mod bucket; mod bucket_entry; mod debug; mod node_ref; mod route_spec_store; mod routing_domain_editor; mod routing_domains; mod routing_table_inner; mod stats_accounting; mod tasks; use crate::dht::*; use crate::network_manager::*; use crate::rpc_processor::*; use crate::xx::*; use crate::*; use bucket::*; pub use bucket_entry::*; pub use debug::*; use hashlink::LruCache; pub use node_ref::*; pub use route_spec_store::*; pub use routing_domain_editor::*; pub use routing_domains::*; pub use routing_table_inner::*; pub use stats_accounting::*; const RECENT_PEERS_TABLE_SIZE: usize = 64; ////////////////////////////////////////////////////////////////////////// pub type LowLevelProtocolPorts = BTreeSet<(LowLevelProtocolType, AddressType, u16)>; pub type ProtocolToPortMapping = BTreeMap<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>; #[derive(Clone, Debug)] pub struct LowLevelPortInfo { pub low_level_protocol_ports: LowLevelProtocolPorts, pub protocol_to_port: ProtocolToPortMapping, } #[derive(Clone, Debug, Default)] pub struct RoutingTableHealth { /// Number of reliable (responsive) entries in the routing table pub reliable_entry_count: usize, /// Number of unreliable (occasionally unresponsive) entries in the routing table pub unreliable_entry_count: usize, /// Number of dead (always unresponsive) entries in the routing table pub dead_entry_count: usize, } struct RoutingTableUnlockedInner { // Accessors config: VeilidConfig, network_manager: NetworkManager, /// The current node's public DHT key node_id: DHTKey, /// The current node's DHT key secret node_id_secret: DHTKeySecret, /// Buckets to kick on our next kick task kick_queue: Mutex>, /// Background process for computing statistics rolling_transfers_task: TickTask, /// Backgroup process to purge dead routing table entries when necessary kick_buckets_task: TickTask, } #[derive(Clone)] pub struct RoutingTable { inner: Arc>, unlocked_inner: Arc, } impl RoutingTable { fn new_unlocked_inner( config: VeilidConfig, network_manager: NetworkManager, ) -> RoutingTableUnlockedInner { let c = config.get(); RoutingTableUnlockedInner { config: config.clone(), network_manager, node_id: c.network.node_id, node_id_secret: c.network.node_id_secret, kick_queue: Mutex::new(BTreeSet::default()), rolling_transfers_task: TickTask::new(ROLLING_TRANSFERS_INTERVAL_SECS), kick_buckets_task: TickTask::new(1), } } pub fn new(network_manager: NetworkManager) -> Self { let config = network_manager.config(); let unlocked_inner = Arc::new(Self::new_unlocked_inner(config, network_manager)); let inner = Arc::new(RwLock::new(RoutingTableInner::new(unlocked_inner.clone()))); let this = Self { inner, unlocked_inner, }; // Set rolling transfers tick task { let this2 = this.clone(); this.unlocked_inner .rolling_transfers_task .set_routine(move |s, l, t| { Box::pin( this2 .clone() .rolling_transfers_task_routine(s, l, t) .instrument(trace_span!( parent: None, "RoutingTable rolling transfers task routine" )), ) }); } // Set kick buckets tick task { let this2 = this.clone(); this.unlocked_inner .kick_buckets_task .set_routine(move |s, l, t| { Box::pin( this2 .clone() .kick_buckets_task_routine(s, l, t) .instrument(trace_span!(parent: None, "kick buckets task routine")), ) }); } this } pub fn network_manager(&self) -> NetworkManager { self.unlocked_inner.network_manager.clone() } pub fn rpc_processor(&self) -> RPCProcessor { self.network_manager().rpc_processor() } pub fn node_id(&self) -> DHTKey { self.unlocked_inner.node_id } pub fn node_id_secret(&self) -> DHTKeySecret { self.unlocked_inner.node_id_secret } ///////////////////////////////////// /// Initialization /// Called to initialize the routing table after it is created pub async fn init(&self) -> EyreResult<()> { let mut inner = self.inner.write(); inner.init(self.clone()); Ok(()) } /// Called to shut down the routing table pub async fn terminate(&self) { debug!("starting routing table terminate"); // Cancel all tasks being ticked debug!