!()); } Ok(nr) }) } // set up wait for reply fn add_op_id_waiter(&self, op_id: OperationId) -> EventualValue { let mut inner = self.inner.lock(); let e = EventualValue::new(); inner.waiting_rpc_table.insert(op_id, e.clone()); e } // remove wait for reply fn cancel_op_id_waiter(&self, op_id: OperationId) { let mut inner = self.inner.lock(); inner.waiting_rpc_table.remove(&op_id); } // complete the reply async fn complete_op_id_waiter( &self, op_id: OperationId, rpcreader: RPCMessageReader, ) -> Result<(), RPCError> { let eventual = { let mut inner = self.inner.lock(); inner .waiting_rpc_table .remove(&op_id) .ok_or_else(|| rpc_error_internal("Unmatched operation id"))? }; eventual.resolve(rpcreader).await; Ok(()) } // wait for reply async fn do_wait_for_reply( &self, waitable_reply: &WaitableReply, ) -> Result<(RPCMessageReader, u64), RPCError> { let timeout_ms = u32::try_from(waitable_reply.timeout / 1000u64) .map_err(map_error_internal!("invalid timeout"))?; // wait for eventualvalue let start_ts = get_timestamp(); let res = timeout(timeout_ms, waitable_reply.eventual.instance()) .await .map_err(|_| RPCError::Timeout)?; let rpcreader = res.take_value().unwrap(); let end_ts = get_timestamp(); Ok((rpcreader, end_ts - start_ts)) } async fn wait_for_reply( &self, waitable_reply: WaitableReply, ) -> Result<(RPCMessageReader, u64), RPCError> { let out = self.do_wait_for_reply(&waitable_reply).await; match &out { Err(_) => { self.cancel_op_id_waiter(waitable_reply.op_id); self.routing_table() .stats_question_lost(waitable_reply.node_ref.clone()); } Ok((rpcreader, _)) => { // Note that we definitely received this node info since we got a reply waitable_reply.node_ref.set_seen_our_node_info(); // Reply received let recv_ts = get_timestamp(); self.routing_table().stats_answer_rcvd( waitable_reply.node_ref, waitable_reply.send_ts, recv_ts, rpcreader.header.body_len, ) } }; out } // Issue a request over the network, possibly using an anonymized route async fn request( &self, dest: Destination, message: capnp::message::Reader, safety_route_spec: Option<&SafetyRouteSpec>, ) -> Result, RPCError> { let (op_id, wants_answer) = { let operation = message .get_root::() .map_err(map_error_internal!("invalid operation")) .map_err(logthru_rpc!(error))?; let op_id = operation.get_op_id(); let wants_answer = self.wants_answer(&operation).map_err(logthru_rpc!())?; (op_id, wants_answer) }; let out_node_id; // Envelope Node Id let mut out_noderef: Option = None; // Node to send envelope to let hopcount: usize; // Total safety + private route hop count // Create envelope data let out = { let out; // Envelope data // To where are we sending the request match &dest { Destination::Direct(node_ref) | Destination::Relay(node_ref, _) => { // Send to a node without a private route // -------------------------------------- // Get the actual destination node id accounting for relays let (node_ref, node_id) = if let Destination::Relay(_, dht_key) = dest { (node_ref.clone(), dht_key) } else { let node_id = node_ref.node_id(); (node_ref.clone(), node_id) }; // Handle the existence of safety route match safety_route_spec { None => { // If no safety route is being used, and we're not sending to a private // route, we can use a direct envelope instead of routing out = reader_to_vec(&message)?; // Message goes directly to the node out_node_id = node_id; out_noderef = Some(node_ref); hopcount = 1; } Some(sr) => { // No private route was specified for the request // but we are using a safety route, so we must create an empty private route let mut pr_builder = ::capnp::message::Builder::new_default(); let private_route = self.new_stub_private_route(node_id, &mut pr_builder)?; let message_vec = reader_to_vec(&message)?; // first out_node_id = sr .hops .first() .ok_or_else(|| rpc_error_internal("no hop in safety route"))? .dial_info .node_id .key; out = self.wrap_with_route(Some(sr), private_route, message_vec)?; hopcount = 1 + sr.hops.len(); } }; } Destination::PrivateRoute(private_route) => { // Send to private route // --------------------- // Encode the private route let mut pr_msg_builder = ::capnp::message::Builder::new_default(); let mut pr_builder = pr_msg_builder.init_root::(); encode_private_route(private_route, &mut pr_builder)?; let pr_reader = pr_builder.into_reader(); // Reply with 'route' operation let message_vec = reader_to_vec(&message)?; out_node_id = match safety_route_spec { None => { // If no safety route, the first node is the first hop of the private route hopcount = private_route.hop_count as usize; let out_node_id = match &private_route.hops { Some(rh) => rh.dial_info.node_id.key, _ => return Err(rpc_error_internal("private route has no hops")), }; out = self.wrap_with_route(None, pr_reader, message_vec)?; out_node_id } Some(sr) => { // If safety route is in use, first node is the first hop of the safety route hopcount = 1 + sr.hops.len() + (private_route.hop_count as usize); let out_node_id = sr .hops .first() .ok_or_else(|| rpc_error_internal("no hop in safety route"))? .dial_info .node_id .key; out = self.wrap_with_route(Some(sr), pr_reader, message_vec)?; out_node_id } } } } out }; // Verify hop count isn't larger than out maximum routed hop count if hopcount > self.inner.lock().max_route_hop_count { return Err(rpc_error_internal("hop count too long for route")) .map_err(logthru_rpc!