mod bucket; mod bucket_entry; mod debug; mod find_nodes; mod node_ref; mod stats_accounting; use crate::dht::*; use crate::intf::*; use crate::network_manager::*; use crate::rpc_processor::*; use crate::xx::*; use crate::*; use alloc::str::FromStr; use bucket::*; pub use bucket_entry::*; pub use debug::*; pub use find_nodes::*; use futures_util::stream::{FuturesUnordered, StreamExt}; pub use node_ref::*; pub use stats_accounting::*; ////////////////////////////////////////////////////////////////////////// #[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq)] pub enum RoutingDomain { PublicInternet, LocalNetwork, } #[derive(Debug, Default)] pub struct RoutingDomainDetail { dial_info_details: Vec, } struct RoutingTableInner { network_manager: NetworkManager, node_id: DHTKey, node_id_secret: DHTKeySecret, buckets: Vec, public_internet_routing_domain: RoutingDomainDetail, local_network_routing_domain: RoutingDomainDetail, bucket_entry_count: usize, // Transfer stats for this node self_latency_stats_accounting: LatencyStatsAccounting, self_transfer_stats_accounting: TransferStatsAccounting, self_transfer_stats: TransferStatsDownUp, } #[derive(Clone, Debug, Default)] pub struct RoutingTableHealth { pub reliable_entry_count: usize, pub unreliable_entry_count: usize, pub dead_entry_count: usize, } struct RoutingTableUnlockedInner { // Background processes rolling_transfers_task: TickTask, bootstrap_task: TickTask, peer_minimum_refresh_task: TickTask, ping_validator_task: TickTask, node_info_update_single_future: SingleFuture<()>, } #[derive(Clone)] pub struct RoutingTable { config: VeilidConfig, inner: Arc>, unlocked_inner: Arc, } impl RoutingTable { fn new_inner(network_manager: NetworkManager) -> RoutingTableInner { RoutingTableInner { network_manager, node_id: DHTKey::default(), node_id_secret: DHTKeySecret::default(), buckets: Vec::new(), public_internet_routing_domain: RoutingDomainDetail::default(), local_network_routing_domain: RoutingDomainDetail::default(), bucket_entry_count: 0, self_latency_stats_accounting: LatencyStatsAccounting::new(), self_transfer_stats_accounting: TransferStatsAccounting::new(), self_transfer_stats: TransferStatsDownUp::default(), } } fn new_unlocked_inner(config: VeilidConfig) -> RoutingTableUnlockedInner { let c = config.get(); RoutingTableUnlockedInner { rolling_transfers_task: TickTask::new(ROLLING_TRANSFERS_INTERVAL_SECS), bootstrap_task: TickTask::new(1), peer_minimum_refresh_task: TickTask::new_ms(c.network.dht.min_peer_refresh_time_ms), ping_validator_task: TickTask::new(1), node_info_update_single_future: SingleFuture::new(), } } pub fn new(network_manager: NetworkManager) -> Self { let config = network_manager.config(); let this = Self { config: config.clone(), inner: Arc::new(Mutex::new(Self::new_inner(network_manager))), unlocked_inner: Arc::new(Self::new_unlocked_inner(config)), }; // Set rolling transfers tick task { let this2 = this.clone(); this.unlocked_inner .rolling_transfers_task .set_routine(move |l, t| { Box::pin(this2.clone().rolling_transfers_task_routine(l, t)) }); } // Set bootstrap tick task { let this2 = this.clone(); this.unlocked_inner .bootstrap_task .set_routine(move |_l, _t| Box::pin(this2.clone().bootstrap_task_routine())); } // Set peer minimum refresh tick task { let this2 = this.clone(); this.unlocked_inner .peer_minimum_refresh_task .set_routine(move |_l, _t| { Box::pin(this2.clone().peer_minimum_refresh_task_routine()) }); } // Set ping validator tick task { let this2 = this.clone(); this.unlocked_inner .ping_validator_task .set_routine(move |l, t| Box::pin(this2.clone().ping_validator_task_routine(l, t))); } this } pub fn network_manager(&self) -> NetworkManager { self.inner.lock().network_manager.clone() } pub fn rpc_processor(&self) -> RPCProcessor { self.network_manager().rpc_processor() } pub