("stopping rolling transfers task"); if let Err(e) = self.unlocked_inner.rolling_transfers_task.stop().await { error!("rolling_transfers_task not stopped: {}", e); } debug!("stopping kick buckets task"); if let Err(e) = self.unlocked_inner.kick_buckets_task.stop().await { error!("kick_buckets_task not stopped: {}", e); } let mut inner = self.inner.write(); inner.terminate(); *inner = RoutingTableInner::new(self.unlocked_inner.clone()); debug!("finished routing table terminate"); } /// Set up the local network routing domain with our local routing table configuration pub fn configure_local_network_routing_domain(&self, local_networks: Vec<(IpAddr, IpAddr)>) { log_net!(debug "configure_local_network_routing_domain: {:#?}", local_networks); self.inner .write() .configure_local_network_routing_domain(local_networks); } ///////////////////////////////////// /// Locked operations pub fn routing_domain_for_address(&self, address: Address) -> Option { self.inner.read().routing_domain_for_address(address) } pub fn with_route_spec_store_mut(&self, f: F) -> R where F: FnOnce(&mut RouteSpecStore, &mut RoutingTableInner) -> R, { self.inner.write().with_route_spec_store_mut(f) } pub fn with_route_spec_store(&self, f: F) -> R where F: FnOnce(&RouteSpecStore, &RoutingTableInner) -> R, { self.inner.read().with_route_spec_store(f) } pub fn relay_node(&self, domain: RoutingDomain) -> Option { self.inner.read().relay_node(domain) } pub fn has_dial_info(&self, domain: RoutingDomain) -> bool { self.inner.read().has_dial_info(domain) } pub fn dial_info_details(&self, domain: RoutingDomain) -> Vec { self.inner.read().dial_info_details(domain) } pub fn first_filtered_dial_info_detail( &self, routing_domain_set: RoutingDomainSet, filter: &DialInfoFilter, ) -> Option { self.inner .read() .first_filtered_dial_info_detail(routing_domain_set, filter) } pub fn all_filtered_dial_info_details( &self, routing_domain_set: RoutingDomainSet, filter: &DialInfoFilter, ) -> Vec { self.inner .read() .all_filtered_dial_info_details(routing_domain_set, filter) } pub fn ensure_dial_info_is_valid(&self, domain: RoutingDomain, dial_info: &DialInfo) -> bool { self.inner .read() .ensure_dial_info_is_valid(domain, dial_info) } pub fn node_info_is_valid_in_routing_domain( &self, routing_domain: RoutingDomain, node_info: &NodeInfo, ) -> bool { self.inner .read() .node_info_is_valid_in_routing_domain(routing_domain, node_info) } /// Look up the best way for two nodes to reach each other over a specific routing domain #[instrument(level = "trace", skip(self), ret)] pub fn get_contact_method( &self, routing_domain: RoutingDomain, node_a_id: &DHTKey, node_a: &NodeInfo, node_b_id: &DHTKey, node_b: &NodeInfo, dial_info_filter: DialInfoFilter, sequencing: Sequencing, ) -> ContactMethod { self.inner.read().get_contact_method( routing_domain, node_a_id, node_a, node_b_id, node_b, dial_info_filter, sequencing, ) } #[instrument(level = "debug", skip(self))] pub fn edit_routing_domain(&self, domain: RoutingDomain) -> RoutingDomainEditor { RoutingDomainEditor::new(self.clone(), domain) } /// Return a copy of our node's peerinfo pub fn get_own_peer_info(&self, routing_domain: RoutingDomain) -> PeerInfo { self.inner.read().get_own_peer_info(routing_domain) } /// Return a copy of our node's signednodeinfo pub fn get_own_signed_node_info(&self, routing_domain: RoutingDomain) -> SignedNodeInfo { self.inner.read().get_own_signed_node_info(routing_domain) } /// Return a copy of our node's nodeinfo pub fn get_own_node_info(&self, routing_domain: RoutingDomain) -> NodeInfo { self.inner.read().get_own_node_info(routing_domain) } /// If we have a valid network class in this routing domain, then our 'NodeInfo' is valid pub fn has_valid_own_node_info(&self, routing_domain: RoutingDomain) -> bool { self.inner.read().has_valid_own_node_info(routing_domain) } /// Return the domain's currently registered network class pub fn get_network_class(&self, routing_domain: RoutingDomain) -> Option { self.inner.read().get_network_class(routing_domain) } /// Return