(warn)); } // calculate actual timeout // timeout is number of hops times the timeout per hop let timeout = self.inner.lock().timeout * (hopcount as u64); // if we need to resolve the first hop, do it let node_ref = match out_noderef { None => { // resolve node self.resolve_node(out_node_id) .await .map_err(logthru_rpc!(error))? } Some(nr) => { // got the node in the routing table already nr } }; // set up op id eventual let eventual = if wants_answer { Some(self.add_op_id_waiter(op_id)) } else { None }; // send question log_rpc!(debug "==>> REQUEST({}) -> {:?}", self.get_rpc_message_debug_info(&message), dest); let bytes = out.len() as u64; let send_ts = get_timestamp(); let send_data_kind = match self .network_manager() .send_envelope(node_ref.clone(), Some(out_node_id), out) .await .map_err(RPCError::Internal) { Ok(v) => v, Err(e) => { // Make sure to clean up op id waiter in case of error if eventual.is_some() { self.cancel_op_id_waiter(op_id); } self.routing_table() .stats_failed_to_send(node_ref, send_ts, wants_answer); return Err(e); } }; // Successfully sent self.routing_table() .stats_question_sent(node_ref.clone(), send_ts, bytes, wants_answer); // Pass back waitable reply completion match eventual { None => { // if we don't want an answer, don't wait for one Ok(None) } Some(eventual) => Ok(Some(WaitableReply { op_id, eventual, timeout, node_ref, send_ts, send_data_kind, })), } } // Issue a reply over the network, possibly using an anonymized route // The request must want a response, or this routine fails async fn reply( &self, request_rpcreader: RPCMessageReader, reply_msg: capnp::message::Reader, safety_route_spec: Option<&SafetyRouteSpec>, ) -> Result<(), RPCError> { // let out_node_id; let mut out_noderef: Option = None; let out = { let out; let request_operation = request_rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; let reply_vec = reader_to_vec(&reply_msg)?; // To where should we respond? match request_operation .get_respond_to() .which() .map_err(map_error_internal!("invalid request operation")) .map_err(logthru_rpc!())? { veilid_capnp::operation::respond_to::None(_) => { // Do not respond // -------------- return Err(rpc_error_internal("no response requested")) .map_err(logthru_rpc!()); } veilid_capnp::operation::respond_to::SenderWithInfo(_) | veilid_capnp::operation::respond_to::Sender(_) => { // Respond to envelope source node, possibly through a relay if the request arrived that way // ------------------------------- match safety_route_spec { None => { // If no safety route is being used, and we're not replying to a private // route, we can use a direct envelope instead of routing out = reply_vec; // Reply directly to the request's source out_node_id = request_rpcreader.header.envelope.get_sender_id(); // This may be a different node's reference than the 'sender' in the case of a relay // But in that case replies to inbound requests are returned through the inbound relay anyway out_noderef = Some(request_rpcreader.header.peer_noderef.clone()); } Some(sr) => { // No private route was specified for the return // but we are using a safety route, so we must create an empty private route let mut pr_builder = ::capnp::message::Builder::new_default(); let private_route = self .new_stub_private_route( request_rpcreader.header.envelope.get_sender_id(), &mut pr_builder, ) .map_err(logthru_rpc!())?; out = self.wrap_with_route(Some(sr), private_route, reply_vec)?; // first out_node_id = sr .hops .first() .ok_or_else(|| rpc_error_internal("no hop in safety route")) .map_err(logthru_rpc!())? .dial_info .node_id .key; } }; } veilid_capnp::operation::respond_to::PrivateRoute(pr) => { // Respond to private route // ------------------------ // Extract private route for reply let private_route = match pr { Ok(v) => v, Err(_) => { return Err(rpc_error_internal("invalid private route")) .map_err(logthru_rpc!()) } }; // Reply with 'route' operation out = self.wrap_with_route(safety_route_spec, private_route, reply_vec)?; out_node_id = match safety_route_spec { None => { // If no safety route, the first node is the first hop of the private route if !private_route.has_first_hop() { return Err(rpc_error_internal("private route has no hops")) .map_err(logthru_rpc!()); } let hop = private_route .get_first_hop() .map_err(map_error_internal!("not a valid first hop"))?; decode_public_key( &hop.get_dial_info() .map_err(map_error_internal!("not a valid dial info")) .map_err(logthru_rpc!())? .get_node_id() .map_err(map_error_internal!("not a valid node id")) .map_err(logthru_rpc!())?, ) } Some(sr) => { // If safety route is in use, first node is the first hop of the safety route sr.hops .first() .ok_or_else(|| rpc_error_internal("no hop in safety route")) .map_err(logthru_rpc!())? .dial_info .node_id .key } } } } out }; // if we need to resolve the first hop, do it let node_ref = match out_noderef { None => { // resolve node self.resolve_node(out_node_id).await? } Some(nr) => { // got the node in the routing table already nr } }; // Send the reply log_rpc!(debug "==>> REPLY({}) -> {}{:?}", self.get_rpc_message_debug_info(&reply_msg), if out_node_id == node_ref.node_id() { "".to_owned() } else { format!