fn node_id(&self) -> DHTKey { self.inner.lock().node_id } pub fn node_id_secret(&self) -> DHTKeySecret { self.inner.lock().node_id_secret } fn with_routing_domain(inner: &RoutingTableInner, domain: RoutingDomain, f: F) -> R where F: FnOnce(&RoutingDomainDetail) -> R, { match domain { RoutingDomain::PublicInternet => f(&inner.public_internet_routing_domain), RoutingDomain::LocalNetwork => f(&inner.local_network_routing_domain), } } fn with_routing_domain_mut( inner: &mut RoutingTableInner, domain: RoutingDomain, f: F, ) -> R where F: FnOnce(&mut RoutingDomainDetail) -> R, { match domain { RoutingDomain::PublicInternet => f(&mut inner.public_internet_routing_domain), RoutingDomain::LocalNetwork => f(&mut inner.local_network_routing_domain), } } pub fn has_dial_info(&self, domain: RoutingDomain) -> bool { let inner = self.inner.lock(); Self::with_routing_domain(&*inner, domain, |rd| !rd.dial_info_details.is_empty()) } pub fn dial_info_details(&self, domain: RoutingDomain) -> Vec { let inner = self.inner.lock(); Self::with_routing_domain(&*inner, domain, |rd| rd.dial_info_details.clone()) } pub fn first_filtered_dial_info_detail( &self, domain: Option, filter: &DialInfoFilter, ) -> Option { let inner = self.inner.lock(); // Prefer local network first if it isn't filtered out if domain == None || domain == Some(RoutingDomain::LocalNetwork) { Self::with_routing_domain(&*inner, RoutingDomain::LocalNetwork, |rd| { for did in &rd.dial_info_details { if did.matches_filter(filter) { return Some(did.clone()); } } None }) } else { None } .or_else(|| { if domain == None || domain == Some(RoutingDomain::PublicInternet) { Self::with_routing_domain(&*inner, RoutingDomain::PublicInternet, |rd| { for did in &rd.dial_info_details { if did.matches_filter(filter) { return Some(did.clone()); } } None }) } else { None } }) } pub fn all_filtered_dial_info_details( &self, domain: Option, filter: &DialInfoFilter, ) -> Vec { let inner = self.inner.lock(); let mut ret = Vec::new(); if domain == None || domain == Some(RoutingDomain::LocalNetwork) { Self::with_routing_domain(&*inner, RoutingDomain::LocalNetwork, |rd| { for did in &rd.dial_info_details { if did.matches_filter(filter) { ret.push(did.clone()); } } }); } if domain == None || domain == Some(RoutingDomain::PublicInternet) { Self::with_routing_domain(&*inner, RoutingDomain::PublicInternet, |rd| { for did in &rd.dial_info_details { if did.matches_filter(filter) { ret.push(did.clone()); } } }); } ret.remove_duplicates(); ret } pub fn register_dial_info( &self, domain: RoutingDomain, dial_info: DialInfo, class: DialInfoClass, ) -> Result<(), String> { log_rtab!(debug "Registering dial_info with:\n domain: {:?}\n dial_info: {:?}\n class: {:?}", domain, dial_info, class ); let enable_local_peer_scope = { let config = self.network_manager().config(); let c = config.get(); c.network.enable_local_peer_scope }; if !enable_local_peer_scope && matches!(domain, RoutingDomain::PublicInternet) && dial_info.is_local() { return Err("shouldn't be registering local addresses as public".to_owned()) .map_err(logthru_rtab!(error)); } if !dial_info.is_valid() { return Err(format!( "shouldn't be registering invalid addresses: {:?}", dial_info )) .map_err(logthru_rtab!(error)); } let mut inner = self.inner.lock(); Self::with_routing_domain_mut(&mut *inner, domain, |rd| { rd.dial_info_details.push(DialInfoDetail { dial_info: dial_info.clone(), class, }); rd.dial_info_details.sort(); }); let domain_str = match domain { RoutingDomain::PublicInternet => "Public", RoutingDomain::LocalNetwork => "Local", }; info!( "{} Dial Info: {}", domain_str, NodeDialInfo { node_id: NodeId::new(inner.node_id), dial_info } .to_string(), ); debug!(" Class: {:?}", class); // Public dial info changed, go through all nodes and reset their 'seen our node info' bit if matches!