the domain's filter for what we can receivein the form of a dial info filter pub fn get_inbound_dial_info_filter(&self, routing_domain: RoutingDomain) -> DialInfoFilter { self.inner .read() .get_inbound_dial_info_filter(routing_domain) } /// Return the domain's filter for what we can receive in the form of a node ref filter pub fn get_inbound_node_ref_filter(&self, routing_domain: RoutingDomain) -> NodeRefFilter { self.inner .read() .get_inbound_node_ref_filter(routing_domain) } /// Return the domain's filter for what we can send out in the form of a dial info filter pub fn get_outbound_dial_info_filter(&self, routing_domain: RoutingDomain) -> DialInfoFilter { self.inner .read() .get_outbound_dial_info_filter(routing_domain) } /// Return the domain's filter for what we can receive in the form of a node ref filter pub fn get_outbound_node_ref_filter(&self, routing_domain: RoutingDomain) -> NodeRefFilter { self.inner .read() .get_outbound_node_ref_filter(routing_domain) } /// Attempt to empty the routing table /// should only be performed when there are no node_refs (detached) pub fn purge_buckets(&self) { self.inner.write().purge_buckets(); } /// Attempt to remove last_connections from entries pub fn purge_last_connections(&self) { self.inner.write().purge_last_connections(); } fn find_bucket_index(&self, node_id: DHTKey) -> usize { distance(&node_id, &self.unlocked_inner.node_id) .first_nonzero_bit() .unwrap() } pub fn get_entry_count( &self, routing_domain_set: RoutingDomainSet, min_state: BucketEntryState, ) -> usize { self.inner .read() .get_entry_count(routing_domain_set, min_state) } pub fn get_nodes_needing_updates( &self, routing_domain: RoutingDomain, cur_ts: u64, all: bool, ) -> Vec { self.inner .read() .get_nodes_needing_updates(self.clone(), routing_domain, cur_ts, all) } pub fn get_nodes_needing_ping( &self, routing_domain: RoutingDomain, cur_ts: u64, ) -> Vec { self.inner .read() .get_nodes_needing_ping(self.clone(), routing_domain, cur_ts) } pub fn get_all_nodes(&self, cur_ts: u64) -> Vec { let inner = self.inner.read(); inner.get_all_nodes(self.clone(), cur_ts) } fn queue_bucket_kick(&self, node_id: DHTKey) { let idx = self.find_bucket_index(node_id); self.unlocked_inner.kick_queue.lock().insert(idx); } /// Create a node reference, possibly creating a bucket entry /// the 'update_func' closure is called on the node, and, if created, /// in a locked fashion as to ensure the bucket entry state is always valid pub fn create_node_ref(&self, node_id: DHTKey, update_func: F) -> Option where F: FnOnce(&mut RoutingTableInner, &mut BucketEntryInner), { self.inner .write() .create_node_ref(self.clone(), node_id, update_func) } /// Resolve an existing routing table entry and return a reference to it pub fn lookup_node_ref(&self, node_id: DHTKey) -> Option { self.inner.read().lookup_node_ref(self.clone(), node_id) } /// Resolve an existing routing table entry and return a filtered reference to it pub fn lookup_and_filter_noderef( &self, node_id: DHTKey, routing_domain_set: RoutingDomainSet, dial_info_filter: DialInfoFilter, ) -> Option { self.inner.read().lookup_and_filter_noderef( self.clone(), node_id, routing_domain_set, dial_info_filter, ) } /// Shortcut function to add a node to our routing table if it doesn't exist /// and add the dial info we have for it. Returns a noderef filtered to /// the routing domain in which this node was registered for convenience. pub fn register_node_with_signed_node_info( &self, routing_domain: RoutingDomain, node_id: DHTKey, signed_node_info: SignedNodeInfo, allow_invalid: bool, ) -> Option { self.inner.write().register_node_with_signed_node_info( self.clone(), routing_domain, node_id, signed_node_info, allow_invalid, ) } /// Shortcut function to add a node to our routing table if it doesn't exist /// and add the last peer address we have for it, since that's pretty common pub fn register_node_with_existing_connection( &self, node_id: DHTKey, descriptor: ConnectionDescriptor, timestamp: u64, ) -> Option { self.inner.write().register_node_with_existing_connection( self.clone(), node_id, descriptor, timestamp, ) } /// Ticks about once per second /// to run tick tasks which may run at slower tick rates as configured pub async fn tick(&self) -> EyreResult<()> { // Do rolling transfers every ROLLING_TRANSFERS_INTERVAL_SECS secs self.unlocked_inner.rolling_transfers_task.tick().await?; // Kick buckets task let kick_bucket_queue_count = self.unlocked_inner.kick_queue.lock().len(); if kick_bucket_queue_count > 0 { self.unlocked_inner.kick_buckets_task.tick().await?; } Ok(()) } ////////////////////////////////////////////////////////////////////// // Routing Table Health Metrics pub fn get_routing_table_health(&self) -> RoutingTableHealth { self.inner.read().get_routing_table_health() } pub fn get_recent_peers(&self) -> Vec<(DHTKey, RecentPeersEntry)> { self.inner.write().get_recent_peers(self.clone()) } pub fn touch_recent_peer(&self, node_id: DHTKey, last_connection: ConnectionDescriptor) { self.inner .write() .touch_recent_peer(node_id, last_connection) } ////////////////////////////////////////////////////////////////////// // Find Nodes /// Build a map of protocols to low level ports /// This way we can get the set of protocols required to keep our NAT mapping alive for keepalive pings /// Only one protocol per low level protocol/port combination is required /// For example, if WS/WSS and TCP protocols are on the same low-level TCP port, only TCP keepalives will be required /// and we do not need to do WS/WSS keepalive as well. If they are on different ports, then we will need WS/WSS keepalives too. pub fn get_low_level_port_info(&self) -> LowLevelPortInfo { let mut low_level_protocol_ports = BTreeSet::<(LowLevelProtocolType, AddressType, u16)>::new(); let mut protocol_to_port = BTreeMap::<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>::new(); let our_dids = self.all_filtered_dial_info_details( RoutingDomain::PublicInternet.into(), &DialInfoFilter::all(), ); for did in our_dids { low_level_protocol_ports.insert(( did.dial_info.protocol_type().low_level_protocol_type(), did.dial_info.address_type(), did.dial_info.socket_address().port(), )); protocol_to_port.insert( (did.dial_info.protocol_type(), did.dial_info.address_type()), ( did.dial_info.protocol_type().low_level_protocol_type(), did.dial_info.socket_address().port(), ), ); } LowLevelPortInfo { low_level_protocol_ports, protocol_to_port, } } /// Makes a filter that finds nodes with a matching inbound dialinfo pub fn make_inbound_dial_info_entry_filter( routing_domain: RoutingDomain, dial_info_filter: DialInfoFilter, ) -> impl FnMut(&RoutingTableInner, &BucketEntryInner) -> bool { // does it have matching public dial info? move |_rti, e| { if let Some(ni) = e.node_info(routing_domain) { if ni .first_filtered_dial_info_detail(DialInfoDetail::NO_SORT, |did| { did.matches_filter(&dial_info_filter) }) .is_some() { return true; } } false } } /// Makes a filter that finds nodes capable of dialing a particular outbound dialinfo pub fn make_outbound_dial_info_entry_filter<'s>( routing_domain: RoutingDomain, dial_info: DialInfo, ) -> impl FnMut(&RoutingTableInner, &'s BucketEntryInner) -> bool { // does the node's outbound capabilities match the dialinfo? move |_rti, e| { if let Some(ni) = e.node_info(routing_domain) { let dif = DialInfoFilter::all() .with_protocol_type_set(ni.outbound_protocols) .with_address_type_set(ni.address_types); if dial_info.matches_filter(&dif) { return true; } } false } } /// Make a filter that wraps another filter pub fn combine_entry_filters<'a, 'b, F, G>( mut f1: F, mut f2: G, ) -> impl FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool where F: FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool, G: FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool, { move |rti, e| { if !f1(rti, e) { return false; } if !f2(rti, e) { return false; } true } } pub fn find_fast_public_nodes_filtered<'a, 'b, F>( &self, node_count: usize, mut entry_filter: F, ) -> Vec