("{} via ", out_node_id) }, node_ref); let bytes = out.len() as u64; let send_ts = get_timestamp(); self.network_manager() .send_envelope(node_ref.clone(), Some(out_node_id), out) .await .map_err(RPCError::Internal) .map_err(|e| { self.routing_table() .stats_failed_to_send(node_ref.clone(), send_ts, false); e })?; // Reply successfully sent self.routing_table().stats_answer_sent(node_ref, bytes); Ok(()) } fn wants_answer(&self, operation: &veilid_capnp::operation::Reader) -> Result { match operation .get_respond_to() .which() .map_err(map_error_capnp_notinschema!())? { veilid_capnp::operation::respond_to::None(_) => Ok(false), veilid_capnp::operation::respond_to::Sender(_) | veilid_capnp::operation::respond_to::SenderWithInfo(_) | veilid_capnp::operation::respond_to::PrivateRoute(_) => Ok(true), } } fn get_respond_to_sender_signed_node_info( &self, operation: &veilid_capnp::operation::Reader, sender_node_id: &DHTKey, ) -> Result, RPCError> { match operation .get_respond_to() .which() .map_err(map_error_capnp_notinschema!())? { veilid_capnp::operation::respond_to::SenderWithInfo(Ok(sender_ni_reader)) => Ok(Some( decode_signed_node_info(&sender_ni_reader, sender_node_id, true)?, )), veilid_capnp::operation::respond_to::SenderWithInfo(Err(e)) => Err(rpc_error_protocol( format!("invalid sender_with_info signed node info: {}", e), )), veilid_capnp::operation::respond_to::None(_) | veilid_capnp::operation::respond_to::Sender(_) | veilid_capnp::operation::respond_to::PrivateRoute(_) => Ok(None), } } ////////////////////////////////////////////////////////////////////// async fn generate_sender_info(&self, peer_noderef: NodeRef) -> SenderInfo { let socket_address = peer_noderef .last_connection() .await .map(|c| c.remote_address().clone()); SenderInfo { socket_address } } async fn process_status_q(&self, rpcreader: RPCMessageReader) -> Result<(), RPCError> { let peer_noderef = rpcreader.header.peer_noderef.clone(); let sender_info = self.generate_sender_info(peer_noderef).await; let reply_msg = { let operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; // Don't bother unless we are going to answer if !self.wants_answer(&operation)? { return Ok(()); } // get StatusQ reader let iq_reader = match operation.get_detail().which() { Ok(veilid_capnp::operation::detail::Which::StatusQ(Ok(x))) => x, _ => panic!("invalid operation type in process_status_q"), }; // Parse out fields let node_status = decode_node_status( &iq_reader .get_node_status() .map_err(map_error_internal!("no valid node status"))?, )?; // update node status for the requesting node to our routing table if let Some(sender_nr) = rpcreader.opt_sender_nr.clone() { // Update latest node status in routing table for the statusq sender sender_nr.operate(|e| { e.update_node_status(node_status); }); } // Send info answer let mut reply_msg = ::capnp::message::Builder::new_default(); let mut answer = reply_msg.init_root::(); answer.set_op_id(operation.get_op_id()); let mut respond_to = answer.reborrow().init_respond_to(); respond_to.set_none(()); let detail = answer.reborrow().init_detail(); let mut status_a = detail.init_status_a(); // Add node status let node_status = self.network_manager().generate_node_status(); let mut nsb = status_a.reborrow().init_node_status(); encode_node_status(&node_status, &mut nsb)?; // Add sender info let mut sib = status_a.reborrow().init_sender_info(); encode_sender_info(&sender_info, &mut sib)?; reply_msg.into_reader() }; self.reply(rpcreader, reply_msg, None).await } async fn process_validate_dial_info( &self, rpcreader: RPCMessageReader, ) -> Result<(), RPCError> { // let (redirect, dial_info, receipt) = { let operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; // This should never want an answer if self.wants_answer(&operation)? { return Err(rpc_error_invalid_format( "validate dial info should not want answer", )); } // get validateDialInfo reader let vdi_reader = match operation.get_detail().which() { Ok(veilid_capnp::operation::detail::Which::ValidateDialInfo(Ok(x))) => x, _ => panic!("invalid operation type in process_validate_dial_info"), }; // Parse out fields let redirect = vdi_reader.get_redirect(); let dial_info = decode_dial_info( &vdi_reader .get_dial_info() .map_err(map_error_internal!("no valid dial info in process_validate_dial_info"))?, )?; let receipt = vdi_reader .get_receipt() .map_err(map_error_internal!("no valid receipt in process_validate_dial_info"))?.to_vec(); (redirect, dial_info, receipt) }; // Redirect this request if we are asked to if redirect { // Find peers capable of validating this dial info // We filter on the -outgoing- protocol capability status not the node's dial info // Use the address type though, to ensure we reach an ipv6 capable node if this is // an ipv6 address let routing_table = self.routing_table(); let filter = DialInfoFilter::global().with_address_type(dial_info.address_type()); let sender_id = rpcreader.header.envelope.get_sender_id(); let mut peers = routing_table.find_fast_public_nodes_filtered(&filter); if peers.is_empty() { return Err(rpc_error_internal(format!( "no peers matching filter '{:?