(domain, RoutingDomain::PublicInternet) { let cur_ts = intf::get_timestamp(); Self::with_entries(&mut *inner, cur_ts, BucketEntryState::Dead, |_, e| { e.set_seen_our_node_info(false); Option::<()>::None }); } Ok(()) } pub fn clear_dial_info_details(&self, domain: RoutingDomain) { trace!("clearing dial info domain: {:?}", domain); let mut inner = self.inner.lock(); Self::with_routing_domain_mut(&mut *inner, domain, |rd| { rd.dial_info_details.clear(); }) } fn bucket_depth(index: usize) -> usize { match index { 0 => 256, 1 => 128, 2 => 64, 3 => 32, 4 => 16, 5 => 8, 6 => 4, 7 => 4, 8 => 4, 9 => 4, _ => 4, } } pub async fn init(&self) -> Result<(), String> { let mut inner = self.inner.lock(); // Size the buckets (one per bit) inner.buckets.reserve(DHT_KEY_LENGTH * 8); for _ in 0..DHT_KEY_LENGTH * 8 { let bucket = Bucket::new(self.clone()); inner.buckets.push(bucket); } // make local copy of node id for easy access let c = self.config.get(); inner.node_id = c.network.node_id; inner.node_id_secret = c.network.node_id_secret; Ok(()) } pub async fn terminate(&self) { // Cancel all tasks being ticked if let Err(e) = self.unlocked_inner.rolling_transfers_task.cancel().await { warn!("rolling_transfers_task not cancelled: {}", e); } if let Err(e) = self.unlocked_inner.bootstrap_task.cancel().await { warn!("bootstrap_task not cancelled: {}", e); } if let Err(e) = self.unlocked_inner.peer_minimum_refresh_task.cancel().await { warn!("peer_minimum_refresh_task not cancelled: {}", e); } if let Err(e) = self.unlocked_inner.ping_validator_task.cancel().await { warn!("ping_validator_task not cancelled: {}", e); } if self .unlocked_inner .node_info_update_single_future .cancel() .await .is_err() { warn!("node_info_update_single_future not cancelled"); } *self.inner.lock() = Self::new_inner(self.network_manager()); } // Inform routing table entries that our dial info has changed pub fn send_node_info_updates(&self) { let this = self.clone(); // Run in background intf::spawn(async move { // Run in background only once this.clone() .unlocked_inner .node_info_update_single_future .single_spawn(async move { // Only update if we actually have a valid network class let netman = this.network_manager(); if matches!( netman.get_network_class().unwrap_or(NetworkClass::Invalid), NetworkClass::Invalid ) { trace!("not sending node info update because our network class is not yet valid"); return; } // Get the list of refs to all nodes to update let node_refs = { let mut inner = this.inner.lock(); let mut node_refs = Vec::::with_capacity(inner.bucket_entry_count); let cur_ts = intf::get_timestamp(); Self::with_entries(&mut *inner, cur_ts, BucketEntryState::Unreliable, |k, e| { // Only update nodes that haven't seen our node info yet if !e.has_seen_our_node_info() { node_refs.push(NodeRef::new( this.clone(), *k, e, None, )); } Option::<()>::None }); node_refs }; // Send the updates log_rtab!("Sending node info updates to {} nodes", node_refs.len()); let mut unord = FuturesUnordered::new(); for nr in node_refs { let rpc = this.rpc_processor(); unord.push(async move { // Update the node if let Err(e) = rpc .rpc_call_node_info_update(Destination::Direct(nr.clone()), None) .await { // Not fatal, but we should be able to see if this is happening trace!("failed to send node info update to {:?}: {}", nr, e); return; } // Mark the node as updated nr.set_seen_our_node_info(); }); } // Wait for futures to complete while unord.next().await.is_some() {} log_rtab!("Finished sending node updates"); }) .await }) .detach() } // Attempt to empty the routing table // should only be performed when there are no node_refs (detached) pub fn purge(&self) { let mut inner = self.inner.lock(); log_rtab!( "Starting routing table purge. Table currently has {} nodes", inner.bucket_entry_count ); for bucket in &mut inner.buckets { bucket.kick(0); } log_rtab!