where F: FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool, { self.inner .read() .find_fast_public_nodes_filtered(self.clone(), node_count, entry_filter) } /// Retrieve up to N of each type of protocol capable nodes pub fn find_bootstrap_nodes_filtered(&self, max_per_type: usize) -> Vec { let protocol_types = vec![ ProtocolType::UDP, ProtocolType::TCP, ProtocolType::WS, ProtocolType::WSS, ]; let mut nodes_proto_v4 = vec![0usize, 0usize, 0usize, 0usize]; let mut nodes_proto_v6 = vec![0usize, 0usize, 0usize, 0usize]; self.find_fastest_nodes( // count protocol_types.len() * 2 * max_per_type, // filter move |rti, _k: DHTKey, v: Option>| { let entry = v.unwrap(); entry.with(rti, |_rti, e| { // skip nodes on our local network here if e.has_node_info(RoutingDomain::LocalNetwork.into()) { return false; } // does it have some dial info we need? let filter = |n: &NodeInfo| { let mut keep = false; for did in &n.dial_info_detail_list { if matches!(did.dial_info.address_type(), AddressType::IPV4) { for (n, protocol_type) in protocol_types.iter().enumerate() { if nodes_proto_v4[n] < max_per_type && did.dial_info.protocol_type() == *protocol_type { nodes_proto_v4[n] += 1; keep = true; } } } else if matches!(did.dial_info.address_type(), AddressType::IPV6) { for (n, protocol_type) in protocol_types.iter().enumerate() { if nodes_proto_v6[n] < max_per_type && did.dial_info.protocol_type() == *protocol_type { nodes_proto_v6[n] += 1; keep = true; } } } } keep }; e.node_info(RoutingDomain::PublicInternet) .map(filter) .unwrap_or(false) }) }, // transform |_rti, k: DHTKey, v: Option>| { NodeRef::new(self.clone(), k, v.unwrap().clone(), None) }, ) } pub fn find_peers_with_sort_and_filter<'a, 'b, F, C, T, O>( &self, node_count: usize, cur_ts: u64, mut filter: F, compare: C, mut transform: T, ) -> Vec where F: FnMut(&'a RoutingTableInner, DHTKey, Option>) -> bool, C: FnMut( &'a RoutingTableInner, &'b (DHTKey, Option>), &'b (DHTKey, Option>), ) -> core::cmp::Ordering, T: FnMut(&'a RoutingTableInner, DHTKey, Option>) -> O, { self.inner .read() .find_peers_with_sort_and_filter(node_count, cur_ts, filter, compare, transform) } pub fn find_fastest_nodes<'a, T, F, O>( &self, node_count: usize, mut filter: F, transform: T, ) -> Vec where F: FnMut(&'a RoutingTableInner, DHTKey, Option>) -> bool, T: FnMut(&'a RoutingTableInner, DHTKey, Option>) -> O, { self.inner .read() .find_fastest_nodes(node_count, filter, transform) } pub fn find_closest_nodes<'a, F, T, O>( &self, node_id: DHTKey, filter: F, mut transform: T, ) -> Vec where F: FnMut(&'a RoutingTableInner, DHTKey, Option>) -> bool, T: FnMut(&'a RoutingTableInner, DHTKey, Option>) -> O, { self.inner .read() .find_closest_nodes(node_id, filter, transform) } #[instrument(level = "trace", skip(self), ret)] pub fn register_find_node_answer(&self, peers: Vec) -> Vec { let node_id = self.node_id(); // register nodes we'd found let mut out = Vec::::with_capacity(peers.len()); for p in peers { // if our own node if is in the list then ignore it, as we don't add ourselves to our own routing table if p.node_id.key == node_id { continue; } // node can not be its own relay if let Some(rpi) = &p.signed_node_info.node_info.relay_peer_info { if rpi.node_id == p.node_id { continue; } } // register the node if it's new if let Some(nr) = self.register_node_with_signed_node_info( RoutingDomain::PublicInternet, p.node_id.key, p.signed_node_info.clone(), false, ) { out.push(nr); } } out } #[instrument(level = "trace", skip(self), ret, err)] pub async fn find_node( &self, node_ref: NodeRef, node_id: DHTKey, ) -> EyreResult>> { let rpc_processor = self.rpc_processor(); let res = network_result_try!