}'", filter ))); } for peer in &mut peers { // Ensure the peer is not the one asking for the validation if peer.node_id() == sender_id { continue; } // Release the filter on the peer because we don't need to send the redirect with the filter // we just wanted to make sure we only selected nodes that were capable of // using the correct protocol for the dial info being validated peer.set_filter(None); // Ensure the peer's status is known and that it is capable of // making outbound connections for the dial info we want to verify // and if this peer can validate dial info let can_contact_dial_info = peer.operate(|e: &mut BucketEntry| { if let Some(ni) = &e.node_info() { ni.outbound_protocols.contains(dial_info.protocol_type()) && ni.can_validate_dial_info() } else { false } }); if !can_contact_dial_info { continue; } // See if this peer will validate dial info let will_validate_dial_info = peer.operate(|e: &mut BucketEntry| { if let Some(status) = &e.peer_stats().status { status.will_validate_dial_info } else { true } }); if !will_validate_dial_info { continue; } // Make a copy of the request, without the redirect flag let vdi_msg_reader = { let mut vdi_msg = ::capnp::message::Builder::new_default(); let mut question = vdi_msg.init_root::(); question.set_op_id(self.get_next_op_id()); let mut respond_to = question.reborrow().init_respond_to(); respond_to.set_none(()); let detail = question.reborrow().init_detail(); let mut vdi_builder = detail.init_validate_dial_info(); vdi_builder.set_redirect(false); let mut di_builder = vdi_builder.reborrow().init_dial_info(); encode_dial_info(&dial_info, &mut di_builder)?; let r_builder = vdi_builder.init_receipt(receipt.len().try_into().map_err( map_error_protocol!("invalid receipt length in process_validate_dial_info"), )?); r_builder.copy_from_slice(&receipt); vdi_msg.into_reader() }; // Send the validate_dial_info request until we succeed self.request(Destination::Direct(peer.clone()), vdi_msg_reader, None) .await?; } return Ok(()); }; // Otherwise send a return receipt directly // Possibly from an alternate port let network_manager = self.network_manager(); network_manager .send_out_of_band_receipt(dial_info.clone(), receipt) .await .map_err(map_error_string!()) .map_err( logthru_net!(error "failed to send direct receipt to dial info: {}", dial_info), )?; Ok(()) } async fn process_find_node_q(&self, rpcreader: RPCMessageReader) -> Result<(), RPCError> { // let reply_msg = { let operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; // find_node must always want an answer if !self.wants_answer(&operation)? { return Err(rpc_error_invalid_format("find_node_q should want answer")); } // get findNodeQ reader let fnq_reader = match operation.get_detail().which() { Ok(veilid_capnp::operation::detail::Which::FindNodeQ(Ok(x))) => x, _ => panic!("invalid operation type in process_find_node_q"), }; // get the node id we want to look up let target_node_id = decode_public_key( &fnq_reader .get_node_id() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?, ); // add node information for the requesting node to our routing table let routing_table = self.routing_table(); // find N nodes closest to the target node in our routing table let own_peer_info = routing_table.get_own_peer_info(); let own_peer_info_is_valid = own_peer_info.signed_node_info.is_valid(); let closest_nodes = routing_table.find_closest_nodes( target_node_id, // filter Some(Box::new(move |kv| { RoutingTable::filter_has_valid_signed_node_info(kv, own_peer_info_is_valid) })), // transform |e| RoutingTable::transform_to_peer_info(e, &own_peer_info), ); log_rpc!(">>>> Returning {} closest peers", closest_nodes.len()); // Send find_node answer let mut reply_msg = ::capnp::message::Builder::new_default(); let mut answer = reply_msg.init_root::(); answer.set_op_id(operation.get_op_id()); let mut respond_to = answer.reborrow().init_respond_to(); respond_to.set_none(()); let detail = answer.reborrow().init_detail(); let fna = detail.init_find_node_a(); let mut peers_builder = fna.init_peers( closest_nodes .len() .try_into() .map_err(map_error_internal!("invalid closest nodes list length"))?, ); for (i, closest_node) in closest_nodes.iter().enumerate() { let mut pi_builder = peers_builder.reborrow().get(i as u32); encode_peer_info(closest_node, &mut pi_builder)?; } reply_msg.into_reader() }; self.reply(rpcreader, reply_msg, None).await } async fn process_route(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { // xxx do not process latency for routed messages Err(rpc_error_unimplemented("process_route")) } async fn process_node_info_update(&self, rpcreader: RPCMessageReader) -> Result<(), RPCError> { // let sender_node_id = rpcreader.header.envelope.get_sender_id(); let signed_node_info = { let operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; // This should never want an answer if self.wants_answer(&operation)? { return Err(rpc_error_invalid_format( "node_info_update should not want answer", )); } // get nodeInfoUpdate reader let niumsg_reader = match operation.get_detail().which() { Ok(veilid_capnp::operation::detail::Which::NodeInfoUpdate(Ok(x))) => x, _ => panic!("invalid operation type in process_node_info_update"), }; // Parse out fields let sni_reader = niumsg_reader .get_signed_node_info() .map_err(map_error_internal!