(debug "Routing table purge complete. Routing table now has {} nodes", inner.bucket_entry_count ); } // Attempt to settle buckets and remove entries down to the desired number // which may not be possible due extant NodeRefs fn kick_bucket(inner: &mut RoutingTableInner, idx: usize) { let bucket = &mut inner.buckets[idx]; let bucket_depth = Self::bucket_depth(idx); if let Some(dead_node_ids) = bucket.kick(bucket_depth) { // Remove counts inner.bucket_entry_count -= dead_node_ids.len(); log_rtab!(debug "Routing table now has {} nodes", inner.bucket_entry_count); // Now purge the routing table inner vectors //let filter = |k: &DHTKey| dead_node_ids.contains(k); //inner.closest_reliable_nodes.retain(filter); //inner.fastest_reliable_nodes.retain(filter); //inner.closest_nodes.retain(filter); //inner.fastest_nodes.retain(filter); } } fn find_bucket_index(inner: &RoutingTableInner, node_id: DHTKey) -> usize { distance(&node_id, &inner.node_id) .first_nonzero_bit() .unwrap() } fn get_entry_count(inner: &mut RoutingTableInner, min_state: BucketEntryState) -> usize { let mut count = 0usize; let cur_ts = intf::get_timestamp(); Self::with_entries(inner, cur_ts, min_state, |_, _| { count += 1; Option::<()>::None }); count } fn with_entries Option>( inner: &mut RoutingTableInner, cur_ts: u64, min_state: BucketEntryState, mut f: F, ) -> Option { for bucket in &mut inner.buckets { for entry in bucket.entries_mut() { if entry.1.state(cur_ts) >= min_state { if let Some(out) = f(entry.0, entry.1) { return Some(out); } } } } None } fn drop_node_ref(&self, node_id: DHTKey) { // Reduce ref count on entry let mut inner = self.inner.lock(); let idx = Self::find_bucket_index(&*inner, node_id); let new_ref_count = { let bucket = &mut inner.buckets[idx]; let entry = bucket.entry_mut(&node_id).unwrap(); entry.ref_count -= 1; entry.ref_count }; // If this entry could possibly go away, kick the bucket if new_ref_count == 0 { // it important to do this in the same inner lock as the ref count decrease Self::kick_bucket(&mut *inner, idx); } } // Create a node reference, possibly creating a bucket entry // the 'update_func' closure is called on the node, and, if created, // in a locked fashion as to ensure the bucket entry state is always valid pub fn create_node_ref(&self, node_id: DHTKey, update_func: F) -> Result where F: FnOnce(&mut BucketEntry), { // Ensure someone isn't trying register this node itself if node_id == self.node_id() { return Err("can't register own node".to_owned()).map_err(logthru_rtab!(error)); } // Lock this entire operation let mut inner = self.inner.lock(); // Look up existing entry let idx = Self::find_bucket_index(&*inner, node_id); let noderef = { let bucket = &mut inner.buckets[idx]; let entry = bucket.entry_mut(&node_id); entry.map(|e| NodeRef::new(self.clone(), node_id, e, None)) }; // If one doesn't exist, insert into bucket, possibly evicting a bucket member let noderef = match noderef { None => { // Make new entry inner.bucket_entry_count += 1; let cnt = inner.bucket_entry_count; log_rtab!(debug "Routing table now has {} nodes, {} live", cnt, Self::get_entry_count(&mut *inner, BucketEntryState::Unreliable)); let bucket = &mut inner.buckets[idx]; let nr = bucket.add_entry(node_id); // Update the entry let entry = bucket.entry_mut(&node_id); update_func(entry.unwrap()); // Kick the bucket // It is important to do this in the same inner lock as the add_entry Self::kick_bucket(&mut *inner, idx); nr } Some(nr) => { // Update the entry let bucket = &mut inner.buckets[idx]; let entry = bucket.entry_mut(&node_id); update_func(entry.unwrap()); nr } }; Ok(noderef) } pub fn lookup_node_ref(&self, node_id: DHTKey) -> Option { let mut inner = self.inner.lock(); let idx = Self::find_bucket_index(&*inner, node_id); let bucket = &mut