( rpc_processor .clone() .rpc_call_find_node(Destination::direct(node_ref), node_id) .await? ); // register nodes we'd found Ok(NetworkResult::value( self.register_find_node_answer(res.answer), )) } #[instrument(level = "trace", skip(self), ret, err)] pub async fn find_self(&self, node_ref: NodeRef) -> EyreResult>> { let node_id = self.node_id(); self.find_node(node_ref, node_id).await } #[instrument(level = "trace", skip(self), ret, err)] pub async fn find_target(&self, node_ref: NodeRef) -> EyreResult>> { let node_id = node_ref.node_id(); self.find_node(node_ref, node_id).await } #[instrument(level = "trace", skip(self))] pub async fn reverse_find_node(&self, node_ref: NodeRef, wide: bool) { // Ask bootstrap node to 'find' our own node so we can get some more nodes near ourselves // and then contact those nodes to inform -them- that we exist // Ask bootstrap server for nodes closest to our own node let closest_nodes = network_result_value_or_log!(debug match self.find_self(node_ref.clone()).await { Err(e) => { log_rtab!(error "find_self failed for {:?}: {:?}", &node_ref, e ); return; } Ok(v) => v, } => { return; }); // Ask each node near us to find us as well if wide { for closest_nr in closest_nodes { network_result_value_or_log!(debug match self.find_self(closest_nr.clone()).await { Err(e) => { log_rtab!(error "find_self failed for {:?}: {:?}", &closest_nr, e ); continue; } Ok(v) => v, } => { // Do nothing with non-values continue; }); } } } pub fn make_public_internet_relay_node_filter(&self) -> impl Fn(&BucketEntryInner) -> bool { // Get all our outbound protocol/address types let outbound_dif = self.get_outbound_dial_info_filter(RoutingDomain::PublicInternet); let mapped_port_info = self.get_low_level_port_info(); move |e: &BucketEntryInner| { // Ensure this node is not on the local network if e.has_node_info(RoutingDomain::LocalNetwork.into()) { return false; } // Disqualify nodes that don't cover all our inbound ports for tcp and udp // as we need to be able to use the relay for keepalives for all nat mappings let mut low_level_protocol_ports = mapped_port_info.low_level_protocol_ports.clone(); let can_serve_as_relay = e .node_info(RoutingDomain::PublicInternet) .map(|n| { let dids = n.all_filtered_dial_info_details( Some(DialInfoDetail::ordered_sequencing_sort), // By default, choose connection-oriented protocol for relay |did| did.matches_filter(&outbound_dif), ); for did in &dids { let pt = did.dial_info.protocol_type(); let at = did.dial_info.address_type(); if let Some((llpt, port)) = mapped_port_info.protocol_to_port.get(&(pt, at)) { low_level_protocol_ports.remove(&(*llpt, at, *port)); } } low_level_protocol_ports.is_empty() }) .unwrap_or(false); if !can_serve_as_relay { return false; } true } } #[instrument(level = "trace", skip(self), ret)] pub fn find_inbound_relay( &self, routing_domain: RoutingDomain, cur_ts: u64, ) -> Option { // Get relay filter function let relay_node_filter = match routing_domain { RoutingDomain::PublicInternet => self.make_public_internet_relay_node_filter(), RoutingDomain::LocalNetwork => { unimplemented!(); } }; // Go through all entries and find fastest entry that matches filter function let inner = self.inner.read(); let inner = &*inner; let mut best_inbound_relay: Option<(DHTKey, Arc)> = None; // Iterate all known nodes for candidates inner.with_entries(cur_ts, BucketEntryState::Unreliable, |rti, k, v| { let v2 = v.clone(); v.with(rti, |rti, e| { // Ensure we have the node's status if let Some(node_status) = e.node_status(routing_domain) { // Ensure the node will relay if node_status.will_relay() { // Compare against previous candidate if let Some(best_inbound_relay) = best_inbound_relay.as_mut() { // Less is faster let better = best_inbound_relay.1.with(rti, |_rti, best| { // choose low latency stability for relays BucketEntryInner::cmp_fastest_reliable(cur_ts, e, best) == std::cmp::Ordering::Less }); // Now apply filter function and see if this node should be included if better && relay_node_filter(e) { *best_inbound_relay = (k, v2); } } else if relay_node_filter(e) { // Always store the first candidate best_inbound_relay = Some((k, v2)); } } } }); // Don't end early, iterate through all entries Option::<()>::None }); // Return the best inbound relay noderef best_inbound_relay.map(|(k, e)| NodeRef::new(self.clone(), k, e, None)) } }