("no valid signed node info"))?; decode_signed_node_info(&sni_reader, &sender_node_id, true)? }; // Update our routing table with signed node info if !self.filter_peer_scope(&signed_node_info.node_info) { return Err(rpc_error_invalid_format( "node_info_update has invalid peer scope", )); } let _ = self .routing_table() .register_node_with_signed_node_info(sender_node_id, signed_node_info) .map_err(RPCError::Internal)?; Ok(()) } async fn process_get_value_q(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_get_value_q")) } async fn process_set_value_q(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_set_value_q")) } async fn process_watch_value_q(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_watch_value_q")) } async fn process_value_changed(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_value_changed")) } async fn process_supply_block_q(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_supply_block_q")) } async fn process_find_block_q(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_find_block_q")) } async fn process_signal(&self, rpcreader: RPCMessageReader) -> Result<(), RPCError> { let signal_info = { let operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; // This should never want an answer if self.wants_answer(&operation)? { return Err(rpc_error_invalid_format("signal should not want answer")); } // get signal reader let sig_reader = match operation.get_detail().which() { Ok(veilid_capnp::operation::detail::Which::Signal(Ok(x))) => x, _ => panic!("invalid operation type in process_signal"), }; // Get signal info decode_signal_info(&sig_reader)? }; // Handle it let network_manager = self.network_manager(); network_manager .handle_signal(signal_info) .await .map_err(map_error_string!()) } async fn process_return_receipt(&self, rpcreader: RPCMessageReader) -> Result<(), RPCError> { let receipt = { let operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; // This should never want an answer if self.wants_answer(&operation)? { return Err(rpc_error_invalid_format( "return receipt should not want answer", )); } // get returnReceipt reader let rr_reader = match operation.get_detail().which() { Ok(veilid_capnp::operation::detail::Which::ReturnReceipt(Ok(x))) => x, _ => panic!("invalid operation type in process_return_receipt"), }; // Get receipt rr_reader .get_receipt() .map_err(map_error_internal!("no valid receipt in process_return_receipt"))?.to_vec() }; // Handle it let network_manager = self.network_manager(); network_manager .handle_in_band_receipt(receipt, rpcreader.header.peer_noderef) .await .map_err(map_error_string!()) } async fn process_start_tunnel_q(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_start_tunnel_q")) } async fn process_complete_tunnel_q( &self, _rpcreader: RPCMessageReader, ) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_complete_tunnel_q")) } async fn process_cancel_tunnel_q(&self, _rpcreader: RPCMessageReader) -> Result<(), RPCError> { Err(rpc_error_unimplemented("process_cancel_tunnel_q")) } async fn process_answer(&self, rpcreader: RPCMessageReader) -> Result<(), RPCError> { // pass answer to the appropriate rpc waiter let op_id = { let operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; operation.get_op_id() }; Ok(self.complete_op_id_waiter(op_id, rpcreader).await?) } ////////////////////////////////////////////////////////////////////// async fn process_rpc_message_version_0(&self, msg: RPCMessage) -> Result<(), RPCError> { let reader = capnp::message::Reader::new(msg.data, Default::default()); let sender_node_id = msg.header.envelope.get_sender_id(); let mut opt_sender_nr: Option = None; let which = { let operation = reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; let (which, is_q) = match operation .get_detail() .which() .map_err(map_error_capnp_notinschema!())? { veilid_capnp::operation::detail::StatusQ(_) => (0u32, true), veilid_capnp::operation::detail::StatusA(_) => (1u32, false), veilid_capnp::operation::detail::ValidateDialInfo(_) => (2u32, true), veilid_capnp::operation::detail::FindNodeQ(_) => (3u32, true), veilid_capnp::operation::detail::FindNodeA(_) => (4u32, false), veilid_capnp::operation::detail::Route(_) => (5u32, true), veilid_capnp::operation::detail::NodeInfoUpdate(_) => (6u32, true), veilid_capnp::operation::detail::GetValueQ(_) => (7u32, true), veilid_capnp::operation::detail::GetValueA(_) => (8u32, false), veilid_capnp::operation::detail::SetValueQ(_) => (9u32, true), veilid_capnp::operation::detail::SetValueA(_) => (10u32, false), veilid_capnp::operation::detail::WatchValueQ(_) => (11u32, true), veilid_capnp::operation::detail::WatchValueA(_) => (12u32, false), veilid_capnp::operation::detail::ValueChanged(_) => (13u32, true), veilid_capnp::operation::detail::SupplyBlockQ(_) => (14u32, true), veilid_capnp::operation::detail::SupplyBlockA(_) => (15u32, false), veilid_capnp::operation::detail::FindBlockQ(_) => (16u32, true), veilid_capnp::operation::detail::FindBlockA(_) => (17u32, false), veilid_capnp::operation::detail::Signal(_) => (18u32, true), veilid_capnp::operation::detail::ReturnReceipt(_) => (19u32, true), veilid_capnp::operation::detail::StartTunnelQ(_) => (20u32, true), veilid_capnp::operation::detail::StartTunnelA(_) => (21u32, false), veilid_capnp::operation::detail::CompleteTunnelQ(_) => (22u32, true), veilid_capnp::operation::detail::CompleteTunnelA(_) => (23u32, false), veilid_capnp::operation::detail::CancelTunnelQ(_) => (24u32, true), veilid_capnp::operation::detail::CancelTunnelA(_) => (25u32, false), }; log_rpc!