inner.buckets[idx]; bucket .entry_mut(&node_id) .map(|e| NodeRef::new(self.clone(), node_id, e, None)) } // Shortcut function to add a node to our routing table if it doesn't exist // and add the dial info we have for it, since that's pretty common pub fn register_node_with_signed_node_info( &self, node_id: DHTKey, signed_node_info: SignedNodeInfo, ) -> Result { // validate signed node info is not something malicious if node_id == self.node_id() { return Err("can't register own node id in routing table".to_owned()); } if let Some(rpi) = &signed_node_info.node_info.relay_peer_info { if rpi.node_id.key == node_id { return Err("node can not be its own relay".to_owned()); } } let nr = self.create_node_ref(node_id, |e| { e.update_node_info(signed_node_info); })?; Ok(nr) } // Shortcut function to add a node to our routing table if it doesn't exist // and add the last peer address we have for it, since that's pretty common pub fn register_node_with_existing_connection( &self, node_id: DHTKey, descriptor: ConnectionDescriptor, timestamp: u64, ) -> Result { let nr = self.create_node_ref(node_id, |e| { // set the most recent node address for connection finding and udp replies e.set_last_connection(descriptor, timestamp); })?; Ok(nr) } fn operate_on_bucket_entry_locked( inner: &mut RoutingTableInner, node_id: DHTKey, f: F, ) -> T where F: FnOnce(&mut BucketEntry) -> T, { let idx = Self::find_bucket_index(&*inner, node_id); let bucket = &mut inner.buckets[idx]; let entry = bucket.entry_mut(&node_id).unwrap(); f(entry) } fn operate_on_bucket_entry(&self, node_id: DHTKey, f: F) -> T where F: FnOnce(&mut BucketEntry) -> T, { let mut inner = self.inner.lock(); Self::operate_on_bucket_entry_locked(&mut *inner, node_id, f) } pub fn find_inbound_relay(&self, cur_ts: u64) -> Option { let mut inner = self.inner.lock(); let inner = &mut *inner; let mut best_inbound_relay: Option<(&DHTKey, &mut BucketEntry)> = None; // Iterate all known nodes for candidates for bucket in &mut inner.buckets { for (k, e) in bucket.entries_mut() { if e.state(cur_ts) >= BucketEntryState::Unreliable { // Ensure this node is not on our local network if !e .local_node_info() .map(|l| l.has_dial_info()) .unwrap_or(false) { // Ensure we have the node's status if let Some(node_status) = &e.peer_stats().status { // Ensure the node will relay if node_status.will_relay { // Compare against previous candidate if let Some(best_inbound_relay) = best_inbound_relay.as_mut() { // Less is faster if BucketEntry::cmp_fastest_reliable( cur_ts, e, best_inbound_relay.1, ) == std::cmp::Ordering::Less { *best_inbound_relay = (k, e); } } else { // Always store the first candidate best_inbound_relay = Some((k, e)); } } } } } } } // Return the best inbound relay noderef best_inbound_relay.map(|(k, e)| NodeRef::new(self.clone(), *k, e, None)) } pub fn register_find_node_answer(&self, fna: FindNodeAnswer) -> Result, String> { let node_id = self.node_id(); // register nodes we'd found let mut out = Vec::::with_capacity(fna.peers.len()); for p in fna.peers { // if our own node if is in the list then ignore it, as we don't add ourselves to our own routing table if p.node_id.key == node_id { continue; } // register the node if it's new let nr = self .register_node_with_signed_node_info(p.node_id.key, p.signed_node_info.clone()) .map_err(map_to_string) .map_err(logthru_rtab!( "couldn't register node {} at {:?}", p.node_id.key, &p.signed_node_info ))?; out.push(nr); } Ok(out) } pub async fn find_node( &self, node_ref: NodeRef, node_id: DHTKey, ) -> Result, String> { let rpc_processor = self.rpc_processor(); let res = rpc_processor .clone() .rpc_call_find_node( Destination::Direct(node_ref.clone()), node_id, None, rpc_processor.make_respond_to_sender(node_ref.clone()), ) .await .map_err(map_to_string) .map_err(logthru_rtab!())?; log_rtab!