(debug "<<== {}({}) <- {:?}", if is_q { "REQUEST" } else { "REPLY" }, self.get_rpc_message_debug_info(&reader), msg.header.envelope.get_sender_id() ); // Accounting for questions we receive if is_q { // See if we have some Sender NodeInfo to incorporate opt_sender_nr = if let Some(sender_ni) = self.get_respond_to_sender_signed_node_info(&operation, &sender_node_id)? { // Sender NodeInfo was specified, update our routing table with it if !self.filter_peer_scope(&sender_ni.node_info) { return Err(rpc_error_invalid_format( "respond_to_sender_signed_node_info has invalid peer scope", )); } let nr = self .routing_table() .register_node_with_signed_node_info(sender_node_id, sender_ni) .map_err(RPCError::Internal)?; Some(nr) } else { // look up sender node, in case it's different than our peer due to relaying self.routing_table().lookup_node_ref(sender_node_id) }; if let Some(sender_nr) = opt_sender_nr.clone() { self.routing_table().stats_question_rcvd( sender_nr, msg.header.timestamp, msg.header.body_len, ); } }; which }; let rpcreader = RPCMessageReader { header: msg.header, reader, opt_sender_nr, }; match which { 0 => self.process_status_q(rpcreader).await, // StatusQ 1 => self.process_answer(rpcreader).await, // StatusA 2 => self.process_validate_dial_info(rpcreader).await, // ValidateDialInfo 3 => self.process_find_node_q(rpcreader).await, // FindNodeQ 4 => self.process_answer(rpcreader).await, // FindNodeA 5 => self.process_route(rpcreader).await, // Route 6 => self.process_node_info_update(rpcreader).await, // NodeInfoUpdate 7 => self.process_get_value_q(rpcreader).await, // GetValueQ 8 => self.process_answer(rpcreader).await, // GetValueA 9 => self.process_set_value_q(rpcreader).await, // SetValueQ 10 => self.process_answer(rpcreader).await, // SetValueA 11 => self.process_watch_value_q(rpcreader).await, // WatchValueQ 12 => self.process_answer(rpcreader).await, // WatchValueA 13 => self.process_value_changed(rpcreader).await, // ValueChanged 14 => self.process_supply_block_q(rpcreader).await, // SupplyBlockQ 15 => self.process_answer(rpcreader).await, // SupplyBlockA 16 => self.process_find_block_q(rpcreader).await, // FindBlockQ 17 => self.process_answer(rpcreader).await, // FindBlockA 18 => self.process_signal(rpcreader).await, // SignalQ 19 => self.process_return_receipt(rpcreader).await, // ReturnReceipt 20 => self.process_start_tunnel_q(rpcreader).await, // StartTunnelQ 21 => self.process_answer(rpcreader).await, // StartTunnelA 22 => self.process_complete_tunnel_q(rpcreader).await, // CompleteTunnelQ 23 => self.process_answer(rpcreader).await, // CompleteTunnelA 24 => self.process_cancel_tunnel_q(rpcreader).await, // CancelTunnelQ 25 => self.process_answer(rpcreader).await, // CancelTunnelA _ => panic!("must update rpc table"), } } async fn process_rpc_message(&self, msg: RPCMessage) -> Result<(), RPCError> { if msg.header.envelope.get_version() == 0 { self.process_rpc_message_version_0(msg).await } else { Err(RPCError::Internal(format!( "unsupported envelope version: {}, newest supported is version 0", msg.header.envelope.get_version() ))) } } async fn rpc_worker(self, stop_token: StopToken, receiver: flume::Receiver) { while let Ok(Ok(msg)) = receiver.recv_async().timeout_at(stop_token.clone()).await { let _ = self .process_rpc_message(msg) .await .map_err(logthru_rpc!("couldn't process rpc message")); } } pub async fn startup(&self) -> Result<(), String> { trace!("startup rpc processor"); let mut inner = self.inner.lock(); // make local copy of node id for easy access let c = self.config.get(); inner.node_id = c.network.node_id; inner.node_id_secret = c.network.node_id_secret; // set up channel let mut concurrency = c.network.rpc.concurrency; let mut queue_size = c.network.rpc.queue_size; let mut timeout = ms_to_us(c.network.rpc.timeout_ms); let mut max_route_hop_count = c.network.rpc.max_route_hop_count as usize; if concurrency == 0 { concurrency = get_concurrency() / 2; if concurrency == 0 { concurrency = 1; } } if queue_size == 0 { queue_size = 1024; } if timeout == 0 { timeout = 10000000; } if max_route_hop_count == 0 { max_route_hop_count = 7usize; } inner.timeout = timeout; inner.max_route_hop_count = max_route_hop_count; let channel = flume::bounded(queue_size as usize); inner.send_channel = Some(channel.0.clone()); inner.stop_source = Some(StopSource::new()); // spin up N workers trace!("Spinning up {} RPC workers", concurrency); for _ in 0..concurrency { let this = self.clone(); let receiver = channel.1.clone(); let jh = spawn(Self::rpc_worker(this, inner.stop_source.as_ref().unwrap().token(), receiver)); inner.worker_join_handles.push(MustJoinHandle::new(jh)); } Ok(()) } pub async fn shutdown(&self) { // Stop the rpc workers let mut unord = FuturesUnordered::new(); { let mut inner = self.inner.lock(); // drop the stop drop(inner.stop_source.take()); // take the join handles out for h in inner.worker_join_handles.drain(..) { unord.push(h); } } // Wait for them to complete while unord.next().await.is_some() {} // Release the rpc processor *self.inner.lock() = Self::new_inner(self.network_manager()); } pub fn enqueue_message( &self, envelope: Envelope, body: Vec, peer_noderef: NodeRef, ) -> Result<(), String> { let msg = RPCMessage { header: RPCMessageHeader { timestamp: get_timestamp(), envelope, body_len: body.len() as u64, peer_noderef, }, data: RPCMessageData { contents: body }, }; let send_channel = { let inner = self.inner.lock(); inner.send_channel.as_ref().unwrap().clone() }; send_channel .try_send(msg) .map_err(|e| format!