( "find_self for at {:?} answered in {}ms", &node_ref, timestamp_to_secs(res.latency) * 1000.0f64 ); // register nodes we'd found self.register_find_node_answer(res) } pub async fn find_self(&self, node_ref: NodeRef) -> Result, String> { let node_id = self.node_id(); self.find_node(node_ref, node_id).await } pub async fn find_target(&self, node_ref: NodeRef) -> Result, String> { let node_id = node_ref.node_id(); self.find_node(node_ref, node_id).await } pub async fn reverse_find_node(&self, node_ref: NodeRef, wide: bool) { // Ask bootstrap node to 'find' our own node so we can get some more nodes near ourselves // and then contact those nodes to inform -them- that we exist // Ask bootstrap server for nodes closest to our own node let closest_nodes = match self.find_self(node_ref.clone()).await { Err(e) => { log_rtab!(error "reverse_find_node: find_self failed for {:?}: {}", &node_ref, e ); return; } Ok(v) => v, }; // Ask each node near us to find us as well if wide { for closest_nr in closest_nodes { match self.find_self(closest_nr.clone()).await { Err(e) => { log_rtab!(error "reverse_find_node: closest node find_self failed for {:?}: {}", &closest_nr, e ); return; } Ok(v) => v, }; } } } // Bootstrap lookup process async fn resolve_bootstrap(&self, bootstrap: Vec) -> Result, String> { let mut out = Vec::::new(); // Resolve from bootstrap root to bootstrap hostnames let mut bsnames = Vec::::new(); for bh in bootstrap { // Get TXT record for bootstrap (bootstrap.veilid.net, or similar) let records = intf::txt_lookup(&bh).await?; for record in records { // Split the bootstrap name record by commas for rec in record.split(',') { let rec = rec.trim(); // If the name specified is fully qualified, go with it let bsname = if rec.ends_with('.') { rec.to_string() } // If the name is not fully qualified, prepend it to the bootstrap name else { format!("{}.{}", rec, bh) }; // Add to the list of bootstrap name to look up bsnames.push(bsname); } } } // Get bootstrap nodes from hostnames concurrently let mut unord = FuturesUnordered::new(); for bsname in bsnames { unord.push(async move { // look up boostrap node txt records let bsnirecords = match intf::txt_lookup(&bsname).await { Err(e) => { warn!("bootstrap node txt lookup failed for {}: {}", bsname, e); return None; } Ok(v) => v, }; // for each record resolve into node dial info strings let mut nodedialinfos: Vec = Vec::new(); for bsnirecord in bsnirecords { // split bootstrap node record by commas. example: // 7lxDEabK_qgjbe38RtBa3IZLrud84P6NhGP-pRTZzdQ,tcp://bootstrap-dev-alpha.veilid.net:5150,udp://bootstrap-dev-alpha.veilid.net:5150,ws://bootstrap-dev-alpha.veilid.net:5150/ws let mut records = bsnirecord.split(',').map(|x| x.trim()); let node_id_str = match records.next() { Some(v) => v, None => { warn!("no node id specified in bootstrap node txt record"); continue; } }; // Decode the node id let node_id_key = match DHTKey::try_decode(node_id_str) { Ok(v) => v, Err(e) => { warn!( "Invalid node id in bootstrap node record {}: {}", node_id_str, e ); continue; } }; // If this is our own node id, then we skip it for bootstrap, in case we are a bootstrap node if self.node_id() == node_id_key { continue; } // Resolve each record and store in node dial infos list let node_id = NodeId::new(node_id_key); for rec in records { let rec = rec.trim(); let dial_infos = match DialInfo::try_vec_from_url(rec) { Ok(dis) => dis, Err(e) => { warn!("Couldn't resolve bootstrap node dial info {}: {}", rec, e); continue; } }; for dial_info in dial_infos { nodedialinfos.push(NodeDialInfo { node_id: node_id.clone(), dial_info, }) } } } Some(nodedialinfos) }); } while let Some(ndis) = unord.next().await { if let Some(mut ndis) = ndis { out.append(&mut ndis); } } Ok(out) } async fn bootstrap_task_routine(self) -> Result<(), String> { let (bootstrap, bootstrap_nodes) = { let c = self.config.get(); ( c.network.bootstrap.clone(), c.network.bootstrap_nodes.clone(), ) }; log_rtab!