("failed to enqueue received RPC message: {:?}", e))?; Ok(()) } // Gets a 'RespondTo::Sender' that contains either our dial info, // or None if the peer has seen our dial info before or our node info is not yet valid // because of an unknown network class pub fn make_respond_to_sender(&self, peer: NodeRef) -> RespondTo { if peer.has_seen_our_node_info() || matches!( self.network_manager() .get_network_class() .unwrap_or(NetworkClass::Invalid), NetworkClass::Invalid ) { RespondTo::Sender(None) } else { let our_sni = self.routing_table().get_own_signed_node_info(); RespondTo::Sender(Some(our_sni)) } } // Send StatusQ RPC request, receive StatusA answer // Can be sent via relays, but not via routes pub async fn rpc_call_status(self, peer: NodeRef) -> Result { let status_q_msg = { let mut status_q_msg = ::capnp::message::Builder::new_default(); let mut question = status_q_msg.init_root::(); question.set_op_id(self.get_next_op_id()); let mut respond_to = question.reborrow().init_respond_to(); self.make_respond_to_sender(peer.clone()) .encode(&mut respond_to)?; let detail = question.reborrow().init_detail(); let mut sqb = detail.init_status_q(); let mut node_status_builder = sqb.reborrow().init_node_status(); let node_status = self.network_manager().generate_node_status(); encode_node_status(&node_status, &mut node_status_builder)?; status_q_msg.into_reader() }; // Send the info request let waitable_reply = self .request(Destination::Direct(peer.clone()), status_q_msg, None) .await? .unwrap(); // Note what kind of ping this was and to what peer scope let send_data_kind = waitable_reply.send_data_kind; // Wait for reply let (rpcreader, latency) = self.wait_for_reply(waitable_reply).await?; let (sender_info, node_status) = { let response_operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; let status_a = match response_operation .get_detail() .which() .map_err(map_error_capnp_notinschema!()) .map_err(logthru_rpc!())? { veilid_capnp::operation::detail::StatusA(a) => { a.map_err(map_error_internal!("Invalid StatusA"))? } _ => return Err(rpc_error_internal("Incorrect RPC answer for question")), }; // Decode node info if !status_a.has_node_status() { return Err(rpc_error_internal("Missing node status")); } let nsr = status_a .get_node_status() .map_err(map_error_internal!("Broken node status"))?; let node_status = decode_node_status(&nsr)?; // Decode sender info let sender_info = if status_a.has_sender_info() { let sir = status_a .get_sender_info() .map_err(map_error_internal!("Broken sender info"))?; decode_sender_info(&sir)? } else { SenderInfo::default() }; // Update latest node status in routing table peer.operate(|e| { e.update_node_status(node_status.clone()); }); (sender_info, node_status) }; // Report sender_info IP addresses to network manager if let Some(socket_address) = sender_info.socket_address { match send_data_kind { SendDataKind::LocalDirect => { self.network_manager() .report_local_socket_address(socket_address, peer) .await; } SendDataKind::GlobalDirect => { self.network_manager() .report_global_socket_address(socket_address, peer) .await; } SendDataKind::GlobalIndirect => { // Do nothing in this case, as the socket address returned here would be for any node other than ours } } } // Return the answer for anyone who may care let out = StatusAnswer { latency, node_status, sender_info, }; Ok(out) } // Can only be sent directly, not via relays or routes pub async fn rpc_call_validate_dial_info( &self, peer: NodeRef, dial_info: DialInfo, redirect: bool, ) -> Result { let network_manager = self.network_manager(); let receipt_time = ms_to_us( self.config .get() .network .dht .validate_dial_info_receipt_time_ms, ); // let (vdi_msg, eventual_value) = { let mut vdi_msg = ::capnp::message::Builder::new_default(); let mut question = vdi_msg.init_root::(); question.set_op_id(self.get_next_op_id()); let mut respond_to = question.reborrow().init_respond_to(); respond_to.set_none(()); let detail = question.reborrow().init_detail(); let mut vdi_builder = detail.init_validate_dial_info(); // Generate receipt and waitable eventual so we can see if we get the receipt back let (receipt, eventual_value) = network_manager .generate_single_shot_receipt(receipt_time, []) .map_err(map_error_string!())?; vdi_builder.set_redirect(redirect); let mut di_builder = vdi_builder.reborrow().init_dial_info(); encode_dial_info(&dial_info, &mut di_builder)?; let r_builder = vdi_builder.init_receipt(receipt.len().try_into().map_err( map_error_protocol!("invalid receipt length in validate dial info"), )?); r_builder.copy_from_slice(&receipt); (vdi_msg.into_reader(), eventual_value) }; // Send the validate_dial_info request // This can only be sent directly, as relays can not validate dial info self.request(Destination::Direct(peer), vdi_msg, None) .await?; log_net!(debug "waiting for validate_dial_info receipt"); // Wait for receipt match eventual_value.await.take_value().unwrap() { ReceiptEvent::ReturnedInBand { inbound_noderef: _, } => { Err(rpc_error_internal("validate_dial_info receipt should be returned out-of-band")) } ReceiptEvent::ReturnedOutOfBand => { log_net!(debug "validate_dial_info receipt returned"); Ok(true) } ReceiptEvent::Expired => { log_net!(debug "validate_dial_info receipt expired"); Ok(false) } ReceiptEvent::Cancelled => { Err(rpc_error_internal("receipt was dropped before expiration")) } } } // Send FindNodeQ RPC request, receive FindNodeA answer // Can be sent via all methods including relays and routes pub async fn rpc_call_find_node( self, dest: Destination, key: DHTKey, safety_route: Option<&SafetyRouteSpec>, respond_to: RespondTo, ) -> Result { let find_node_q_msg = { let mut find_node_q_msg = ::capnp::message::Builder::new_default(); let mut question = find_node_q_msg.init_root::(); question.set_op_id(self.get_next_op_id()); let mut respond_to_builder = question.reborrow().init_respond_to(); respond_to.encode(&mut respond_to_builder)?; let detail = question.reborrow().init_detail(); let mut fnq = detail.init_find_node_q(); let mut node_id_builder = fnq.reborrow().init_node_id(); encode_public_key(&key, &mut node_id_builder)?; find_node_q_msg.into_reader() }; // Send the find_node request let waitable_reply = self .request(dest, find_node_q_msg, safety_route) .await? .unwrap(); // Wait for reply let (rpcreader, latency) = self.wait_for_reply(waitable_reply).await?; let response_operation = rpcreader .reader .get_root::() .map_err(map_error_capnp_error!()) .map_err(logthru_rpc!())?; let find_node_a = match response_operation .get_detail() .which() .map_err(map_error_capnp_notinschema!()) .map_err(logthru_rpc!())? { veilid_capnp::operation::detail::FindNodeA(a) => { a.map_err(map_error_internal!("Invalid FindNodeA"))? } _ => return Err(rpc_error_internal("Incorrect RPC answer for question")), }; let peers_reader = find_node_a .get_peers() .map_err(map_error_internal!("Missing peers"))?; let mut peers = Vec::::with_capacity( peers_reader .len() .try_into() .map_err(map_error_internal!("too many peers"))?, ); for p in peers_reader.iter() { let peer_info = decode_peer_info(&p, true)?; if !self.filter_peer_scope(&peer_info.signed_node_info.node_info) { return Err(rpc_error_invalid_format( "find_node response has invalid peer scope", )); } peers.push(peer_info); } let out = FindNodeAnswer { latency, peers }; Ok(out) } // Sends a our node info to another node // Can be sent via all methods including relays and routes pub async fn rpc_call_node_info_update( &self, dest: Destination, safety_route: Option<&SafetyRouteSpec>, ) -> Result<(), RPCError> { let sni_msg = { let mut sni_msg = ::capnp::message::Builder::new_default(); let mut question = sni_msg.init_root::(); question.set_op_id(self.get_next_op_id()); let mut respond_to = question.reborrow().init_respond_to(); respond_to.set_none(()); let detail = question.reborrow().init_detail(); let niu_builder = detail.init_node_info_update(); let mut sni_builder = niu_builder.init_signed_node_info(); let sni = self.routing_table().get_own_signed_node_info(); encode_signed_node_info(&sni, &mut sni_builder)?; sni_msg.into_reader() }; // Send the node_info_update request self.request(dest, sni_msg, safety_route).await?; Ok(()) } // Sends a unidirectional signal to a node // Can be sent via all methods including relays and routes pub async fn rpc_call_signal( &self, dest: Destination, safety_route: Option<&SafetyRouteSpec>, signal_info: SignalInfo, ) -> Result<(), RPCError> { let sig_msg = { let mut sig_msg = ::capnp::message::Builder::new_default(); let mut question = sig_msg.init_root::(); question.set_op_id(self.get_next_op_id()); let mut respond_to = question.reborrow().init_respond_to(); respond_to.set_none(()); let detail = question.reborrow().init_detail(); let mut sig_builder = detail.init_signal(); encode_signal_info(&signal_info, &mut sig_builder)?; sig_msg.into_reader() }; // Send the signal request self.request(dest, sig_msg, safety_route).await?; Ok(()) } // Sends a unidirectional in-band return receipt // Can be sent via all methods including relays and routes pub async fn rpc_call_return_receipt>( &self, dest: Destination, safety_route: Option<&SafetyRouteSpec>, receipt: D, ) -> Result<(), RPCError> { let receipt = receipt.as_ref(); let rr_msg = { let mut rr_msg = ::capnp::message::Builder::new_default(); let mut question = rr_msg.init_root::(); question.set_op_id(self.get_next_op_id()); let mut respond_to = question.reborrow().init_respond_to(); respond_to.set_none(()); let detail = question.reborrow().init_detail(); let rr_builder = detail.init_return_receipt(); let r_builder = rr_builder.init_receipt(receipt.len().try_into().map_err( map_error_protocol!("invalid receipt length in return receipt"), )?); r_builder.copy_from_slice(receipt); rr_msg.into_reader() }; // Send the return receipt request self.request(dest, rr_msg, safety_route).await?; Ok(()) } // xxx do not process latency for routed messages }