(debug "--- bootstrap_task"); // If we aren't specifying a bootstrap node list explicitly, then pull from the bootstrap server(s) let bootstrap_node_dial_infos = if !bootstrap_nodes.is_empty() { let mut bsnvec = Vec::new(); for b in bootstrap_nodes { let ndis = NodeDialInfo::from_str(b.as_str()) .map_err(map_to_string) .map_err(logthru_rtab!( "Invalid node dial info in bootstrap entry: {}", b ))?; bsnvec.push(ndis); } bsnvec } else { // Resolve bootstrap servers and recurse their TXT entries self.resolve_bootstrap(bootstrap).await? }; // Map all bootstrap entries to a single key with multiple dialinfo let mut bsmap: BTreeMap> = BTreeMap::new(); for ndi in bootstrap_node_dial_infos { let node_id = ndi.node_id.key; bsmap .entry(node_id) .or_insert_with(Vec::new) .push(DialInfoDetail { dial_info: ndi.dial_info, class: DialInfoClass::Direct, // Bootstraps are always directly reachable }); } // Run all bootstrap operations concurrently let mut unord = FuturesUnordered::new(); for (k, v) in bsmap { log_rtab!("--- bootstrapping {} with {:?}", k.encode(), &v); // Make invalid signed node info (no signature) let nr = self .register_node_with_signed_node_info( k, SignedNodeInfo::with_no_signature(NodeInfo { network_class: NetworkClass::InboundCapable, // Bootstraps are always inbound capable outbound_protocols: ProtocolSet::empty(), // Bootstraps do not participate in relaying and will not make outbound requests dial_info_detail_list: v, // Dial info is as specified in the bootstrap list relay_peer_info: None, // Bootstraps never require a relay themselves }), ) .map_err(logthru_rtab!(error "Couldn't add bootstrap node: {}", k))?; // Add this our futures to process in parallel let this = self.clone(); unord.push(async move { // Need VALID signed peer info, so ask bootstrap to find_node of itself // which will ensure it has the bootstrap's signed peer info as part of the response let _ = this.find_target(nr.clone()).await; // Ensure we got the signed peer info if !nr.operate(|e| e.has_valid_signed_node_info()) { log_rtab!(warn "bootstrap at {:?} did not return valid signed node info", nr ); // If this node info is invalid, it will time out after being unpingable } else { // otherwise this bootstrap is valid, lets ask it to find ourselves now this.reverse_find_node(nr, true).await } }); } // Wait for all bootstrap operations to complete before we complete the singlefuture while unord.next().await.is_some() {} Ok(()) } /////////////////////////////////////////////////////////// /// Peer ping validation // Ask our remaining peers to give us more peers before we go // back to the bootstrap servers to keep us from bothering them too much async fn peer_minimum_refresh_task_routine(self) -> Result<(), String> { // log_rtab!("--- peer_minimum_refresh task"); // get list of all peers we know about, even the unreliable ones, and ask them to find nodes close to our node too let noderefs = { let mut inner = self.inner.lock(); let mut noderefs = Vec::::with_capacity(inner.bucket_entry_count); let cur_ts = intf::get_timestamp(); Self::with_entries( &mut *inner, cur_ts, BucketEntryState::Unreliable, |k, entry| { noderefs.push(NodeRef::new(self.clone(), *k, entry, None)); Option::<()>::None }, ); noderefs }; // do peer minimum search concurrently let mut unord = FuturesUnordered::new(); for nr in noderefs { log_rtab!("--- peer minimum search with {:?}", nr); unord.push(self.reverse_find_node(nr, false)); } while unord.next().await.is_some() {} Ok(()) } // Ping each node in the routing table if they need to be pinged // to determine their reliability async fn ping_validator_task_routine(self, _last_ts: u64, cur_ts: u64) -> Result<(), String> { // log_rtab!("--- ping_validator task"); let rpc = self.rpc_processor(); let netman = self.network_manager(); let relay_node_id = netman.relay_node().map(|nr| nr.node_id()); let mut inner = self.inner.lock(); Self::with_entries(&mut *inner, cur_ts, BucketEntryState::Unreliable, |k, e| { if e.needs_ping(k, cur_ts, relay_node_id) { let nr = NodeRef::new(self.clone(), *k, e, None); log_rtab!( " --- ping validating: {:?} ({})", nr, e.state_debug_info(cur_ts) ); intf::spawn_local(rpc.clone().rpc_call_status(nr)).detach(); } Option::<()>::None }); Ok(()) } // Compute transfer statistics to determine how 'fast' a node is async fn rolling_transfers_task_routine(self, last_ts: u64, cur_ts: u64) -> Result<(), String> { // log_rtab!("--- rolling_transfers task"); let inner = &mut *self.inner.lock(); // Roll our own node's transfers inner.self_transfer_stats_accounting.roll_transfers( last_ts, cur_ts, &mut inner.self_transfer_stats, ); // Roll all bucket entry transfers for b in &mut inner.buckets { b.roll_transfers(last_ts, cur_ts); } Ok(()) } // Ticks about once per second // to run tick tasks which may run at slower tick rates as configured pub async fn tick(&self) -> Result<(), String> { // Do rolling transfers every ROLLING_TRANSFERS_INTERVAL_SECS secs self.unlocked_inner.rolling_transfers_task.tick().await?; // If routing table has no live entries, then add the bootstrap nodes to it if Self::get_entry_count(&mut *self.inner.lock(), BucketEntryState::Unreliable) == 0 { self.unlocked_inner.bootstrap_task.tick().await?; } // If we still don't have enough peers, find nodes until we do let min_peer_count = { let c = self.config.get(); c.network.dht.min_peer_count as usize }; if Self::get_entry_count(&mut *self.inner.lock(), BucketEntryState::Unreliable) < min_peer_count { self.unlocked_inner.peer_minimum_refresh_task.tick().await?; } // Ping validate some nodes to groom the table self.unlocked_inner.ping_validator_task.tick().await?; // Keepalive Ok(()) } ////////////////////////////////////////////////////////////////////// // Stats Accounting pub fn stats_question_sent( &self, node_ref: NodeRef, ts: u64, bytes: u64, expects_answer: bool, ) { self.inner .lock() .self_transfer_stats_accounting .add_up(bytes); node_ref.operate(|e| { e.question_sent(ts, bytes, expects_answer); }) } pub fn stats_question_rcvd(&self, node_ref: NodeRef, ts: u64, bytes: u64) { self.inner .lock() .self_transfer_stats_accounting .add_down(bytes); node_ref.operate(|e| { e.question_rcvd(ts, bytes); }) } pub fn stats_answer_sent(&self, node_ref: NodeRef, bytes: u64) { self.inner .lock() .self_transfer_stats_accounting .add_up(bytes); node_ref.operate(|e| { e.answer_sent(bytes); }) } pub fn stats_answer_rcvd(&self, node_ref: NodeRef, send_ts: u64, recv_ts: u64, bytes: u64) { self.inner .lock() .self_transfer_stats_accounting .add_down(bytes); self.inner .lock() .self_latency_stats_accounting .record_latency(recv_ts - send_ts); node_ref.operate(|e| { e.answer_rcvd(send_ts, recv_ts, bytes); }) } pub fn stats_question_lost(&self, node_ref: NodeRef) { node_ref.operate(|e| { e.question_lost(); }) } pub fn stats_failed_to_send(&self, node_ref: NodeRef, ts: u64, expects_answer: bool) { node_ref.operate(|e| { e.failed_to_send(ts, expects_answer); }) } ////////////////////////////////////////////////////////////////////// // Routing Table Health Metrics pub fn get_routing_table_health(&self) -> RoutingTableHealth { let mut health = RoutingTableHealth::default(); let cur_ts = intf::get_timestamp(); let inner = self.inner.lock(); for bucket in &inner.buckets { for entry in bucket.entries() { match entry.1.state(cur_ts) { BucketEntryState::Reliable => { health.reliable_entry_count += 1; } BucketEntryState::Unreliable => { health.unreliable_entry_count += 1; } BucketEntryState::Dead => { health.dead_entry_count += 1; } } } } health } }